A Geometry of the Generations ${ }^{1}$

Lawrence J. Hall and Hitoshi Murayama
Department of Physics, University of California
Berkeley, California 94720
and
Theoretical Physics Group
Ernest Orlando Lawrence Berkeley National Laboratory
University of California, Berkeley, California 94720

Abstract

We propose a geometric theory of flavor based on the discrete group $\left(S_{3}\right)^{3}$, in the context of the minimal supersymmetric standard model. The group treats three objects symmetrically, while making fundamental distinctions between the generations. The top quark is the only heavy quark in the symmetry limit, and the first and second generation squarks are degenerate. The hierarchical nature of Yukawa matrices is a consequence of a sequential breaking of $\left(S_{3}\right)^{3}$.

[^0]The smallness of the electroweak symmetry breaking scale and the hierarchical nature of the Yukawa matrices provide two of the most important problems of particle physics. Weak scale supersymmetry may well play a crucial role in the former, since it is the only symmetry which can protect the mass of an elementary scalar. However, weak scale supersymmetry widens the scope of flavor physics: any supersymmetric extension of the standard model possesses eleven flavor matrices rather than the three Yukawa matrices of the standard model. The additional eight flavor matrices all involve couplings to squarks and sleptons, and have therefore not been directly probed experimentally. However, rare processes, such as the $K_{L}-K_{S}$ mass difference provide experimental constraints on these flavor mixing matrices [1]. Hence the problem of flavor symmetries is greatly affected by the inclusion of weak scale supersymmetry.

It is frequently remarked that the most striking feature of the observed flavor physics is that the top quark is the only fermion with a mass of order the weak scale. In the context of the standard model this implies that only one entry of the three Yukawa matrices is of order unity, while all other entries are numerically small. In the context of supersymmetric standard model, we find that there are now two features of flavor physics which must be considered at the zeroth order level: (1) the large mass of the top quark, (2) the near absence of flavor-changing neutral currents strongly suggest that scalars of a given charge of the light two generations are degenerate [1, 2]. In this paper we explore the consequences of assuming that both of these salient features arise from a common origin - a flavor symmetry group G_{f}.

The existence of an exact flavor symmetry group at high energies is very plausible - it is suggested by the replication of generations. However, in many supersymmetric theories it becomes a necessity. Presumably the ultimate theory of flavor will involve no small parameters: all the dimensionless couplings will be of order unity and small mass ratios will result from hierarchies of dynamically generated mass scales, or perhaps from loop factors. If the supersymmetry breaking squark masses appear as hard interactions in such theories, as they do in supergravity models, then the couplings of order unity will lead to large radiative contributions to the squark masses [4]. The degeneracy between first two generation scalars can then only be maintained if the dimensionless couplings of the theory possess a non-Abelian flavor symmetry G_{f}.

What should we take for G_{f} ? In the context of supergravity theories it
was suggested that a $\mathrm{U}(\mathrm{N})$ invariance of the Kähler potential, where N is the total number of chiral superfields of the theory, be used to protect the squark degeneracy [5]. However, in this paper we require that G_{f} also acts on the superpotential interactions which generate the fermion masses, so this $\mathrm{U}(\mathrm{N})$ invariance is not possible. Flavor symmetries which have been considered to date fall into two categories:
(1) Unified The group is such that in the symmetry limit there is no distinction whatever between generations. This occurs if the three generations are assigned to an irreducible representation which has three indistinguishable components - such as a triplet of SU(3).
(2) Asymmetric The action of the group is such that there is no symmetrical treatment of N objects, where $N=3$ is the number of generations. There are many examples with G_{f} taken to be $\mathrm{U}(1)^{n}[6]$ or $\mathrm{SU}(2)$ [7].

A unified G_{f} has the advantage of providing a more complete theory of flavor, whereas an asymmetric G_{f} does not provide an understanding of the difference between the generations. On the other hand, a unified G_{f} must be broken by couplings of order unity to obtain m_{t}, whereas an asymmetric G_{f}, such as $\mathrm{SU}(2)$, can provide an understanding of the salient flavor features even in the absence of symmetry breaking. In this paper we propose to combine the advantages of a unified G_{f} with those of an asymmetric G_{f} by introducing a third category of flavor symmetry:
(3) Symmetric The group has an action which is identical on three objects, yet has a representation structure which treats the generations differently.

In searching for such a group we are guided by three principles:
(a) The fields of the theory are those of the minimal supersymmetric standard model: three generations and two Higgs doublets H_{u} and H_{d}.
(b) The group should be a local discrete symmetry [8]. Continous global symmetries are broken by quantum gravity [9] and should therefore be gauged. However, flavor symmetries must be broken to generate Yukawa matrices, and the breakdown of gauged flavor symmetries splits masses of different families due to the D-term contribution [10].
(c) The representaton structure of the three generations should be $(1+$ 2), such that, in the G_{f} symmetry limit, the top quark Yukawa coupling is allowed, and the non-Abelian nature of the group maintains degeneracy between the scalars of the lighter two generations.

The discrete non-Abelian group with fewest group elements is the symmetric group S_{3}. By its very definition it acts symmetrically on three objects.

Remarkably it has two singlets and a doublet as irreducible representations, and therefore offers an excellent match to the flavor problem of supersymmetric theories. The action of S_{3} has a geometrical interpretation as all possible rotations in three dimensions which leave an equilateral triangle invariant. The three vectors representing the vertices of the triangle, $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ and \boldsymbol{e}_{3} in Figure 1, are treated identically by the group. Yet the sums and differences of these vectors form a singlet representation (\boldsymbol{v}_{3}) and a doublet representation $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$, whose two components have different group properties. Despite a geometrical symmetry amongst three objects, there is also a geometrical understanding of the differences between the generations.

The group S_{3} has six elements:

$$
\begin{equation*}
S_{3}=\{e,(12),(13),(23),(123),(132)\} \tag{1}
\end{equation*}
$$

where e is the identity element. The two elements (123) and (132) are 120° rotation of the triangle around the axis $\boldsymbol{v}_{3}=(1,1,1) / \sqrt{3}$, which form \boldsymbol{Z}_{3} subgroup of even permutations in S_{3}. The (12), (13) and (23) elements rotate the triangle by 180° around one of its symmetry axes, which are odd permutations. The vector \boldsymbol{v}_{3} flips its sign under odd permutations but does not under even permutations. This is a non-trivial singlet representation which we call 1_{A}, and will be identified with the third generation later. Two other orthogonal vectors $\boldsymbol{v}_{1}=(1,1,-2) / \sqrt{6}$ and $\boldsymbol{v}_{2}=(-1,1,0) / \sqrt{2}$ form a doublet representation 2 of S_{3}. We identify them later with first and second generation fields, respectively. Any 2 representation can be written as a twovector in ($\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$) space. There are only three irreducible representations of $S_{3}: \mathbf{1}_{A}$ and 2 above and another singlet $\mathbf{1}_{S}$ which is a trivial reprentation (invariant). The 1_{S} representation can be obtained as a symmetric product ${ }^{t} \boldsymbol{x} \boldsymbol{y}$ of two $\mathbf{2}$'s, \boldsymbol{x}_{i} and \boldsymbol{y}_{i}, while $\mathbf{1}_{A}$ is an anti-symmetric product ${ }^{t} \boldsymbol{x} \sigma_{2} \boldsymbol{y}$. The other combinations form a 2 such as ${ }^{t} \boldsymbol{x} \sigma_{3} \boldsymbol{y} \sim \boldsymbol{v}_{1}$ and ${ }^{t} \boldsymbol{x} \sigma_{1} \boldsymbol{y} \sim-\boldsymbol{v}_{2}$, and $\mathbf{2}^{3}$ contains a totally symmetric invariant $\left({ }^{t} \boldsymbol{x} \sigma_{3} \boldsymbol{y}\right) \boldsymbol{z}_{1}-\left({ }^{t} \boldsymbol{x} \sigma_{1} \boldsymbol{y}\right) \boldsymbol{z}_{2}$. Decomposition of tensor products is shown in Table 1.

The group S_{3} has been used before in the context of flavor physics, but from a different perspective. The democratic ansatz for quark mass matrices [11], which leads to a heavy top quark, is known to possess the symmetry group $S_{3} \times S_{3} \times S U(2) \times S U(2)$ [12]. However, in this work the fundamental origin of the flavor structure was assumed to come from other dynamics, perhaps BCS-like, and S_{3} simply appeared as an accidental consequence of this
democratic dynamics. In contrast, in this paper we argue that the supersymmetric flavor puzzle suggests uniquely that S_{3} is the fundamental origin of flavor.

The work [13] is somewhat closer to our philosophy. They advocate $G_{f}=Q_{2 n}$, the dicyclic dihedral groups, rather than D_{n} or S_{n}, based on an anomaly freedom constraint which we find to be too restrictive. They also need "Q-leptons" to cancel anomalies. Furthermore, although $Q_{2 n}$ possesses only singlet and doublet representations and therefore allows a large m_{t}, this is clearly also possible with Abelian groups. In this paper we combine the supersymmeric motivation for some non-Abelian nature to G_{f} with the aesthetic desire for a symmetric flavor group.

Despite the encouraging features of S_{3}, it is not possible to satisfy the few guiding principles (a), (b), (c) above using a single S_{3} as G_{f}. For \tilde{d} and \tilde{s} to be degenerate, $(d, s)_{L}$ and $(d, s)_{R}$ should both transform as 2. Since $\mathbf{2} \times \mathbf{2}=\mathbf{1}_{A}+\mathbf{1}_{S}+\mathbf{2}, m_{d}$ and m_{s} are allowed by S_{3}, no matter whether H_{d} is assigned to $\mathbf{1}_{A}$ or to $\mathbf{1}_{S}$. An enlargement of the group is thus necessary. One possibility is to search for interesting structures in larger discrete groups, such as $S_{n}, D_{n}, Q_{2 n}$, and $\Delta\left(3 n^{2}\right)[14,13]$. We find the geometric picture of the three generations arising from the symmetric action of S_{3} to be sufficiently compelling that we prefer to replicate S_{3} factors. Hence we consider a group $S_{3}^{Q} \times S_{3}^{U} \times S_{3}^{D}$ with each of Q, U, D transform as $1+2$ under its own S_{3}, while transforming trivially under other factors.

We identify the third generation with $\mathbf{1}_{A}$ rather than 1_{S}, because we would like to consider the discrete flavor group as an anomaly-free gauge symmetry. The only anomaly one can discuss with the low-energy particle content alone is $S_{3} \times H^{2}$ where H is either $\mathrm{SU}(2)$ or $\mathrm{SU}(3)$ in the standard model [15]. Consider the element (12), which leaves $\mathbf{1}_{S}$ and \boldsymbol{v}_{1} in 2 invariant but changes sign of $\mathbf{1}_{A}$ and \boldsymbol{v}_{2} in 2 . To avoid an anomaly, the total number of $\mathbf{1}_{A}$ and $\mathbf{2}$ with a given quantum number has to be even. In our context, this requirement uniquely selects $1_{A}+2$. The anomaly freedom of this choice can be easily understood by noting a vector 3 in an anomaly free group $\mathrm{SO}(3)$ decomposes to $\mathbf{1}_{A}+2$. Furthermore, this choice is precisely the one which allows a geometric interpretation of families in terms of rotations. It is interesting to see that the three generations, although in a reducible representation $\mathbf{1}_{A}+2$, require each other to render the theory consistent quantum mechanically.

The flavor transformation properties of the quarks are shown in Table 2.

The quantum number of H_{u} is fixed to allow m_{t} by G_{f}. Anomaly freedom then dictates an identical transformation for H_{d}. Because of this charge assignment, only the top quark is heavy in the $\left(S_{3}\right)^{3}$ symmetric limit. The top-bottom asymmetry, or more generally the up-down asymmetry, is built into the representation structure of the Higgs. On the other hand, squark mass matrices all have the form $\operatorname{diag}\left(M_{1}^{2}, M_{1}^{2}, M_{3}^{2}\right)$. The lepton sector will be discussed elsewhere.

Now we consider the breaking of $\left(S_{3}\right)^{3}$ symmetry and discuss its consequence on the Yukawa and squark mass matrices. In order to keep the number of breaking parameters as small as possible, we take the following "minimal" form of the Yukawa matrices [16],

$$
\begin{align*}
Y_{u} & =\left(\begin{array}{cc|c}
h_{u} & O\left(\sqrt{h_{u} h_{c}}\right) & -h_{t} \lambda^{3} A(\rho+i \eta) \\
O\left(\sqrt{h_{u} h_{c}}\right) & h_{c} & -h_{t} \lambda^{2} A \\
\hline 0 & 0 & h_{t}
\end{array}\right), \tag{2}\\
Y_{d} & =\left(\begin{array}{cc|c}
h_{d} & h_{s} \lambda & 0 \\
O\left(h_{s} \lambda\right) & h_{s} & 0 \\
\hline 0 & 0 & h_{b}
\end{array}\right) \tag{3}
\end{align*}
$$

which correctly reproduce Cabbibo-Kobayashi-Maskawa (CKM) matrix in Wolfenstein parametrization. The quark masses are related to the Yukawa couplings by $m_{u, c, t}=h_{u, c, t}\left\langle H_{u}\right\rangle$ and $m_{d, s, b}=h_{d, s, b}\left\langle H_{d}\right\rangle$. We assumed $\left(Y_{u}\right)_{12}$ and $\left(Y_{u}\right)_{21}$ to be $O\left(\sqrt{h_{u} h_{c}}\right)$, because larger off-diagonal elements need a finetuning in the determinant. We actually do not need these elements and can set them vanishing, but we kept them to make the discussion more general. The same comment applies to $\left(Y_{d}\right)_{21}$. The Cabbibo angle originates in the down sector and it may be possible to keep the famous relation $\lambda \sim \sqrt{m_{d} / m_{s}}$.

The largest breaking parameters in the Yukawa matrices are h_{b} which transforms as $\left(\mathbf{1}_{S}, \mathbf{1}_{A}, \mathbf{1}_{A}\right)$ and $h_{t} \lambda^{2} A$ as $\left(\mathbf{2}, \mathbf{1}_{S}, \mathbf{1}_{S}\right)$. h_{b} breaks $S_{3}^{U} \times S_{3}^{D}$ down to a subgroup $S_{3}^{U} \times S_{3}^{D} / \boldsymbol{Z}_{2}$, where (even, odd) and (odd, even) elements are removed. Note that the diagonal subgroup $S_{3}^{U, D}$ is a subgroup of the unbroken symmetry. $h_{t} \lambda^{2} A$ is a \boldsymbol{v}_{1} element in a doublet, and breaks S_{3}^{Q} to $S_{2}^{\boldsymbol{Q}} \simeq \boldsymbol{Z}_{2}=\{e,(12)\}$. This \boldsymbol{Z}_{2} flips the sign of second generation and Higgs fields, while leaving first generation field unchanged. Therefore Q_{2} can acquire a Yukawa coupling while Q_{1} cannot. h_{c} and h_{s} belong to breaking parameters $\left(\mathbf{2}, \mathbf{2}, \mathbf{1}_{S}\right)$ and $\left(\mathbf{2}, \mathbf{1}_{A}, \mathbf{2}\right)$, respectively, and break the diagonal $S_{3}^{U, D}$ to Z_{2} as well, which still keep all first generation fields massless. After
including the smaller breaking parameters, the symmetry $\left(S_{3}\right)^{3}$ is completely broken. In this way, the hierarchical pattern of the Yukawa matrices can be understood as a sequential breaking of the flavor symmetry.

Now we turn to the squark mass matrices. Since the constraints from the flavor-changing neutral currents are at best of order a few times 10^{-3}, we work out the non-degeneracy in squark masses down to this order. It is straightforward to work out how the breaking parameters enter the scalar matrices. For m_{Q}^{2} matrix, the leading correction comes from $\left(2, \mathbf{1}_{S}, \mathbf{1}_{S}\right)$ with \boldsymbol{v}_{1} and \boldsymbol{v}_{2} components of $O\left(h_{t} \lambda^{2} A\right)$ and $O\left(h_{t} \lambda^{3} A(\rho+i \eta)\right)$, respectively. Therefore,

$$
m_{Q}^{2} \sim\left(\begin{array}{cc|c}
M_{1}^{2}+m^{2} h_{t} \lambda^{2} A & m^{2} h_{t} \lambda^{3} A(\rho+i \eta) & -m^{\prime 2} h_{t} \lambda^{2} A \tag{4}\\
m^{2} h_{t} \lambda^{3} A(\rho+i \eta) & M_{1}^{2}-m^{2} h_{t} \lambda^{2} A & m^{\prime 2} h_{t} \lambda^{3} A(\rho+i \eta) \\
\hline-m^{\prime 2} h_{t} \lambda^{2} A & m^{\prime 2} h_{t} \lambda^{3} A(\rho-i \eta) & M_{3}^{2}
\end{array}\right),
$$

where a possible correction to $\left(m_{Q}^{2}\right)_{33}$ was absorbed into M_{3}^{2}. Here and hereafter, m^{2} and $m^{\prime 2}$ are arbitrary numbers comparable to M_{1}^{2} and M_{3}^{2}, and they are in general different for Q, U, D. For the m_{U}^{2} matrix, the only correction comes from the square of $\left(\mathbf{2}, \mathbf{2}, \mathbf{1}_{S}\right)$ breaking parameter of $O\left(h_{c}^{2}\right)$. The resulting form is

$$
m_{U}^{2} \sim\left(\begin{array}{cc|c}
M_{1}^{2}+m^{2} h_{c}^{2} & m^{2} \sqrt{h_{c}^{3} h_{u}} & -m^{2} h_{c}^{2} \tag{5}\\
m^{2} \sqrt{h_{c}^{3} h_{u}} & M_{1}^{2}-m^{2} h_{c}^{2} & m^{2} \sqrt{h_{c}^{3} h_{u}} \\
\hline-m^{\prime 2} h_{c}^{2} & m^{\prime 2} \sqrt{h_{c}^{3} h_{u}} & M_{3}^{2}
\end{array}\right) .
$$

The m_{D}^{2} matrix receives corrections from two sources at the leading order. One is the square of the $\left(\mathbf{2}, \mathbf{1}_{A}, \mathbf{2}\right)$ breaking parameter of $O\left(h_{s}^{2}\right)$, and the other is a product of three breaking parameters $\left(\mathbf{1}_{S}, \mathbf{1}_{A}, \mathbf{1}_{A}\right),\left(\mathbf{2}, \mathbf{1}_{A}, \mathbf{2}\right)$, and $\left(2,1_{S}, 1_{S}\right)$ of $O\left(h_{s} h_{b} h_{t} A \lambda^{2}\right)$. They are of the same order of magnitude and have the same group theoretical structure $\left(\mathbf{1}_{S}, \mathbf{1}_{S}, \mathbf{2}\right)$. We keep only the first for simplicity and obtain

$$
m_{D}^{2} \sim\left(\begin{array}{cc|c}
M_{1}^{2} m^{2} h_{s}^{2} & m^{2} h_{s}^{2} \lambda & -m^{2} h_{s}^{2} \tag{6}\\
m^{2} h_{s}^{2} \lambda & M_{1}^{2}-m^{2} h_{s}^{2} & m^{\prime 2} h_{s}^{2} \lambda \\
\hline-m^{\prime 2} h_{s}^{2} & m^{\prime 2} h_{s}^{2} \lambda & M_{3}^{2}
\end{array}\right)
$$

The authors of [3] listed the constraints on the off-diagonal mass matrix elements for $m_{\tilde{q}} \sim 1 \mathrm{TeV}$ in the basis where the Yukawa matrices are diagonal.

We adopt their notation and list the constraints in Tables 2, 3, 4. It is clear that our mass matrices satisfy all constraints rather easily. We have not discussed the left-right mixing mass matrix so far, but they are tightly constrained by the S_{3}^{3} symmetry as well. The breaking parameters enter the mixing mass matrix in the same manner as in the Yukawa matrices. It is easy to work them out and see that the constraints are easily satisfied.

A natural question is how much stronger the constraints become when we introduce further breaking parameters and introduce mixing in the righthanded fields as well. The off-diagonal elements of m_{D}^{2} and m_{U}^{2} can be much larger than the above estimates. However, they are at most of the same order as those in m_{Q}^{2} if we assume a similar order of mixing angles in the right-handed fields. On the other hand, constraints become even weaker if we attribute all CKM angles to the down sector, since the breaking parameters are then proportional to h_{b} rather than h_{t}. A potentially dangerous breaking is that in $\left(\mathbf{1}_{S}, \mathbf{1}_{S}, \mathbf{1}_{A}\right)$ or $\left(\mathbf{1}_{A}, \mathbf{1}_{S}, \mathbf{1}_{S}\right)$, which do not contribute to the Yukawa matrices. However they are presumably as small as h_{u} or h_{d} because they break the \boldsymbol{Z}_{2} symmetry which keeps the first generation fields massless.

In summary, we proposed a geometric theory of flavor based on the discrete group $\left(S_{3}\right)^{3}$. The group acts symmetrically on three objects, yet gives fundamentally different characteristics to each generation. The three generations belong to a reducible representation $2+\mathbf{1}_{A}$; although they are not unified, they require each other for anomaly cancellations. Only the top quark is heavy in the symmetry limit, and first- and second-generation squarks are degenerate. Hierarchical Yukawa matrices can be understood as a consequence of sequential symmetry breaking. Flavor-changing processes are highly suppressed, allowing squarks at Tevatron energies.

References

[1] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).
[2] This degeneracy is not a necessity, as flavor-changing effects in the down sector can be greatly suppressed by assuming that the origin of the CKM matrix resides in the up sector [3]. However, it is somewhat contrived to choose the flavor symmetries of the theory so that the flavor violations
arise only in the sector of the theory where the experimental constraints are the weakest.
[3] Y. Nir and N. Seiberg, Phys. Lett. B309, 337 (1993).
[4] L.J. Hall, V.A. Kostelecky, and S. Raby, Nucl. Phys. B267, 415 (1986).
[5] L.J. Hall, J. Lykken, and S. Weinberg, Phys. Rev. D27, 2359 (1983).
[6] See, e.g., C.D. Froggatt and H.B. Nielsen, Nucl. Phys. B147, 277 (1979); L. Ibañez and G.G. Ross, Phys. Lett. B332, 100 (1994).
[7] M. Dine, A. Kagan, and R. Leigh, Phys. Rev. D48, 4269 (1993).
[8] L.M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989).
[9] S. Giddings and A. Strominger, Nucl. Phys. B307, 854 (1988); S. Coleman, Nucl. Phys. B310, 643 (1988); G. Gilbert, Nucl. Phys. B328, 159 (1989).
[10] Y. Kawamura, H. Murayama and M. Yamaguchi, Phys. Rev. D51, 1337 (1995); H. Murayama, LBL-36962, hep-ph/9503392.
[11] H. Fritzsch, Nucl. Phys. B 155, 189 (1979).
[12] H. Fritzsch and J. Plankl, Phys. Lett. 237 B, 451 (1990).
[13] P.H. Frampton and T.W. Kephart, Phys. Rev. D51, 1 (1995); IFP-702UNC, hep-ph/9409330.
[14] D.B. Kaplan and M. Schmaltz, Phys. Rev. D49, 3741 (1994).
[15] T. Banks and M. Dine, Phys. Rev. D45, 1424 (1992); L.E. Ibañez, Nucl. Phys. B398, 301 (1993).
[16] C.D. Carone and H. Murayama, LBL-37099, hep-ph/9504393, to appear in Phys. Rev. D.

\otimes	$\mathbf{1}_{S}$	$\mathbf{1}_{A}$	$\mathbf{2}$
$\mathbf{1}_{S}$	$\mathbf{1}_{S}$	$\mathbf{1}_{A}$	$\mathbf{2}$
$\mathbf{1}_{A}$	$\mathbf{1}_{A}$	$\mathbf{1}_{S}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}_{A} \oplus \mathbf{1}_{S} \oplus \mathbf{2}$

Table 1: Decomposition of tensor product of two representations into irreducible representations.

	Q	U	D	H_{u}	H_{d}
S_{3}^{Q}	$\left(\mathbf{1}_{A}, \mathbf{2}\right)$	-	-	$\mathbf{1}_{A}$	$\mathbf{1}_{A}$
S_{3}^{U}	-	$\left(\mathbf{1}_{A}, \mathbf{2}\right)$	-	$\mathbf{1}_{A}$	$\mathbf{1}_{A}$
S_{3}^{D}	-	-	$\left(\mathbf{1}_{A}, \mathbf{2}\right)$	-	-

Table 2: Quantum number assignments of the fields under $\left(S_{3}\right)^{3}$ symmetry. Q refers to left-handed quark doublets, $U(D)$ to right-handed up(down)-type quarks.

	$\left(\delta_{L L}^{d}\right)_{12}$	$\left(\delta_{R R}^{d}\right)_{12}$	$\left(\delta_{L R}^{d}\right)_{12}$	$\left\langle\delta_{12}^{d}\right\rangle$
upper bound [3]	0.05	0.05	0.008	0.006
this model	$h_{t} A \lambda^{3}$	$h_{s}^{2} \lambda^{2}$	$h_{s}^{2} \lambda$	$\sqrt{\left(\delta_{L L}^{d}\right)_{12}\left(\delta_{R R}^{d}\right)_{12}}$

Table 3: The constraints and the consequence of $\left(S_{3}\right)^{3}$ symmetry on the mass splittings in $\tilde{d}-\tilde{s}$.

	$\left(\delta_{L L}^{d}\right)_{13}$	$\left(\delta_{R R}^{d}\right)_{13}$	$\left(\delta_{L R}^{d}\right)_{13}$	$\left\langle\delta_{13}^{d}\right\rangle$
upper bound [3]	0.1	0.1	0.06	0.04
this model	$h_{t} A \lambda^{2}$	h_{s}^{2}	$h_{b} h_{t} A \lambda^{3}$	$\sqrt{\left(\delta_{L L}^{d}\right)_{13}\left(\delta_{R R}^{d}\right)_{13}}$

Table 4: The constraints and the consequence of $\left(S_{3}\right)^{3}$ symmetry on the mass splittings in $\tilde{d}-\tilde{b}$.

	$\left(\delta_{L L}^{u}\right)_{12}$	$\left(\delta_{R R}^{u}\right)_{12}$	$\left(\delta_{L R}^{u}\right)_{12}$	$\left(\delta_{L R}^{u}\right)_{12}$
upper bound [3]	0.1	0.1	0.06	0.04
this model	$h_{t} A \lambda^{3}$	$\sqrt{h_{u} h_{c}^{3}}$	$\sqrt{h_{u} h_{c}^{3}}$	$\sqrt{\left(\delta_{L L}^{u}\right)_{12}\left(\delta_{R R}^{u}\right)_{12}}$

Table 5: The constraints and the consequence of $\left(S_{3}\right)^{3}$ symmetry on the mass splittings in $\tilde{u}-\tilde{c}$. We assumed that the rotation angle between u and c is $O\left(\sqrt{h_{u} / h_{c}}\right)$.

Figure 1: S_{3} acts as a rotation of the triangle spanned by three orthonomal vectors $e_{1,2,3}$. The vector \boldsymbol{v}_{3} corresponds to the 1_{A} representation, and two vectors $\boldsymbol{v}_{1,2}$, in the plane of the triangle, to the 2 representation.

[^0]: ${ }^{1}$ This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation under grant PHY-90-21139.

