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Abstract

We analyse MINBU distribution of 2 dimensional quantum gravity. New

data of R2-gravity by the Monte Carlo simulation and its theoretical analysis

by the semiclassical approach are presented. The cross-over phenomenon takes

place at some size of the baby universe where the randomness competes with

the smoothing force of R2-term. The dependence on the central charge cm
and on the R2-coupling are explained for the ordinary 2d quantum gravity

and for R2-gravity. The R2-Liouville solution plays the central role in the

semiclassical analysis. A total derivative term (surface term) and the infrared

regularization play important roles . The surface topology is that of a sphere

.

1 Introduction

The quantum e�ects of the 2 dimensional (2d) gravitational theories are recently

measured numerically in the computer simulation with high statistics. In particular

the data for the entropy exponent (string susceptibility) in 2d quantum gravity(QG)

is the same as the known exact result within a relative precision of O(10�3). It is due

to the developement of the simulation technique in the dynamical triangulation[1, 2,

3] and the �ndings of new observables in QG such as MINBU distribution [4, 5, 6].

The data analysis is done by a rather orthodox approach,i.e., the semiclassical

approximation. It has recently been applied to 2d R2-gravity and the simulation
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data of <
R
d2x
p
gR2 > and its cross-over phenomenon are successfully explained[7].

We list the merits of this approach.

1. The semiclassical treatment is, at present, the unique �eld-theoretical ap-

proach which can analyse the mysterious region (25 �)cm � 1. The conformal

�eld theory gives a meaningful result only for some limitted regions of cm. The

Matrix model is in the similar situation.

2. Comparison with the ordinary quantization is transparent because the ordi-

nary renormalizable �eld theories ,such as QED and QCD, are quantized es-

sentially in the semiclassical way. In particular,the renormalization properties

of (2d) QG are expected to be clari�ed in the semiclassical approch[8].

3. This approach can be used for the higher-dimensional QG such as 3d and 4d

QG.

The approach is perturbative, therefore choosing the most appropriate vacuum under

the global constraints (such as the area constraint and the topology constraint) is

crucial in the proper evaluation. We explain it in Sect.3.

We add R2-term to the ordinary 2d gravity for the following reasons. ( We call

the ordinary 2d gravity Liouville gravity in contrast with R2-gravity for the added

one. )

1. For the positive coupling, the term plays the role of suppressing the high

curvature and making the surface smooth. For the negative one, the high

curvature is energetically favoured and making the surface rough. Therefore

we can expect a richer phase structure of the surface con�guration.

2. The term is higher-derivative (@4), therefore it regularizes the ultra-violet be-

haviour so good[9]. In fact the theory is renormalizable[8].

3. The Einstein term (R-term) is topological in 2 dimension. It does not have

a local mode. The simplest interaction which is purely geometrical and has

local modes is R2-term.

4. In the lattice gravity, R2-term is considered as one of natural irrelevent terms

in the continuous limit[10].

The <
R
d2x
p
gR2 > simulation data for R2-gravity was presented by [11] and the

cross-over phenomenon was clearly found. We present here MINBU distribution

data.

2 Lattice Simulation of 2D Quantum R2-Gravity

and MINBU Distribution

The distribution of baby universe (BU) is one of important observables in the lattice

gravity[4, 5, 6]. It was originally introduced to measure the entropy exponent (string
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susceptibility) e�ciently. Fig.1 shows the con�guration of a BU with an area B

(variable) from the mother universe with an area A (�xed).

Fig.1 MINBU con�guration

The 'neck' of Fig.1 is composed of three links which is the minimum loop in the dy-

namically triangulated surface. The con�guration is called the minimum neck baby

universe (MINBU). MINBU distribution for the Liouville-gravity and its matter-

coupled case were already measured[5, 6, 13].

First we explain briey our lattice model of R2-gravity. The surface is regularized

by the triangulation. The number of vertices ,where some links (edges of triangles)

meet, is N0. The number of links at the i-th vertex (i = 1; 2 � � � ; N0) is qi. The

number of triangles(N2) is related to N0 as N2 = 2N0 � 4 for the sphere topology.

The discretized model is then described by

SL = ��L 4�2

3

PN0

i=0
(6�qi)

2

qi
= �48�2�L

P
i
1

qi
+ const ; (1)

where �L is the R2-coupling constant of the lattice model. We do measurement

for �L = 0; 50; 100; 200; 300;�20;�50 . We present the MINBU dstribution of R2-

gravity with no matter �eld (pure R2-gravity) in Fig.2 and 3 for �L � 0 and for

�L � 0 respectively. The total number of triangles is N2 = 5000. For the detail see

[11].

Fig.2 MINBU distribution for �L � 0, Pure R2-gravity.
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Fig.3 MINBU distribution for �L � 0. Pure R2-gravity.

As for positive �L (Fig.2), we see clearly the transition point P0 , for each curve,

at which the distribution qualitatively changes. For the region P = B=A > P0, the

birth probability decreases as the size of BU increases. For the region P < P0, the

birth probability increases as the size of BU increases. The value of the transition

point P0 depends on � and increases as � increases. As for negative � (Fig.3), the

slope of the curve tends to be sharp as j�j increases at least for the region P < P1.

The transition point P1 is not so clear as Fig.2.

In Sect 4.2 we interpret these data theoretically using the semiclassical approach

explained in Sect 3.

3 Semiclassical Approach

We analyse the simulation data by the semiclassical approach. The R2- gravity

interacting with cm-components scalar matter �elds is described by

S =
R
d2x
p
g( 1

G
R � �R2 � �� 1

2

Pcm
i=1 @a�i � gab � @b�i) ; ( a; b = 1; 2 ) ; (2)

where G is the gravitaional coupling constant, � is the cosmological constant , � is

the coupling strength for R2-term and � is the cm- components scalar matter �elds.

The signature is Euclidean. The partition function , under the �xed area condition

A =
R
d2x
p
g and with the conformal-at gauge gab = e' �ab , is written as [14],

�Z[A] =
R
DgD�

VGC
fexp 1

�h
Sg �(R d2xpg �A) = exp 1

�h
(8�(1�h)

G
� �A)� Z[A] ;

Z[A] � R D' e+
1

�h
S0['] �(

R
d2x e' �A) ; (3)

S0['] =
R
d2x ( 1

2
'@2'� � e�'(@2')2 + �

2
@a('@a') ) ; 1


= 1

48�
(26 � cm) ;(4)

where h is the number of handles 1. VGC is the gauge volume due to the general

coordinate invariance. � is a free parameter. The total derivative term generally

appears when integrating out the anomaly equation �Sind[']=�' = 1


@2' . This term

1The sign for the action is di�erent from the usual convention as seen in (3).
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turns out to be very important. 2 We consider the manifold of a �xed topology of

the sphere ,h = 0 and the case  > 0 (cm < 26). �h is Planck constant. 3

Z[A] is rewritten as, after the Laplace transformation and the inverse Laplace

one,

Z[A] =
R
d�
�h

R D' exp 1
�h
[ S0[']� �(

R
d2xe' �A)]

=
R
d�

�h
e
1

�h
�A
R D' exp f 1

�h
S�[']g ;

S�['] � S0[']� �
R
d2x e'

=
R
d2x ( 1

2
'@2'� � e�'(@2')2 + �

2
@a('@a') � � e' ) ; (5)

where the �-integral should be carried out along an appropriate contour parallel to

the imaginary axis in the complex �-plane. Note that the �-function constraint in

(3) is substituted by the �-integral. The leading order con�guration is given by the

stationary minimum.

�S�[']

�'

�����
'c

=
1


@2'+ �fe�'(@2')2 � 2@2(e�'@2')g � �e'

�����
'c

= 0 ;

d

d�
(�A+ S�['c])

�����
�c

= 0 ; (6)

Z[A] � 1

�h
exp

1

�h
f�cA+ S�c['c]g �

1

�h
exp

1

�h
�effc :

Generally this approximation is valid for a large system. In the present case, the

system size is proportional to 4�


= 26�cm
12

. We expect the approximation is valid

except the region: cm � 26.

The solution 'c and �c ,which describes the positive-constant curvature solution

and is continuous at � = 0, are given by[7]

'c(r) = �ln f�c
8
(1 +

r2

A
)2g ; r2 = (x1)2 + (x2)2 ;

�c =
4�

w
fw + 1�

q
w2 + 1� 2�w g ; w = 16��0 ; �0 � �

A
; (7)

�cA =
w

16�
(�c)

2 � �c ;

where � must satisfy �1 � � � +1 for the realness of �c. (x1; x2) are the at

(plane) coordinates. The partition function at the classical level is given by

�effc = ln Z[A]j�h0 = �cA+ (1 + �)4�

ln�c

8
� �c


w + C(A) ;

C(A) =
8�(2+�)


+ 8��


f ln(L2=A) � 1 g+O(A=L2) ; (8)

L2

A
� 1 ;

where L is the infrared cut-o� (r2 � L2) introduced for the divergent volume integral

of the total derivative term. Note that C(A) does not depend on � (or w) but

2The uniqueness of this term, among all possible total derivatives, is shown in [7].
3In this section only,we explicitly write �h (Planck constant) in order to show the perturbation

structure clearly.
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on cm (or ) and A. Furthermore C(A) has an arbitrary constant of the form

(8��=)� (const) due to the freedom of the choice of the regularization parameter:

L! (const)
0 � L. This arbitrary constant turns out to be important.

For the case � = 0 , the theory is ordinary 2d gravity and we call it Liouville

gravity in contrast with R2-gravity for � 6= 0. For the case cm = 0 , the theory is

called the pure gravity in contrast with the matter-coupled gravity cm 6= 0.

4 Semiclassical Analysis of MINBU Distribution

First we explain the free parameter �. Recent analysis of the present theory at

the (1-loop) quantum level has revealed that it is conformal (the renormalization

group beta functions=0) for w � 1 when we take � = 1 [8]. Therefore the value

� = 1 has some meaning purely within the theory. The validity of this choice is also

con�rmed from a di�erent approach, that is, the comparison of the special case �(or

w)= 0 (Liouville gravity) of the present result with the corresponding result from

the conformal �eld theory (KPZ result)[9]. The asymptotic behaviour of Z[A]j�h0 at

w = 0 is given, from (8), as

Z[A]j�h0;w=0 = e�
eff
c

����
w=0

= expf4�

(3 � �) + (1 + �)

4�


ln
1 + �

2
+
8��


ln
L2

A
g �

A�
8��

 � const = A�
26�cm

6
� � const ;

as A! +1 : (9)

On the other hand, the KPZ result is

ZKPZ[A] � As�3 ; s =
1

12
fcm � 25�

q
(25 � cm)(1� cm)g+ 2 : (10)

In order for our result to coincide with the KPZ result in the 'classical limit' cm !
�1 : ZKPZ [A] � A+ 1

6
cm , we must take

� = 1 ; (11)

in (9). In the following of this text we take this value. 4

The asymptotic behaviour of the present semiclassical result for the Liouville

gravity is, taking � = 1 in (9),

Z[A] � A�
26�cm

6 �A�1 ; A! +1 ; (12)

where the additional factor A�1 comes from the �-integral in the expression of

Z[A], (5)[12]. Now we compare the KPZ result and the semiclassical result in the

normalized form.

ZKPZ
norm [A] �

ZKPZ [A]

ZKPZ [A]jcm=0

� As(cm)�s(cm=0) ;

s(cm)� s(cm = 0) =
1

12
fcm + 5 �

q
(25 � cm)(1� cm)g ; (13)

Znorm[A] � Z[A]

Z[A]jcm=0

� A+
cm
6 :

4In the numerical evaluation, we take � = 0:99 for the practical reason.
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We can numerically con�rm that the semiclassical result, cm
6
, and the KPZ result,

s(cm)� s(cm = 0) , have very similar behaviour for the region cm � 1[12].

Now we go back to the general value of �. The birth-probability of the baby

universe with area B(0 < B < A=2) from the mother universe with the total area

A is given by[4]

nA(B) =
3(A�B + a2)(B + a2)Z[B + a2]Z[A�B + a2]

A2 � Z[A]

� 3(1 � p)pZ[pA]Z[(1� p)A]

Z[A]
; (14)

ln (
nA(B)

3
) � ln (1� p)p + ln Z[pA] + ln Z[(1� p)A]� ln Z[A] ;

p � B

A
; 0 < p <

1

2
:

We apply the result of Z[A] in Sect.3 to the above expressions.

4.1 cm-dependence

First we present the semiclassical prediction for Liouville gravity(� = 0). The result

(8) for the case � = 0 gives ,taking � = 1,

 ln Z[rA] = 8�(ln � + 1) + 8� ln(
1

r
� L

2

A
) : (15)

Then the MINBU distribution normalized by the pure garvity (cm = 0) is obtained

as

nA(B)

nA(B)jcm=0

= fp(1 � p)g cm6 � exp fcm
12
��g ;

� � �2(ln � + 1) � 2 ln
L2

A
; (16)

where � can be regarded as the free real parameter due to the arbitrariness of the

infrared regularization parameter L. We know from the result (16) that the MINBU

distribution lines for di�erent cm's cross at the single point p = p� given by

p�(1 � p�) = expf�1

2
�g ; p� <

1

2
: (17)

Fig.4 shows three typical cases of p� .
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Fig.4 Three typical cases of the solution of (17).

The choice of � is important to �t the theoretical curve (16) with the data. We show

the behaviour of (16) for the three cases: 1) exp(�1

2
�) � 1

4
,Near Point O,Fig.5a

; 2) exp(�1

2
�) > 1

4
,Above Point A ,Fig.5b ; 3) exp(�1

2
�) = 1

4
� 0 ,Near Point A

,Fig.5c.

Fig.5a MINBU distribution for Liouville gravity, � = 8

Fig.5b MINBU distribution for Liouville gravity, � = 1
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Fig.5c MINBU distribution for Liouville gravity, � = 3

Fig.5a well �ts with the known result of the computer simulation[5, 13]. This

result shows the importance of the infrared regularization.

4.2 �-dependence

We consider the pure gravity(cm = 0). We plot MINBU dstribution, ln nA(B), as

the function of p ( 0:001 < p < 0:1 ) for various cases of � 0 = �=A (� = 0:99). Fig.6a

and 6b show that for �0 > 0 and �0 < 0 respectively.

Fig.6a MINBU distribution for �0 � 0. � = 0:99; cm = 0.

Fig.6b MINBU distribution for �0 � 0. � = 0:99; cm = 0.
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The above results of Fig.6a and Fig.6b qualitatively coincide with those of Fig.2

and Fig.3, respectively.

We list the asymptotic behaviour of ln nA(B) for the general � and cm in Table

1.

Phase (C) 0 < p� �w(<� 1) (B) jwj � p (A) 0 < p� w(
<� 1)

��p (pA) 8�f1 + 1��

2

p

w
4�(1 + �)f1 � 1��

2
w
p

4�(1+�)p

w
�

+O( p
2

w2 )g +O(w
2

p2
)g f1 +O( p

w
)g

(1� 8��


) ln p (1 � 8��


) ln p f1� 4�(1��)


g ln p

ln nA(B) �4�

w
p

+O(w
p
) �4�(1+�)


ln w

+O( p
w
) +SmallTerm +O( p

w
)

+SmallTerm +SmallTerm

Table 1 Asymp. behaviour of MINBU distribution, (14),

for general cm and �. R > 0; w � 16��0;  = 48�

26�cm
> 0; p = B

A
;

0 < p� 1; jwj <� 1; SmallTerm = const +O(wp) +O(p):

We characterize each phase in Table 1 as follows.

(A) 0 < p� w: Smoothly Creased Surface 5

The smoothing term, R2, dominates the main con�guration and the surface is

smooth. The left part P < P0(w) for each curve (w) in Fig.6a corresponds to this

phase. The small BU is harder to be born because it needs high-curvature locally.

The large BU is energetically preferable to be born. The area constraint is not

e�ective in this phase. The characteristic scale is �.

(B) jwj � p: Fractal Surface

The randomness dominates the con�guration. The size of BU is so enough large

that the R2-term is not e�ective. The area constraint is neither e�ective. There is

no characteristic scale. The right part P > P0(w) for each curve (w) in Fig.6a and

the right part P > P1(w) for each curve (w) in Fig.6b correspond to this phase.

The MINBU distribution is mainly determined by the random distribution of the

surface con�guration[15].

(C) 0 < p� �w: Rough Surface 6

Due to the large negative value of R2-coupling, the con�guration with the large

curvature is energetically preferable on the one hand, it is strongly inuenced by

the area constraint on the other hand. Therefore the large BU is much harder to

be born than (B) because it has a small curvature and a large area. The small BU

5In [7] we called it Free Creased Surface because this is the phase where the free kinetic term

(R2-term) dominates.
6In [7] we called it Strongly Tensed Perfect Sphere because the surface tension is negatively large

and the shape of the whole surface is near a sphere. At the same time the surface tend to become

sharp-pointed because it increases the curvature. We call the surface under this circumstace,simply,

Rough Surface.
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is much easier to be born than (B) because it has a large curvature and a small

area. The left part P < P1(w) for each curve (w) in Fig.6b corresponds to this

phase. The characteristic scale is the total area A.

We see the phase structure of Table 1 is the same as that of [7] by the

substitution of w by w=p . Although both simulations measure the same surface

property, the cross-over phenomenon,however, appears di�erently. In [7] the

physical quantity <
R
d2x
p
gR2 > is taken to see the surface property. The

cross-over can be seen only by measuring for a range of w and the transition point

is given by a certain value jw�j � 1. This is contrasting with the present case. The

cross-over can be seen for any w. The transition is seen at the point p� ,in the

MINBU distribution, given by jwj=p� � 1. We understand as follows. The MINBU

distribution measures the surface at many di�erent 'scales' B, whereas the

quantity <
R
d2x
p
gR2 > measures the surface at a �xed 'scale'( B1 (or p1) in the

MINBU terminology).

4.3 General Case

We consider the general case of cm and �. This general case is not yet measured by

the Monte Carlo simulation. We present the semiclassical prediction. The analysis

so far shows the normalization ((13) and (16)) and the choice of an arbitrary

constant due to the infrared regularization (16) are important for the quantitative

adjustment. Here, however, we are content with the qualitative behaviour. We

donot do the normalization and we ignore the ln L2

A
term in the evaluation of this

subsection.

(1) cm-dependence

We stereographically show MINBU distributions for the range:

0:001 � p � 0:2; �24 � cm � +24 , in Fig.7a(�0 = 0) , Fig.7b(�0 = +10�4) and

Fig.7c(�0 = �10�5).

Fig.7a MINBU dstribution for 0:001 � p � 0:2; �30 � cm � +24 .

�0 = 0; � = 0:99.
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Fig.7b MINBU dstribution for 0:001 � p � 0:2; �30 � cm � +24 .

�0 = +10�4; � = 0:99.

Fig.7c MINBU dstribution for 0:001 � p � 0:2; �30 � cm � +24 .

�0 = �10�5; � = 0:99.

No 'ridge' appears in Fig.7a. From this, we see matter �elds a�ect the surface

dynamics homogeneously at all scales. (This result is natural because the matter

coupling constand cm does not have the scale dimension.) The slope along the

p-axis continuously decreases as cm increases. In Fig.7b, a ridge runs from a low p

to a high p as cm increases. In Fig.7c,a 'hollow' runs from a high p to a low p as cm
increases. The ridge and the hollow correspond to the series of the cross-over

points. In both Fig.7b and Fig.7c, the cross-over becomes dimmer as cm increases

and becomes sharper as cm decreases.

(2) �-dependence

We stereographically show MINBU distributions for the range:

0:001 � p � 0:2; �10�5 � �0 � +10�4 , in Fig.8a(cm = 0) , Fig.8b(cm = +10) and
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Fig.8c(cm = �10).

Fig.8a MINBU dstribution for 0:001 � p � 0:2; �10�5 � �0 � +10�4 .

cm = 0; � = 0:99.

Fig.8b MINBU dstribution for 0:001 � p � 0:2; �10�5 � �0 � +10�4 .

cm = +10; � = 0:99.

Fig.8c MINBU dstribution for 0:001 � p � 0:2; �10�5 � �0 � +10�4 .

cm = �10; � = 0:99.

The Fig.8a corresponds to the stereographic display of Fig.6a and 6b. In each of

Fig.8a-c, a ridge appears for �0 > 0 . For �0 < 0 , a tower appears instead of a

ridge. For a large positive cm ( matter dominated region, cm = 10 in Fig.8b) the

undulation of the MINBU dstribution surface 7 is small(the cross-over is dim),

whereas it is large(the cross-over is sharp) for a large negative cm (matter

anti-dominated region, cm = �10 in Fig.8c).

7Do not confuse it with the 2d manifold which the present model of gravity represents.
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5 Discussion and Conclusion

In the (2d) QG,at present, there exists no simple way to �nd good physical

observables. They have been found by 'try and error'. MINBU is one of good

observables to measure the surface property. Quite recently a new observable ,the

'electric resistivity' of the surface, is proposed by [16]. By measuring the

observable for the matter-coupled Liouville gravity, they observe a cross-over ,near

cm = 1 ,from the surface where a complex-structure is well-de�ned to the surface

where it is not well-de�ned. The analysis of the new obserbable, from the

standpoint of the present approach, is important.

There are some straightforward but important applications of the present

analysis : 1) higher-genus case, 2) the case with other higher-derivative terms such

as R3 and rR � rR , 3) the quantum e�ect. As for 2) ,references [17] and [18] have

already obtained the Monte Carlo data.

We have presented the numerical result of MINBU and its theoretical

explanation using the semiclassical approximation. The surface properties are

characterized. It is con�rmed that the present lowest approximation is very

e�cient to analyse 2d quantum gravity, at least, qualitatively.

Finally we expect other new observables will be found and many Monte Carlo

measurements will be done ,including 3 and 4 dimensional cases, next a few years.

The interplay between the measurement by the computer simulation and the

theoretical interpretation will become important more and more. We believe this

process will lead to the right understanding of the (Euclidean) quantum gravity.
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Figure Captions

� Fig.1 MINBU con�guration.

� Fig.2 MINBU distribution for �L � 0, Pure R2-gravity.

� Fig.3 MINBU distribution for �L � 0. Pure R2-gravity.

� Fig.4 Three typical cases of the solution of (17).

� Fig.5a MINBU distribution for Liouville gravity, � = 8.

� Fig.5b MINBU distribution for Liouville gravity, � = 1.

� Fig.5c MINBU distribution for Liouville gravity, � = 3.

� Fig.6a MINBU distribution for �0 � 0. � = 0:99; cm = 0.

� Fig.6b MINBU distribution for �0 � 0. � = 0:99; cm = 0.

� Fig.7a MINBU dstribution for 0:001 � p � 0:2; �30 � cm � +24 .

�0 = 0; � = 0:99.

� Fig.7b MINBU dstribution for 0:001 � p � 0:2; �30 � cm � +24 .

�0 = +10�4; � = 0:99.

� Fig.7c MINBU dstribution for 0:001 � p � 0:2; �30 � cm � +24 .

�0 = �10�5; � = 0:99.

� Fig.8a MINBU dstribution for 0:001 � p � 0:2; �10�5 � �0 � +10�4 .

cm = 0; � = 0:99.

� Fig.8b MINBU dstribution for 0:001 � p � 0:2; �10�5 � �0 � +10�4 .

cm = +10; � = 0:99.

� Fig.8c MINBU dstribution for 0:001 � p � 0:2; �10�5 � �0 � +10�4 .

cm = �10; � = 0:99.
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