## Walter Greiner | Ludwig Neise | Horst Stöcker

## THERMODYNAMICS AND STATISTICAL MECHANICS

With 186 figures



## Contents

| Foreword                                                                                                | V          |
|---------------------------------------------------------------------------------------------------------|------------|
| Preface                                                                                                 | vi         |
| I Thermodynamics                                                                                        | 1          |
| 1. Equilibrium and State Quantities                                                                     | 3          |
| Introduction                                                                                            | 3          |
| Systems, phases and state quantities                                                                    | 4          |
| Equilibrium and temperature—the zeroth law of thermodynamics                                            | $\epsilon$ |
| Kinetic theory of the ideal gas                                                                         | 10         |
| Pressure, work and chemical potential                                                                   | 13         |
| Heat and heat capacity                                                                                  | 15         |
| The equation of state for a real gas                                                                    | 17<br>20   |
| Specific heat  Changes of state reversible and irraversible processes                                   | 23         |
| Changes of state—reversible and irreversible processes  Exact and inexact differentials, line integrals | 25         |
| 2. The Laws of Thermodynamics                                                                           | 33         |
| The first law                                                                                           | 33         |
| Carnot's process and entropy                                                                            | 37         |
| Entropy and the second law                                                                              | 41         |
| Insertion: Microscopic interpretation of entropy and of the second law                                  | 43         |
| Global and local equilibrium                                                                            | 51         |
| Thermodynamic engines                                                                                   | 52         |
| Euler's equation and the Gibbs-Duhem relation                                                           | 58         |
|                                                                                                         |            |

ix

| 3. Phase Transitions and Chemical Reactions               | 62  |
|-----------------------------------------------------------|-----|
| Gibbs' Phase Rule                                         | 62  |
| Phase equilibrium and the Maxwell construction            | 67  |
| The law of mass action                                    | 70  |
| Application of the laws of thermodynamics                 | 80  |
| Application of the laws of thornodynamics                 |     |
| 4. Thermodynamic Potentials                               | 84  |
| The principle of maximum entropy                          | 84  |
| Entropy and energy as thermodynamic potentials            | 85  |
| The Legendre transformation                               | 87  |
| The free energy                                           | 91  |
| The enthalpy                                              | 95  |
| The free enthalpy                                         | 101 |
| The grand potential                                       | 107 |
| The transformation of all variables                       | 108 |
| The Maxwell relations                                     | 108 |
| Jacobi transformations                                    | 115 |
| Thermodynamic stability                                   | 118 |
| II Statistical Mechanics                                  | 121 |
| 5. Number of Microstates $\Omega$ and Entropy $S$         | 123 |
| Foundations                                               | 123 |
| Phase space                                               | 124 |
| Statistical definition of entropy                         | 127 |
| Gibbs' paradox                                            | 132 |
| Pseudo quantum mechanical counting of $\Omega$            | 135 |
| 6. Ensemble Theory and Microcanonical Ensemble            | 142 |
| Phase-space density, ergodic hypothesis                   | 142 |
| Liouville's theorem                                       | 145 |
| The microcanonical ensemble                               | 147 |
| Entropy as an ensemble average                            | 149 |
| The uncertainty function                                  | 150 |
| 7. The Canonical Ensemble                                 | 159 |
| General foundation of the Gibbs correction factor         | 164 |
| Systems of noninteracting particles                       | 170 |
| Calculation of observables as ensemble averages           | 177 |
|                                                           |     |
| Connection between microcanonical and canonical ensembles | 186 |

| CONTENTS | xi |
|----------|----|
|          |    |

|     | Fluctuations                                                          | 191        |
|-----|-----------------------------------------------------------------------|------------|
|     | Virial theorem and equipartition theorem                              | 194        |
|     | For better understanding: canonical ensemble as the mean value of all |            |
|     | possible distributions                                                | 200        |
| 8.  | Applications of Boltzmann Statistics                                  | 208        |
|     | Quantum Systems in Boltzmann Statistics                               | 208        |
|     | Paramagnetism                                                         | 214        |
|     | Negative temperatures in two-level systems                            | 223        |
|     | Gases with internal degrees of freedom                                | 225        |
|     | Relativistic ideal gas                                                | 234        |
| 9.  | The Macrocanonical Ensemble                                           | 240        |
|     | Fluctuations in the macrocanonical ensemble                           | 248        |
| 111 | Quantum Statistics                                                    | 255        |
| 10  | Density Operators                                                     | 257        |
| 10. | beliaty Operators                                                     | 251        |
|     | Fundamentals                                                          | 257        |
|     | Pure and mixed states                                                 | 261        |
|     | Properties of the density matrix                                      | 266        |
|     | The density operators of quantum statistics                           | 270        |
| 11. | The Symmetry Character of Many-Particle Wavefunctions                 | 285        |
| 12. | Grand Canonical Description of Ideal Quantum Systems                  | 297        |
| 13. | The Ideal Bose Gas                                                    | 314        |
|     | Ultrarelativistic Bose gas                                            | 325        |
| 14. | Ideal Fermi Gas                                                       | 341        |
|     | The degenerate Fermi gas Supplement: Natural units                    | 347<br>385 |

| xii |                                                                                 | CONTENTS          |
|-----|---------------------------------------------------------------------------------|-------------------|
| 15. | Applications of Relativistic Bose and Fermi Gases                               | 387               |
|     | Quark-gluon plasma in the Big Bang and in heavy-ion collisions                  | 387               |
| IV  | Real Gases and Phase Transitions                                                | 399               |
| 16. | Real Gases                                                                      | 401               |
|     | For absorption: Mayer's cluster expansion Virial expansion                      | 404<br>414        |
| 17. | Classification of Phase Transitions                                             | 416               |
|     | Theorem of corresponding states Critical indices Examples for phase transitions | 422<br>424<br>425 |
| 18. | The Models of Ising and Heisenberg                                              | 436               |
| Inc | lex                                                                             | 457               |