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Abstract

We study the static properties of hadrons, assuming quantum group symmetry.

We calculate the magnetic moment, axial form factor and A-symmetry, using SUq(2)

and SUq(3) quantum groups. The results are �tted with experimental data, giving an

interval of 0:9 < q < 1:1. Some of the implications for the deformation parameter are

discussed.
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1 Introduction

Despite rather extended study of quantum groups as mathematical objects[1-7], little has

been done in the way of connecting them with observable phenomena, but some papers

in this direction have appeared [8-11]. In such theories, the deformation parameter q is

a function of a dimensionless combination of constants, so that in the limit of q ! 1, we

recover the undeformed theories, this may for example correspond to the low energy limit.

For instance, Newtonian mechanics can be thought of as the low velocity limit ( v=c ! 0)

of the relativistic mechanics. In this paper we use quantum groups in deforming the avour

symmetry of hadrons, with the help of the standard q-deformation [1] of SUq(2) and SUq(3).

Knowing that avour symmetry is not an exact symmetry of nature, we chose to deform the

avour group rather than the other symmetry groups of hadrons. However, as we shall see

later, it becomes clear that deformation of either spin or colour symmetry is unavoidable.

We placed hadrons in representations of quantum groups so that in the limit q ! 1, the

standard decuplet, octet and singlet representations are recoverd.

The price of using quantum groups as symmetry group of fundamental particles is to

abandon the notion of permutation symmetry of fermions and bosons. The representation

theory of the classical groups is closely linked with the group of permutation of n objects.

Therefore, the concepts of anti-symmetry of wavefunctions under the permutation of pairs

of fermions and symmetry under the permutation of pairs of bosons,can be incorporated

naturally, using anti-symmetric and symmetric tensor representations of the classical groups.

This device is not natural within the representation theory of quantum groups. Here the

permutation group is replaced by its deformed version; the Braid group [14]. The braid
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group Bn deals with the permutation of n strings, and in general can be very complex.

The relevant braid group that we are concerned with in this paper, satis�es a quadratic

relationship (Skein relation):

B2
ij + (q2 � 1)Bij = q2 (1.1)

where Bij , tangles two strands i and j. This, replaces the simple quadratic relationship of

permuting two objects i and j in a row of n objects; P 2
ij = 1. It is clear that the relation (1.1)

reduces to the permutation relation in the limit q ! 1. If we postulate that the physical

states are eigenstates of B rather than P , then we will have no choice other than letting

bosons correspond to an eigenstate with the unit eigenvalue and fermions to the eigenstate

with the eigenvalue equal to �q2. Here we face a problem, that the octet states are not

the eigenstates of the braid matrix; the operation of B on these states will not leave them

invariant. Thus the deformation of avour alone can not be permitted, so we conclude that

deforming another subspace such as spin is necessary [12].

The paper is organised as follows: in Sec.2 we give a brief introduction to quantum

groups, construct the q-deformed states of the avour space, and then together with the

q-deformed spin space, we discuss the e�ects of the braid group. In the Sec.3, following the

standard procedures, we calculate the static parameters of hadrons as functions of q, �tting

these calculations with the observed data, we �nd an interval for q.

2 Quantum Groups

Every quantum group corresponds to a solution of the Yang- Baxter equation, and to every

solution we can correspond an integrable statistical model [13]. There are in fact mathemat-
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ical relationships between integrable models and quantum groups [1-2]. Here we shall only

give a brief discussion of the mathematical structure of the standard deformation of SUq(3),

which will su�ce for our calculations. The commutation relations of SUq(3) algebra are:

[Hi;Hj] = 0

[Hi;X
�
j ] = aijX

�
j

[X+
i ;X

�
j ] = �ij

qHi�q�Hi
q�q�1 i; j = 1; 2

(2.2)

where Hi, X
�
i and aij are Cartan generators, ladder operators and Cartan matrix elements

respectively.

This algebra is characterized by Hopf algebra structure; the coproduct �, coidentity �

and antipode S are de�ned as [3]:

�Hi = Hi 
 1 + 1 
Hi

�X�
i = q�Hi=2 
X�

i +X�
i 
 qHi=2

(�
 1)�X�
i = q�Hi=2 
 q�Hi=2 
X�

i + q�Hi=2 
X�
i 
 qHi=2

+X�
i 
 qHi=2 
 qHi=2;

(2.3)

�(1) = 1 �(Hi) = 0 �(Xi) = 0

S(1) = 1 S(Hi) = �Hi S(X�
i ) = �qHi=2X�q�Hi=2:

(2.4)

Choosing aij accordingly, one obtains the standard deformation of the relevant Lie algebra.

Representations of quantum groups can be constructed by similar routes to the undeformed

version. We are concerned here with the fundamental representations.

For SUq(2) algebra the matrix representations of H and X� are:

H =

0
B@
1 0

0 �1

1
CA

X+ =

0
B@
0 1

0 0

1
CA X� =

0
B@
0 0

1 0

1
CA

(2.5)
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and for SU(3)q:

H1 =

0
BBBBB@

1 0 0

0 �1 0

0 0 0

1
CCCCCA

H2 =

0
BBBBB@

1 0 0

0 1 0

0 0 �1

1
CCCCCA

X+
1 =

0
BBBBB@

0 1 0

0 0 0

0 0 0

1
CCCCCA

X�
1 =

0
BBBBB@

0 0 0

1 0 0

0 0 0

1
CCCCCA

X+
2 =

0
BBBBB@

0 0 0

0 0 1

0 0 0

1
CCCCCA

X�
2 =

0
BBBBB@

0 0 0

0 0 0

0 1 0

1
CCCCCA
:

(2.6)

Hadrons are made of three quarks each of which can occur in three types of avours

(up,down,strange),

3 
 3
 3 = 3
 (6 � �3) = 10S � 8MS 
 8MA � 1A: (2.7)

So there are 27 possible combinations which can be separated into totally symmetric (S),

mixed-symmetric (MS), mixed-antisymmetric (MA) and totally antisymmetric (A) states.

By applying the ladder operators X�
i to the highest weight of these 27 states(uuu) with the

use of the coproduct (2.3), we construct the 27 q-deformed states of avour space. Here we

only give an example for each S, MS, MA and A states in avour space. Now consider the

statistics of these particles. The permutation operator is de�ned as:

P12ja > jb > = jb > ja >

P 2
12 = 1

(2.8)
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where ja >, jb > are the states of 2 identical particles and the eigenvalues are �1,for S and

A states. The eigenstates of P12 are:

jab >+ = 1p
2
(ja > jb > +jb > ja >)

jab >� = 1p
2
(ja > jb > �jb > ja >):

(2.9)

The system containing N identical particles is either totally symmetric under the interchange

of any pair; the eigenvalue of P12 for them is +1 (Bosons), or totally antisymmetric, with

the eigenvalue �1 (Fermions),

Pijja1:::ai:::aj::: > = (+1)ja1:::aj:::ai::: > for Bosons

Pijja1:::ai:::aj::: > = (�1)ja1:::aj:::ai::: > for Fermions:

(2.10)

However all of the q-deformed avour states are not eigenstates of P , in fact they are

eigenstates of the braid operator B. To maintain a meaningfull deformation there does not

seem to be a choice other than letting particle states to be eigenstates of the braid operator.

This changes our notion of fermions and bosons.

Braids are made of n points on a line that are connected by n strings to n point on

another parallel line (Fig. 1.a). With the operation bi, i = 1; 2; :::; n� 1, we cross over two

neighbouring strands i and i+ 1 (Fig. 1.b) [14]. The simple braid operation satis�es,

bibi+1bi = bi+1bibi+1

bibj = bjbi ji� jj � 2:

(2.11)

The multiplication of braid operators is the placing of braids such as Fig. 1.b., thus the

identity is the trivial braid of Fig. 1.a. The braid group Bn, is composed of all the tangling

moves possible on this structure. In general the group Bn has in�nite size, unless its gen-

erators satisfy some polynomial relationship; the Skein relation. The Skein realtion o�ers a
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(a) (b)

Figure 1: Graphical presentation of n� braid and the operation of bi on it.

way of untangling a braid. For our case, the Skein relation (1.1) is equivalent to the Fig. 2.

With the use of a solution of the Yang-Baxter equation R [13],

R12R13R23 = R23R13R12 (2.12)

a braid matrix is de�ned as:

B = P�1R (2.13)

where P is the permutation matrix of the equation (2.9). So the matrix of our braid is:

B =

0
BBBBBBBBBB@

1 0 0 0

0 1� q2 q 0

0 q 0 0

0 0 0 1

1
CCCCCCCCCCA

(2.14)

with the eigenvalues 1 , �q2 for S and A states respectively, and now the braid-permutation
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+ (q2 � 1) = 0

Figure 2: The Skein Relation of (1.1)

matrix on a system of two quarks, acts as:

B

0
BBBBBBBBBB@

uu

ud

du

dd

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

uu

(1� q2)ud + qdu

qud

dd

1
CCCCCCCCCCA

B

0
BBBBBBBBBB@

uu

us

su

ss

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

uu

(1� q2)us+ qsu

qus

ss

1
CCCCCCCCCCA

B

0
BBBBBBBBBB@

dd

ds

sd

ss

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

dd

(1� q2)ds + qsd

qds

ss

1
CCCCCCCCCCA

:

(2.15)

We observe that the exchange of particles is unusual, but when q ! 1 we recover the old

results. Fortunately, the tower of braided states due to the Skein relation (1.1), does not
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extend inde�nitely.

Now for example, the symmetric state of j�+ > under the exchange of the �rst two

quarks becomes:

B12j�+ > = B12(
1p

1+q2+q4
)(uud+ qudu+ q2duu)

= ( 1p
1+q2+q4

)[uud+ q(1� q2)udu+ q2duu+ q3udu]

= (+1)( 1p
1+q2+q4

)(uud+ qudu+ q2duu)

= (+1)j�+ >

(2.16)

and in the only anti-symmetric state; j�o
1 > this exchange of the �rst two quarks gives:

B12j�o
1 > = B12(

1p
(1+q2)(1+q2+q4)

)[(sdu� qsud) + (q2usd � qdsu) + (q2dus� q3uds)]

= 1p
(1+q2)(1+q2+q4)

[qdsu� q2usd+ q2(1 � q)� q2sdu

+q3uds� q3(1 � q2)uds� q4dsu]

= (�q2)( 1p
(1+q2)(1+q2+q4)

)[(sdu� qsud) + (q2usd� qdsu) + (q2dus � q3usd)]

= (�q2)j�o
1 > :

(2.17)

Therefore, although the state j�+ > can be interpreted as symmetric, this is not the case for

j�o
1 >. So we are led to require this unorthodox interpretation of permutation of identical

subsystems of a bound state. This is a fundamental change of our notions, but seems

inevitable if quantum groups are to �nd physical relevance. This led us to proceed with this

proviso in mind and look at the physical consequences of this construct. Now we see that

a hadron state like proton; jp >,in which the state is constructed by a combination of MS

and MA states, can not be an eigenstate of braid matrix. This problem leads us to conclude

that the deformation of only one subspace is not enough, that another subspace has to be

deformed. Spin space seems to be the best choice among the others. Tables 1, 2 and 3 show
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the deformed states for spin and avour states.

Finally the permutaion matrix is de�ned as follows:

P = Pspace 
Bspin 
Bflavour 
 Pcolour (2.18)

where the indices de�ne the space on which these operators act. Here Bspin has the eigen-

values of 1 and �q�2 for the S and A states respectively. So again we will have �1 as the

eigenvalues of the total permutation matrix. We also note that P is a unitary matrix, and

an expectation value of an obsevable like A for a particle with the state ja >, can have a

unitary transfomation under P :

< ajPyAPja >=< ajAja > : (2.19)

3 Phenomenological Calculations

The wave-function of a hadron has to be antisymmetric because, quarks are fermions and

the wave-function is written as:

j	 >= jSpace; Spin > jFlavour > jColour > : (3.20)

The spape-spin wave function can be separated if the model is non-relativistic [15,16]. It's

usual to take the colour state totally antisymmetric, so the rest should be totally symmetric.

For hadrons we have to consider a combination ofMS andMA states which �nally is totally

symmetric:

j	 >=
1p
2
(�MS: MS + �MA: MA)jColour >; (3.21)

where �'s and  's are the wave functions of space-spin and avour respectively.
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The static parameters that we have calculated are the magnetic moment � [16], axial

form factor gA [16] and Bjorken sum-rule g
p
1 � gn1 [15].

The static parameters are:

gA = �u��d

or

gA =
P3

i=1 �
3
i �

3
i

g
p
1 � gn1 = 1

2
(4
9
�u+ 1

9
�d)

(3.22)

and

� =
3X

i=1

Oi(xi; �i)ei (3.23)

where

<" jOij "> = a

<# jOij #> = �a
(3.24)

in which i sums over the three quarks, �3i and � 3i are the spin and the isospin in the z

direction of each of them respectively and � is the magnetic moment of the hadron with

"a" as a number depending on the model we use. Here �u(d) = u " (d ") � u # (d #) is

the quark asymmetry, u " (#) and d " (#) are the probability of �nding a u (d) quark with

spin polarized (unpolarized)to the spin of proton. We have calculated these parameters for

hadrons by using the wave function (3.21) and the states of the tables 1 and 3. In theory, for

calculating the magnetic moments, it is convenient to �nd them with respect to magnetic

moment of neutron. We have compared the results with the experimental data [17,18] and

found two Least Square Error(LSE) functions for magnetic moments and sum rules as follows
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respectively:

LSE(MM) =
P5

i=1[(�i(q)=�(q)neutron � �
exp
i =�

exp
neutron)=�(�

exp
i =�

exp
neutron)]

2

LSE(SR) =
P4

i=1[(gi(q)� g
exp
i )=�(gexpi )]2

(3.25)

where i sums over the particles and �'s are the experimental errors. For the magnetic

moments we have only 5 fuctions because, the magnetic moment found for �o is the same

as of the n and the �o particle is an unstable one.

The experimental results for magnetic moments are more acurate than the sum rules,

therefore we have only used the results of LSE(MM). The curve is shown at the end of the

paper. As it shows, it has two minimums in q = 0:916; 1:0915.

Now we give an example of how we found the static parameters in functions of q, the

wave function of proton is:

jP "> = 1

(1+q2+q4)
p
2
[q(1 + q2)u " d # u " �q4u # d " u " �d " u # u "

+q(1 + q2)d # u " u " �u " d " u # �qd " u " u # +q(1 + q2)u " u " d #

�qu " u # d " �q3u # u " d "]
(3.26)

Here the ",# stands for spin up or down of the particle. Next we calculate the expectation

value of the magnetic moment operator giving the following result:

< P " j�jP ">= (
e

2m
)[
7q2 + 15q4 + 7q6 � q8 � 1

3(1 + q2 + q4)2
] (3.27)

m is the mass of quark.

The curious thing is that the expectation function of gA for the proton is di�erent from
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neutron,

�u = 3q2(1+q2)2

(1+q2+q4)2

�d = q8�q6�3q4�q2+1
(1+q2+q4)2

all for proton

gA = 3q2(1+q2)2�q8+q6+q2+3q4�1
(1+q2+q4)2

g
p
1 � gn1 = 11q2+21q4+11q6+q8+1

18(1+q2+q4)2

(3.28)

and

�u = q2�q4�1
1+q2+q4

�d = 2(1+q2)

1+q2+q4
all for neutron

gA = 3q4�q2+3
1+q2+q4

g
p
1 � gn1 = 7q4+q2+7

18(1+q2+q4)
;

(3.29)

and all in q = 1 give the undeformed results.

4 Discussions

The values obtained for q are inverse of eachother, and this shows that as we have expected,

the algebra is invariant under the exchange of q ! q�1. From the exact symmetry of spin,

we also have expected that the values for q should be near 1; 0:9 < q < 1:1. Note also that

although the permutation group was deformed, the concept of fermions and bosons remains

intact at the level of hadrons, if we deform spin space too.
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Table 1: States of q-deformed 1=2 spin space

States

S �(q2 ""# +q "#" + #"")

MS [(1 + q2) ""# �(q3 "#" +q2 #"")]

MA �("#" �q #"")

Note: � = 1p
1+q2+q4

, � = 1p
(1+q2)

and  = 1p
(1+q2)(1+q2+q4)

are the normalization factors.
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Table 2: 10 q-symmetric states of avour subspace

�S

j�++ > uuu

j�+ > �(uud+ qudu+ q2duu)

j�o > �(udd + qdud+ q2ddu)

j�� > ddd

j��o > [(usd+ q�1uds) + (dus+ qsud) + (q2sdu+ qdsu)]

j��+ > �(uus+ qusu+ q2suu)

j��� > �(dds + qdsd + q2sdd)

j��� > �(dss + qsds+ q2ssd)

j��o > �(uss+ qsus+ q2ssu)

j
� > sss
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Table 3: 8 Mixed q-symmetric and 8 Mixed q-antisymmetric states of avour subspace

�MS �MA

jp > [q(1 + q2)uud� (udu+ qduu)] �(qudu� duu)

jn > [(q2udd+ q3dud) � (1 + q2)ddu] �(qudd� dud)

j�+ > [q(1 + q2)uus� (usu+ qsuu)] �(qusu� suu)

j�o > p
1+q2

[(qsud+ q2sdu) + (usd+ qdsu) 1
1+q2

[(q2dsu+ qusd)� (sud+ qsdu)]

�q(1 + q2)(qdus+ uds)]

j�� > [q(1 + q2)dds� (dsd + qsdd)] �(qdsd� sdd)

j�o > 1
1+q2

[(�dsu+ qusd) + (q2sud� qsdu)] �[(q�2sdu� q�1sud) + (usd� q�1dsu)

�(1 + q2)(dus � quds)]

j�� > [(q2dss+ q3sds)� (1 + q2)ssd] �(qdss� sds)

j�o > q�1[(q2uss+ q3sus)� (1 + q2)ssu] �(quss� sus)

Note: � = q

(1+q2)
p

q4+q2+q�2
is the normalization factors.
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