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Abstract

We investigate the weak kaon-nucleon (NNK) S-wave and P-wave inter-

actions using heavy baryon chiral perturbation theory. The leading 1-loop

SU(3) breaking contributions to the ppK, pnK, and nnK couplings are com-

puted. We �nd that they suppress all NNK amplitudes by 30% to 50%. The

ratio of neutron-induced to proton-induced hypernuclear decay widths is sen-

sitive to such reductions. It has been argued that the discrepancy between the

predicted and observed P-wave amplitudes in �s = 1 hyperon decay results

from an accidental cancellation between tree-level amplitudes, and is not a

fundamental problem for chiral perturbation theory. Agreement between ex-

perimentally determined NNK P-wave amplitudes and our estimates would

support this explanation.
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I. INTRODUCTION

Weak decays of hypernuclei provide a laboratory for investigating kaon-nucleon inter-

actions. In free space, a hyperon such as �, � or � will decay predominantly through a

mesonic mode, e.g. � ! N�. However, when the hyperon is bound inside a nucleus with

A � 12 or larger, this decay mode is suppressed by Pauli-blocking of the �nal state nucleon

(produced with ~pN � 100 MeV/c, much less than the Fermi-momentum ~pF � 280 MeV/c).

A competing process that does not su�er signi�cantly from Pauli-blocking is nonmesonic

weak scattering, e.g. �N ! NN , in which the �nal state nucleons have ~pN � 400 MeV/c.

These processes occur at low momentum scales where QCD is in the nonperturbative regime,

so the structure and decays of �, �, and � hypernuclei have been investigated using various

phenomenological models, e.g. [1{13]. Available experimental observables for analyzing such

systems include spin-averaged decay rates, the proton asymmetry from polarised hypernu-

clei, and the ratio of neutron induced to proton induced decay widths. The later proves

especially di�cult to describe using hadronic models, implying that we do not yet have a

complete understanding of the dynamics of these systems.

The weak scattering process receives contributions from long distance meson exchange

diagrams and from short distance (compared to the scale of chiral symmetry breaking, �� �
1 GeV) four-baryon contact terms. The leading meson exchange graphs are the one-pion

exchange (OPE) followed by one-kaon exchange (OKE), one-eta exchange (OEE) and two-

pion exchange (TPE) and so forth. The OPE amplitudes can be determined relatively well

because both the weak and strong vertices have been experimentally determined. The OKE

and OEE graphs are expected to be the next largest contribution and model computations

[9] show that a signi�cant contribution (� 30%) to the nonmesonic decay mode may come

from the OKE amplitude. More importantly, it has been demonstrated that the ratio of

neutron-induced to proton-induced decay widths of � hypernuclei is sensitive to the weak

OKE amplitude [14], which, for the currently used values for the NNK vertices, signi�cantly

cancels the contribution of the OPE amplitude. The resulting small ratio found for 12� C [14] is

not consistent with what is seen experimentally [15{17], although experimental uncertainties

are large. It also appears that vector meson exchange (e.g. K�; �; :::) contributes to this

ratio [14]. Such exchanges would be included in local four-baryon �s = 1 operators in chiral

perturbation theory.

It is not possible to make a direct experimental determination of the NNK weak couplings

that appear in the nonmesonic decay amplitudes; instead, 
avour SU(3) is used to relate

these couplings to the weak pion couplings. Previous analyses of hypernuclear decay have

either ignored SU(3) breaking or assigned an arbitrary 30% uncertainty to these couplings

as an estimate of the SU(3) breaking, eg. [12] . We will estimate the size of SU(3) breaking

in the NNK amplitudes using chiral perturbation theory.

Understanding the NNK weak interactions may shed light on a troubling situation en-

countered in the decay of free hyperons outside the role they play in hypernuclear decay.

Both the S-wave and P-wave amplitudes for �s = 1 hyperon decay are well studied exper-

imentally. The S-wave amplitudes are adequately described, even at tree-level, by a weak

operator transforming as an (8L; 1R) under chiral SU(3)L
SU(3)R. A long standing problem

is that the P-wave amplitudes are not well reproduced at tree-level using the coupling con-

stants extracted from the S-wave amplitudes. A one-loop calculation of the leading SU(3)
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corrections to hyperon decay, performed in ref. [19], showed that this situation is not im-

proved by including the leading terms nonanalytic in the strange quark mass. Further, these

corrections change the tree level prediction of P-wave amplitudes by 100% (typical SU(3)

breaking corrections are � 30%), causing concern [20,21] that chiral perturbation theory

may not be valid for such processes. It was suggested in ref. [19] that the problem may

instead be that the weak coupling constants extracted from S-wave �ts lead to (accidental)

cancellations between the tree-level P-wave amplitudes. Large SU(3) breaking e�ects are

then a result of small tree-level amplitudes, and not a breakdown of chiral perturbation

theory. Since there is only one graph that contributes to P-wave NNK interactions at tree-

level, such accidental cancellations are absent. Experimental determination of these weak

NNK vertices would provide an indication of the applicability of chiral perturbation theory

to such processes.

II. THE CHIRAL LAGRANGIAN FOR NONLEPTONIC INTERACTIONS

At the momentum transfers characteristic of nonmesonic hypernuclear decay, p < ��, the

relevant degrees of freedom are the lowest mass octet and decuplet baryons and the pseudo-

Goldstone bosons �, K, and �. The low energy strong interaction of the these hadrons is

described by the Lagrange density

Lst = iTr �Bv (v � D)Bv + 2D Tr �BvS
�
v fA�; Bvg+ 2F Tr �BvS

�
v [A�; Bv]

�i �T �
v (v � D) Tv� +�m �T �

v Tv� + C
�
�T �
v A�Bv + �BvA�T

�
v

�

+2H �T �
v Sv�A

�Tv� +
f2

8
Tr@��@

��y + �Tr
�
mq� +my

q�
y
�
+ � � � ; (2.1)

where f is the meson decay constant, mq is the light quark mass matrix, D� = @�+ [V�; ] is

the covariant chiral derivative and use is made of the vector and axial vector chiral currents

V� =
1

2
(�@��

y + �y@��)

A� =
i

2
(�@��

y � �y@��) : (2.2)

The dots in Eq. (2.1) represent higher dimension operators (involving more derivatives and

insertions of the light quark mass matrix) whose contributions are suppressed by inverse

powers of ��. The octet baryon �eld of four-velocity v is denoted by Bv and has SU(3)

elements

Bv =

0
BB@

1p
2
�0
v +

1p
6
�v �+

v pv

��v � 1p
2
�0
v +

1p
6
�v nv

��v �0v � 2p
6
�v

1
CCA ; (2.3)

and the decuplet baryons appear as the elements of the (totally symmetric) Tv:

T 111
v = �++

v ; T 112
v =

1p
3
�+
v ; T 122

v =
1p
3
�0
v; T 222

v = ��
v ;
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T 113
v =

1p
3
��+v ; T 123

v =
1p
6
��0v ; T 223

v =
1p
3
���v ; T 133

v =
1p
3
��0v ;

T 233
v =

1p
3
���v ; T 333

v = 
�v : (2.4)

The octet of pseudoscalar pseudo-Goldstone bosons resulting from the spontaneous breaking

of chiral symmetry appear in the � �eld, with

� = �2 = exp

 
2iM

f

!
; (2.5)

where

M =

0
BB@

1p
6
� + 1p

2
�0 �+ K+

�� 1p
6
� � 1p

2
�0 K0

K� K
0 � 2p

6
�

1
CCA : (2.6)

The strong couplings constants F;D; C and H have been determined from one-loop compu-

tations of axial matrix elements between octet baryons [18] and strong decays of decuplet

baryons [22].

The �s = 1 weak interactions of the pseudo-Goldstone bosons and the lowest lying

baryons are described, assuming octet dominance, by the Lagrange density

L�s=1v = GFm
2
�f�hDTrBvf�yh� ;Bvg + GFm

2
�f�hFTrBv[�

yh� ;Bv]

+GFm
2
�f�hCT

�

v (�
yh�)Tv� + GFm

2
�h�

f2�
8
Tr
�
h@��@

��y
�
+ � � � ; (2.7)

where

h =

0
B@ 0 0 0

0 0 1

0 0 0

1
CA ; (2.8)

and the constants f�, hD; hF ; h� and hC are determined experimentally. The pion decay

constant is known to be f� � 132 MeV. We have inserted factors of GFm
2
�f� in Eq. (2.7) so

that the constants hD; hF ; h� and hC are dimensionless and of order unity. At tree-level, the

weak decay of the octet baryons gives [18,19] hD = �0:58 and hF = +1:40, while the weak

decay of the 
� gives hC � 1:4. The weak meson coupling h� is determine from nonleptonic

kaon decays to be h� = 1:4. The dots denote higher dimension operators involving more

derivatives and insertions of the light quark mass matrix.

We will determine the S-wave and P-wave amplitudes for weak NNK interactions, in-

cluding the SU(3) violating one-loop corrections. In the spirit of chiral perturbation theory

we compute the leading nonanalytic corrections dependent upon the mass of the strange

quark, of the form ms logms. This requires the computation of one-loop graphs involving

kaons, pions, and etas with octet and/or decuplet baryons. Such graphs are divergent and

regularized in n-dimensions with modi�ed minimal subtraction, MS. The divergences are

absorbed by higher dimension operators whose coe�cients depend upon the renormalization

scale. The sum of the counterterm and the loop graph is scale independent. By choosing to
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renormalize at the chiral symmetry breaking scale, and using the fact that the coe�cients

of the higher dimension operators are analytic functions of the light quarks masses, the size

of these coe�cients can be estimated using naive dimensional analysis. In the chiral limit

the contributions from the higher dimension operators are subdominant compared to the

logarithms that arise from the loop graphs involving the lowest dimension operators. It is

these chiral logarithms that we compute in this work. For physical values of the kaon, pion,

and eta masses, these quantities represent only an estimate of the size of SU(3) breaking

e�ects; contributions from local counterterms will be of the same order. Unfortunately, the

coe�cients of the counterterms are not directly computable from the chiral Lagrangian and

must be determined experimentally.

The amplitude for the weak �s = 1 NNK interactions has the form

A = iGFm
2
�

f�

fK
Nv

"
A(S) + 2

k � Sv
��

A(P )

#
Nv (2.9)

where Nv contains the nucleon doublet

Nv =

�
pv
nv

�
; (2.10)

and k is the outgoing momentum of the kaon. The amplitudes A(S) and A(P ) are the S-

wave and P-wave amplitudes respectively, and are computed below. We have chosen to

normalize A(P ) to �� so that it is dimensionless. An explicit factor of f�=fK appears in

Eq. (2.9) and further we will distinguish fK from f� in the expressions arising from the one

loop amplitudes. There is evidence from other loop computations that this SU(3) breaking

di�erence should be included explicitly [23].

III. COMPUTATION OF AMPLITUDES

There are three vertices that occur in �s = 1 weak nonleptonic interactions involving

nucleons and kaons: p�pK0, n�pK+, and n�nK0. They are not independent in the limit of

isospin symmetry and are related by

A(L)(nnK)�A(L)(ppK) = A(L)(npK) ; (3.1)

where L = 0 (S-wave) or L = 1 (P-wave); this relation is true for both S-wave and P-wave

amplitudes independently. The amplitudes

A(L) = A(L)
0 +A(L)

1 + � � � ; (3.2)

where the subscript denotes the order in chiral perturbation theory and the dots indicate

contributions arising from more insertions of the light quark mass matrix or involving more

derivatives.

5



A. S-Wave Amplitudes

At tree level (see Fig. 1) the S-wave amplitudes appear directly from the �rst and second

terms in the weak Lagrangian of Eq. (2.7) ,

A(S)
0 (p�pK0) = hF � hD

A(S)
0 (p�nK+) = hF + hD

A(S)
0 (n�nK0) = 2hF : (3.3)

Using experimental measurements of hyperon decay to �x hD and hF , these amplitudes are

2.0, 0.8, and 2.8, respectively. They will be modi�ed by SU(3) breaking e�ects since their

tree-level values are determined by pionic hyperon decay and the amplitudes in question

involve kaons and nucleons. Direct computation of the loop graphs shown in Fig. 2 lead to

S-wave amplitudes

A(S)
1 (p�pK0) =

m2
K

16�2f2K
log

 
m2
K

�2�

!�hD
3
(1 + 13D2 � 18DF � 27F 2)

+
hF

3
(�7� 7D2 + 6DF + 9F 2)

�

+
2C2

9
hCJ (�m��

N )�A(S)
0 (p�pK0)Z	 ; (3.4)

A(S)
1 (p�nK+) =

m2
K

16�2f2K
log

 
m2
K

�2�

!�hD
3
(2� 4D2 � 24F + 36F 2)

+
hF

3
(2 + 20D2 � 48DF + 36F 2)

�

�4C2

9
hCJ (�m��

N )�A(S)
0 (p�nK+)Z	 ; (3.5)

A(S)
1 (n�nK0) =

m2
K

16�2f2K
log

 
m2
K

�2�

!�
hD(1 + 3D2 � 14DF + 3F 2)

+
hF

3
(�5 + 13D2 � 42DF + 45F 2)

�

�2

9
C2hCJ (�m��

N )�A(S)
0 (n�nK0)Z	 ; (3.6)

where the contribution from wavefunction renormalization is given by

Z	 =
m2
K

16�2f2K
log(

m2
K

�2�
)
�
15F 2 � 10FD +

17

3
D2
�
+ C2J (�m��

N ) ; (3.7)

and the function J is

J (�) = 1

16�2f2K

2
4(m2

K � 2�2) log

 
m2
K

�2�

!
+ 2�

q
�2 �m2

K log

0
@� �

q
�2 �m2

K + i�

� +
q
�2 �m2

K + i�

1
A
3
5 : (3.8)
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For S-waves, � = �m��

N = m�� �mN . The kaon decay constant fK = 1.22 f�.

We have not included wavefunction renormalization of the external meson �eld in our

KNN amplitude computations since the kaons do not appear as asymptotic states in the

weak scattering processes under consideration.

In order to determine the A(S) we insert the axial coupling constants D;F; C, and H
extracted by the one-loop computations of [18,22]:

D = 0:6 � 0:1 ; F = 0:4� 0:1

C = �1:2 � 0:1 ; H = �2:0� 0:2 ; (3.9)

and the weak coupling constants determined at one-loop level [19]

hD = �0:35� 0:09 ; hF = 0:86� 0:05

hC = �0:36� 0:65 : (3.10)

The uncertainties in these couplings are treated as uncorrelated for the purpose of determin-

ing the uncertainty in the NNK amplitudes. We determine the error in the NNK amplitudes

by varying the parameters over their allowed range and require that the choice of parameters

reproduce the �s = 1 S-wave hyperon amplitudes within their uncertainties. In this way

we determine that, with �� = 1 GeV,

A(S)
0 (p�pK0) +A(S)

1 (p�pK0) = 1:5 � 0:1

A(S)
0 (p�nK+) +A(S)

1 (p�nK+) = 0:4 � 0:1

A(S)
0 (n�nK0) +A(S)

1 (n�nK0) = 1:9 � 0:1 (3.11)

The SU(3) corrections tend to suppress the couplings compared to their tree-level values,

a signi�cant contribution of which comes from the use of the one-loop extracted weak cou-

plings in the tree-level amplitudes instead of those extracted at tree-level. The corrections

to the ppK and nnK couplings are, as one expects for SU(3) breaking, at the 30% level.

However, the corrections to the pnK amplitude lead to an e�ective coupling approximately

half the strength computed at tree-level.

B. P-Waves

The tree level P-wave amplitudes come directly from pole graphs involving one weak

vertex from Eq. (2.7) and one strong vertex from Eq. (2.1), (see Fig. 1)

A(P )
0 (p�pK0)

��

= �(D � F )(hD � hF )

mN �m�

A(P )
0 (p�nK+)

��

= �1

6

(D + 3F )(hD + 3hF )

mN �m�

+
1

2

(D � F )(hD � hF )

mN �m�

A(P )
0 (n�nK0)

��

= �1

6

(D + 3F )(hD + 3hF )

mN �m�

� 1

2

(D � F )(hD � hF )

mN �m�

: (3.12)
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Using the experimentally determined values of the parameters D, F , hD, and hF (Eq. (3.9)

and Eq. (3.10)), the values for these tree level amplitudes become {4.8, 18, and 13

(���=1GeV), respectively. Loop diagrams as shown in Fig. 3 then give

A(P )
1 (p�pK0)

��

=
m2
K

16�2f2K
log

 
m2
K

�2�

!
�

"
hD

mN �m�

�
10

3
D � 10

3
F +

92

9
D3 � 140

9
D2F +

20

3
DF 2 � 4F 3

�

+
hF

mN �m�

�
10

3
F � 10

3
D � 56

9
D3 +

140

9
D2F � 32

3
DF 2 + 4F 3

�

+h�

�
5

36
D +

7

36
F � 2

9
D3 +

1

9
D2F +

28

9
DF 2 � 1

3
F 3
��

� 10

81
C2H hD � hF

mN �m�

J (�m��

N )� 2

9

D � F

mN �m�

C2hCJ (�m��

N )

� 2

9
C2 hD � hF

mN �m�

[(D + 5F )K(mK;�m
��

N )� (D � 3F )K(m�;�m
��

N )]

+
10

81
h�C

2HJ (�m�
N)

+ h�C
2
h4
9
(D � F )K(mK;�m

�
N) +

2

9
(F +D)K(mK;�m

��

N )

� 1

27
(D � 3F )G�K��

i

+
(D � F )(hD � hF )

mN �m�

14

3
C2J (�m�)�A(P )

0 (p�pK0)Z	 ; (3.13)

where Z	 is the same wavefunction renormalization employed for the S-wave expressions.

A(P )
1 (p�nK+)

��

=
m2
K

16�2f2K
log(

m2
K

�2�
)
� hD

mN �m�

h5
9
D +

5

3
F +

2

27
D3 + 2D2F +

34

3
DF 2 + 6F 3

i

+
hF

mN �m�

h5
3
D + 5F +

20

9
D3 + 6D2F + 16DF 2 + 18F 3

i

+
hD

mN �m�

h
� 5

3
D +

5

3
F � 46

9
D3 +

70

9
D2F � 10

3
DF 2 + 2F 3

i

+
hF

mN �m�

h5
3
D � 5

3
F +

28

9
D3 � 70

9
D2F +

16

3
DF 2 � 2F 3

i

�h�
h11
36
D +

11

36
F � 14

27
D3 +

1

3
D2F +

20

9
DF 2 +

1

3
F 3
i�

+
5

9
C2HJ (�m��

N )
h1
3

hD + 3hF

mN �m�

+
1

9

hD � hF

mN �m�

i

+ C2
h�
� 1

3

(hD + 3hF )(D + F )

mN �m�

+
1

9

(hD � hF )(D + 5F )

mN �m�

�
K(mK;�m

��

N )

�1

9

(hD � hF )(D � 3F )

mN �m�

K(m�;�m
��

N )
i

+ C2hCJ (�m��

N )
h1
9

D � F

mN �m�

+
1

3

D + 3F

mN �m�

i
+
10

81
h�C

2HJ (�m��

N )
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+ h�C
2
h4
9
(D � F )K(mK;�m

�
N)�

5

18
(F +D)K(mK;�m

��

N )

� 1

54
(D � 3F )G�K��

i

+ C2
h1
3

(hD + 3hF )

mN �m�

(D + 3F )� 7

3

hD � hF

mN �m�

(D � F )
i
J (�m�)

� A(P )
0 (n�pK+)Z	 ; (3.14)

A(P )
1 (n�nK0)

��

=
m2
K

16�2f2K
log(

m2
K

�2�
)
� hD

mN �m�

h5
9
D +

5

3
F +

2

27
D3 + 2D2F +

34

3
DF 2 + 6F 3

i

+
hF

mN �m�

h5
3
D + 5F +

20

9
D3 + 6D2F + 16DF 2 + 18F 3

i

+
hD

mN �m�

h5
3
D � 5

3
F +

46

9
D3 � 70

9
D2F +

10

3
DF 2 � 2F 3

i

+
hF

mN �m�

h
� 5

3
D +

5

3
F � 28

9
D3 +

70

9
D2F � 16

3
DF 2 + 2F 3

i

�h�
h 3
18
D +

1

9
F � 8

27
D3 +

2

9
D2F � 8

9
DF 2 +

2

3
F 3
i

+
5

9
C2HJ (�m��

N )
h1
3

hD + 3hF

mN �m�

� 1

9

hD � hF

mN �m�

i

+ C2
h�
� 1

9

(hD � hF )(D + 5F )

mN �m�

� 1

3

(hD + 3hF )(D + F )

mN �m�

�
K(mK;�m

��

N )

+
�1
9

(hD � hF )(D � 3F )

mN �m�

�
K(m�;�m

��

N )
i

� C2hCJ (�m��

N )
h1
9

D � F

mN �m�

� 1

3

D + 3F

mN �m�

i
+
20

81
h�C

2HJ (�m�
N)

+ h�C
2
h8
9
(D � F )K(mK;�

�
N )�

1

18
(F +D)K(mK;�

��

N )

� 1

54
(D � 3F )G�K��

i

+ C2
h1
3

hD + 3hF

mN �m�

(D + 3F ) +
7

3

hD � hF

mN �m�

(D � F )
i
J (�m�)

� A(P )
0 (n�nK0)Z	 : (3.15)

The function K(m;�) which appears in Eq. (3.13), Eq. (3.14) and Eq. (3.15) from diagrams

having both decuplet and octet intermediate states is

K(m; �) = 1

16�2f2K

n
(m2 � 2

3
�2) log(

m2

�2�
)

+
2

3

1

�

h
(�2 �m2)3=2 log

 
� �p�2 �m2 + i�

� +
p
�2 �m2 + i�

!
+ �m3

io
; (3.16)

and the function Gm1;m2;B is given by
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Gm1;m2;B =
m2
1

m2
1 �m2

2

K(m1;�
B
N) +

m2
2

m2
2 �m2

1

K(m2;�
B
N ) : (3.17)

The mass di�erences that appear in Eq. (3.13), Eq. (3.14) and Eq. (3.15) are de�ned by

�m��

N = m�
� �mN ; �m�

N = m� �mN

�m� = m�� �m� � �m��

N : (3.18)

In the same way that the S-wave KNN amplitudes and associated uncertainties were

determined, we use the expressions for S-wave hyperon decay [19], along with experimental

measurements, to generate P-wave KNN amplitudes consistent with S-wave hyperon decay

rates. The results, with �� = 1 GeV, are

A(P )
0 (p�pK+) +A(P )

1 (p�pK+) = �3:2 � 0:3

A(P )
0 (p�nK+) +A(P )

1 (p�nK+) = 14 � 1

A(P )
0 (n�nK+) +A(P )

1 (n�nK+) = 11 � 1

(3.19)

The P-wave amplitudes are seen to be reduced by � 30% from their tree-level values

by the SU(3) breaking one-loop contributions. This is in contrast to the �s = 1 hyperon

decay P-wave amplitudes, where the corrections are at the 100% level. The NNK SU(3)

breaking is the size one would naively guess and is consistent with the idea [19] that the

large corrections to the P-wave amplitudes for �s = 1 hyperon decays are the result of

accidentally small tree level amplitudes, and not a breakdown of chiral perturbation theory.

IV. DISCUSSION

Weak NNK amplitudes that contribute to nonmesonic hypernuclear decay are not directly

measurable but can be related to �s = 1 hyperon decay by 
avour SU(3). We have computed

the leading SU(3) breaking contributions to these amplitudes using heavy baryon chiral

perturbation theory and �nd that such corrections suppress both the S-wave and P-wave

amplitudes by 30% to 50%.

S-waves P-waves

vertex A(S)
0 A(S)

0 +A(S)
1 A(P )

0 A(P )
0 +A(P )

1

ppK0 2.0 1:5 � 0:1 -4.8 �3:2� 0:3

pnK+ 0.8 0:4 � 0:1 18 14 � 1

nnK0 2.8 1:9 � 0:1 13 11 � 1

Table 1. The S-wave and P-wave amplitudes at tree-level and one-loop. We have set

�� = 1 GeV in both the S-wave and P-wave amplitudes.
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In �s = 1 mesonic hyperon decay there are two tree-level graphs contributing to P-

wave amplitudes which tend to cancel against each other for the values of weak couplings

constants determined from S-wave hyperon decay amplitudes. Since there is only one graph

contributing to the P-wave NNK vertices, no such cancellations arise and the amplitudes

are, in general, less susceptible to large SU(3) violation. It would be interesting to compare

the P-wave amplitudes extracted from hypernuclear decay with the amplitudes computed

in this work. It would help us to determine if the disagreement between the observed and

predicted �s = 1 mesonic hyperon decay P-wave amplitudes is an accident of nature or a

hint that chiral perturbation theory is not applicable to these processes.

We stress that our computation is only an estimate of SU(3) breaking e�ects as there

are unknown counterterms that also contribute. The computation that we have performed

is the leading e�ect in the chiral limit, mq ! 0. There is no reason to suspect that the

counterterms cancel the loop contributions since the counterterms arise from UV physics

whereas the nonanalytic terms from the loop graphs are IR e�ects.

In order to determine the impact of our work on the understanding of hypernuclear decay

the NNK amplitudes, including the SU(3) breaking corrections, must be incorporated into a

realistic hypernucleus in the same way that previous estimates of interaction strengths have

been included, e.g. [9]. It seems likely that the results found in this work will have signi�cant

impact on theoretical predictions for the ratio of neutron-induced to proton-induced decay

widths of �-hypernuclei, eg. 12
� C [14], and possibly other 
avours of hypernuclei.
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FIG. 1. Tree-level diagrams for the KNN amplitudes. (a) is the s-wave diagram, and (b) is the

p-wave diagram. The dashed lines are mesons, and the solid lines are octet baryons. The unmarked

vertex is a strong interaction and the black dots are weak vertices.
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FIG. 2. One-loop graphs contributing to S-wave KNN amplitudes. Dashed lines are mesons,

solid lines are octet baryons, and the double line indicates a decuplet baryon. The unmarked

vertices are strong interactions. The black dot indicates a weak vertex.

FIG. 3. One-loop graphs contributing to P-wave KNN amplitudes. Dashed lines are mesons,

solid lines are octet baryons, and the double line indicates a decuplet baryon. The unmarked

vertices are strong interactions. The black dot indicates a weak vertex.
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