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Abstract

Based on our previous attempt, we propose a better way to understand

a small but nonzero cosmological constant, as indicated by a number of

recent observational studies. We re-examine the assumptions of our model

of two scalar �elds, trying to explain the basic mechanism resulting in a

series of mini-inations occuring nearly periodically with respect to ln t

with t the cosmic time. We also discuss how likely the solution of this type

would be, depending on the choice of the parameters.

A growing number of di�erent observations, notably the recent determination of

the Hubble constant H0 [1], seem to point to a suggestion that there is a pos-

sible small but nonzero cosmological constant � [2], with 
� � �=�cr<�1, where

�cr = (3=8�G)H2
0 . This may not, however, be readily acceptable from a theo-

retical point of view, because introducing � has been considered to be highly ad

hoc. Contrary to this long-held prejudice, on the other hand, it is widely recog-

nized that a cosmological constant is an indispensable ingredient in many of the

theoretical models of uni�cation.y Unfortunately, they tend to predict � larger

than the observed value, or its upper bound, by as much as 120 or so orders

of magnitude. One of the possible ways out is to devise a theory in which the

cosmological constant is not a true constant but decays like � t�2, with t the

cosmic time [4,5].

Notice that the theoretically natural size of � is of the order one in the Planck-

ian unit system with 8�G = 1,z while the present age of the Universe t0 � 1010y

being of the order of 1060. In this scenario of \a decaying cosmological constant,"

today's cosmological \constant" is small <
�10

�120 only because our Universe is

old. No unnaturally extreme �ne-tuning of parameters is called for.

The scenario has been often formulated based on the models in which a scalar

�eld plays a role; the time-dependent e�ective cosmological constant �e�(t) is in

fact the energy density of this scalar �eld that couples to the ordinary matter

only as weakly as gravity.

�E-mail address: ysfujii@tansei.cc.u-tokyo.ac.jp
ySome authors [3] assume � = 0 in the starting Lagrangian. This is protected, however, by

no known symmetries against any likely perturbations.
zBy also choosing �h = c = 1, the units of length, time and the energy are 8.09�10�33cm,

2.70�10�43sec, and 2.44�1018GeV, respectively.
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This model implies, however, a complete absence of the cosmological constant.

What is indicated by the observation is, on the contrary, the presence of a at

portion in the energy density as a function of t, a deviation from a smooth falling-

o� � t�2. We came across, however, to a model which, by introducing another

scalar �eld, would result in occasional attenings of �e�(t) thanks to a nonlinear

nature of the cosmological equations [6]. The purpose of this note is to provide a

simpler understanding of the mechanism.

It seems appropriate here to state our attitude. In view of the lack of the

complete theoretical framework to derive all the details of the �nal results, we

follow a heuristic approach, trying to see what the e�ective theory in 4 dimensions

should be like, if it is to �t to what appears to be the e�ect of a small but nonzero

cosmological constant. As it turns out, this is highly nontrivial, if the model

is somehow related to modern uni�cation theories. We list some of the main

assumptions in Ref. [6].

First we assume the presence of a scalar �eld � of the dilaton-type, having a

non-minimal coupling, which is chosen, for the sake of simplicity, to be a Brans-

Dicke type; �2R.x We then apply a conformal transformation (Weyl rescaling)

to remove the non-minimal coupling. We do this for the technical convenience,

at the moment, though the correct conformal frame (CF) should be selected

according to what clock we use to describe the evolution of the Universe. In

this connection we should notice that none of the realistic theories of gravity is

conformally invariant, and that our conclusion remains true also in the original

CF in which the non-minimal coupling is present.

As an important consequence of this transformation the � term in the original

CF is converted to a potential of � of the type �e��=� where � is a constant{

while � is a transformed scalar �eld appropriate in the new CF. The � �eld rolls

down the slope toward in�nity, ensuring the �e�, essentially the energy of �, to

fall o� like � t�2 after the inationary era.

As a next step we introduce another scalar �eld � which has a speci�c in-

teraction with � but couples to conventional matter �elds also as weakly as the

gravitational interaction. We discovered an example of the interaction such that

�e�, which is now the total energy density of the � -� system, shows a repeated

occurrence of leveling-o� superimposed on the overall smooth fall-o� � t�2, com-

ing barely to exceed the normal matter density, hence acting as a cosmological

constant. In accordance with this the scale factor a(t) exhibits an extra accel-

eration deviating from the overall smooth behavior � t1=2 or � t2=3. A typical

solution of the cosmological equations was shown in Fig. 3 of Ref. [6].

The basic cosmological equations are (k = 0) [6]

3H2 = �s + �m; (1)

xOur � is, following the standard notation in the conventional relativistic �eld theory, related

to the original notation ' in Ref. [7] by ' = �2=8!.
{See Ref. [5] on how � is constrained in order for the results to be consistent with realistic

cosmology.
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�
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with

U(�) = 1 +B sin(!�): (6)

Here �;m;B and ! are constants. The exponential factor exp(��=�) (� ��4)

comes typically from the Weyl rescaling, thus transforming the �-term into the

potential, as mentioned before. The sinusoidal dependence in (6), on the other

hand, has been introduced on the try-and-error basis. We later discuss how this

speci�c form is favored. It is crucial to assume that the conformal transformation

property of � is such that the same factor exp(��=�) appears in front of the

�2U(�) term.

For the matter density �m we assume the mixture of relativistic and non-

relativistic matters:

�m = �ra
�4 + �nra

�3: (7)

We admit that the result depends heavily on these assumptions. In view of

the huge discrepancy of 120 orders of magnitude between conventional theory

and the observation, however, variety of models seem to deserve consideration as

working hypotheses. Notice that all of our parameters are essentially of the order

one in Planckian units, appealing to theoretical naturalness.

One might still argue that we are introducing as much as what we want to

come up with. We emphasize, however, that it is far from trivial to make a right

choice on what to be introduced; otherwise it will not make sense no matter how

much we bring in.

On using the new time variable � de�ned by

� � ln t;

and also de�ning b(� ) by

a = eb;

eqs. (1)-(3) are put into

3b0 2 =
1

2
�0 2 +

1

2
�0 2 + t2 (V + �m) ; (8)

�00 + (3b0 � 1)�0
� t2 exp(��=�)
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= 0; (9)

�00 + (3b0 � 1)�0 + t2 exp(��=�)m2U� = 0; (10)
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where 0 means di�erentiation with respect to � . Notice the explicit occurrence of

the time variable t2 on the right-hand sides.

It is also worth noticing that (8)-(10) allow the asymptotic solution for t!1

if U is chosen to be constant, namely B = 0:

a(t) = t2=3; or b(� ) =
2

3
�; (11)

�(t) = 2� ln

0
@
s
�

2

t

�

1
A ; (12)

�(� ) = Ae��=2 sin( ~m� ); (13)

where A is an integration constant while

~m =

s
2�2m2

�
�

1

4
:

We learn that the � �eld, if decoupled from �, would play no role in the

asymptotic era and that � might be a useful variable. From the solution (12) also

follows that the combination

F (t; �) � t2 exp(��=�)

tends to a constant (= 2�2=�) if U = 1. This implies that with non-constant

U(�) this combination might be nontrivial. We show that this is indeed the case.

A typical solution obtained numerically is shown in Fig. 1, another example

with parameters somewhat di�erent from those used in Fig. 3 in Ref. [6]. Notice

that we chose the \initial time" t1 = 1010, because, though the real classical

cosmology had begun much earlier, we can conveniently avoid more details on

the ination era and the ensuing reheating process.

We �rst �nd in the plot (a), as already alluded, the scale factor a(t) shows a

series of \mini-inations," each implying a rapid increase lasting during an opoch

which is \short" in terms of � , but could be quite \long" if it is measured in

the ordinary time t; nearly as comparable as t itself. One of such epochs has

been chosen to include the present time with � � log t �60, corresponding to

t � 1010y. (The scale factor resumes a usual expansion immediately beyond the

frame.)

In the plot (b) we notice that �s, the total energy of the �-� system, and

�m, the ordinary matter energy density, fall o� like � t�2 as an over-all behavior,

but interwinding each other. A closer look reveals that a mini-ination occurs

whenever �s exceeds �m.

Fig. 2 is the same plot as Fig. 1 (b) presented in a magni�ed scale around

the present time; showing that �s surpasses �m, remaining nearly constant for a

while, hence imitating a cosmological constant with the size basically of the same

order of magnitude as t�2 � �cr.
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We also notice in Fig. 1(a) that each of these anomalous behaviors takes place

toward the end of the \dormant period," during which both of the scalar �elds

come almost to standstill. To understand this behavior we �rst point out that

the dormant period and its repetition are primarily due to the dynamics of the

�-� system; the \back-reaction" from the cosmological expansion has a rather

minor e�ect.

Fig. 3 shows an example in which the cosmological part is cut o� with the

same parameters but with 3b0 � 1 replaced by 0.5. In spite of some di�erences,

which, representing how much the cosmological e�ect could be, will be discussed

shortly, comparing Fig. 1(a) and Fig. 3 is su�cient to convince ourselves that

the \recycled dormant periods" could take place even without cosmological e�ect.

From this point of view, we now focus upon more detailed analysis of the solution

in the isolated � -� system as a simpli�ed mathematical model.

The initial value �1 = 6:75442 implies that !�1 = 2� � 10:75; the � �eld

starts at one of the potential minima as given by sin(!�) if viewed in the �

direction (see Fig. 2 of Ref. [6]), but on the slope in the direction of �. Also the

\initial time" chosen to be t1 = 1010 implies 2�1 = 46:052, and hence F (t1; �1) =

t21 exp(��1=�) = exp(2�1 � �1=�) = exp(3:303) = 27:19, which is quite large. As

a result, � is pushed forward strongly. In this sense the system started from a

\catapulting stage." The rapid increase of �, however, makes F (t; �) small, as

will be found by comparing the curve of � and the straight line 2�� , also shown in

Fig. 3. Soon � is nearly free, going further until it is decelerated by the frictional

term 3b0 � 1 � 0:5, �nally to be trapped to another minimum of sin(!�).

On the other hand, the � �eld, having pearched on the middle of the potential

slope, is also catapulted downward, passing the central valley � = 0 past, until the

force dwindling again due to the decrease of F (t; �) and the cosmological friction

stop it to an almost complete halt, hence the dormant period. The energy density

�s still continues to decrease according to � t�3 before it stays constant.k

Now with a virtually unchanging �, the increasing � makes F (t; �) non-

negligible again, bringing the system back to the catapulting stage from which we

started before. In this way the dormant period may repeat itself nearly periodi-

cally with respect to � (instead of t), if the �eld con�gurations match su�ciently

close to the previous values.

The \recycling," however, may fail if the matching turns out incomplete. Fig.

3 is in fact one of the patterns of such \short" recycling encountered most com-

monly. Toward the end of a dormant period, � is \released" o� the track before

it is kicked hard by the force which has been building up. The system enters

into an asymptotic behavior in which � grows linearly while � decreases slowly

toward � = 0. If the same behavior occurs in the cosmological setting, the scale

factor increases smoothly, resulting in no e�ective cosmological constant today.

On the other hand, much \longer" recycling is also rather common, as shown

in Fig. 4. Suppose a recycling process lasts su�ciently long in the cosmological

system. Then, as in the isolated �-� system, �s would stay nearly constant

kSee also Ref. [8] for a similar behavior.
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toward the end of the dormant period, surpassing �m, hence playing the role of a

cosmological constant. When the scalar �elds start moving as the factor F (t; �)

increases, however, �s begins to decrease, eventually nosediving beneath �m. The

Universe resumes an ordinary expansion again. This explains the behaviors shown

in Figs. 1-2.

A question then arises how likely the solutions of su�ciently long recycling

could be. An idea on the answer may be obtained again by studying the isolated

�-� model. We surveyed solutions of the isolated �-� system by changing one

of the initial values, �1 for example, keeping other parameters and initial values

�xed.�� Solutions with shorter recycling exhibit basically the same patterns as in

Fig. 3, while Fig. 4 is an example of su�ciently long recycling. Combining the

solutions, we plotted in Fig. 5, the time of the end of recycling, te, against �1

varied discretely. In spite of apparently rampant variation, we obtain solutions

of long recycling (�e > 62) for 8 out of 23 choices of �1. This, together with

other limited but similar examples, seems to be an encouraging sign that the

occurrence of the continued recycling is reasonably likely. The same \optimistic"

view applies also if the cosmological e�ects are fully included.

We emphasize that the presence of minima of the potential as a funciton of �

is crucial. The leveling-o� behavior is triggered by trapping �. The form sin(!�)

is favored because it is ready to trap � virtually at any time. Any other potential

will probably be acceptable, from a \phenomenological" point of view, if it shares

this property.

We have shown that a small but nonzero cosmological constant as required

by the observations could result rather naturally due to a nonlinear nature of

the scalar �eld equations. As a favored coupling, we tentativley suggested a

Sine-Gordon-like interaction, though its real origin is yet to be discussed [6].

Furthermore having introduced two scalar �elds, we have too many parameters,

including the initial conditions, to allow unique predictions, or even a systematic

survey of the solutions. In this sense our conclusion is still preliminary. The

example in Figs. 1-2 merely illustrates how the results can be realistic, leaving

many details yet to be worked out. We nevertheless have promising indications

that the desired result comes about quite likely.

We certainly have to adjust some of the parameters in order to bring a mini-

infaltion to the epoch including the present time, for example. The extent to

which we are supposed to �ne-tune them is rathermild, however.yy In other words,

detailed analyses of various cosmological parameters at present, like H0; t0;
�

and q0, will serve to constrain the parameters of the theory, as will be discussed

elsewhere.

As one of the generic consequences of the present mechanism, we anticipate

some past epochs to have emerged with signi�cant amount of 
�. In the solution

��Presentation of the result has been made simpler by choosing parameters di�erent from

those used in Figs. 1-3, but the same as in Fig. 4 except for �1.
yyChanging �1 from 0.212 to 0.210 in the solution of Figs. 1-2 would shift 
� = 0:67 at

� = 60:15 (t = 1:21� 1010y) to 0.71. However, �1 = 0:200 gives 
� � 1� 10�20. On the other

hand, �1 = 0:2115 yields 
� = 0:73;H0 =79 km/sec/Mpc at t = 1:5� 1010y.
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of Figs. 1-2, for example, we �nd 
� � 1 for 27<��
<
�39, while we have avoided the

same at the epoch of primordial nucleo-synthesis (� � 45). This may illustrate

how the parameters and the initial conditions can be determined, in principle, also

by looking into details of the past cosmological histories, which should deserve

future studies.

We con�ned ourselves to the \primordial" cosmological constant prepared

in the starting Lagrangian. It is yet to be seen if the same mechanism applies

successfully to the vacuum energies associated with cosmological phase transitions

at later times.
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Figure 1: An example of the solution of (8)-(10). (a) Upper plot: b = ln a

(solid), � (dotted) and 2� (broken) are plotted against � = log t = 0:434� .

The present age of the Universe supposed to be (1.0 - 1.5)�1010y corresponds to

60.0 - 60.2 of � in units of the Planck time. The parameters were chosen to be

� = 1; � = 0:158;m = 4:75; B = 0:8; ! = 10 in the Planckian units. The initial

values chosen conveniently at t1 = 1010 are a = 1; �1 = 6:75442; _�1 = 0;�1 =

0:212; _�1 = 0; �r1 = 2:04� 10�21; �nr1 = 4:46� 10�44; the last two being adjusted

to give the \equal time" �eq � 55. The value of �1 corresponds to starting at a

minimum of sin(!�). (b) Lower plot: �s (solid), the total energy density of � and

�, and �m (dotted), the matter energy density, against � = log t.
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Figure 2: The same plot as in Fig. 1(b) but in a magni�ed scale of � around

the present time. We �nd 
� = 0:67 and H0 = 81km/sec/Mpc at � = 60:15

(t = 1:21 � 1010y).
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Figure 3: An example of the solution in the isolated �-� system, in which re-

cycling of the dormant periods ends prematually at � � 41. � (solid) and 2�

(dotted) are shown against � = log t. Also shown is 2�� (broken) to be compared

with �. All the parameters remain the same as in Figs. 1-2, except for 3b0 � 1

replaced by 0.5.
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Figure 4: An example of the solution in the isolated �-� system, showing long

recycling. We choose m = 5:0 with other parameters as well as the symbols the

same as in Fig. 3. The initial values at �1 = 10 are �1 = 8:0; _�1 = 0;�1 =

2:1; _�1 = 0:19, somewhat di�erent from those in Fig. 3.
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Figure 5: The time �e for the end of recycling in the isolated �-� system is

plotted against one of the initial values �1, varied with spacing 0.05. The other

initial values and the parameters are the same as in Fig. 4. The arrows indicate

�e > 62.
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