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Abstract

Analytic self-consistent solutions have been found for the nonlinear Vlasov equation de-

scribing di�erent types of behaviour with time of an intense bunch under the in
uence of

voltage induced due to a reactive part of broad band impedance. The problem is solved for

the particular type of the initial distribution function in longitudinal phase space which is

elliptic and corresponds to parabolic line density.

The �rst part of the paper is devoted to the consideration of the e�ects in the machine

with RF o�. In this case induced voltage is changing with time and, as in the case with RF

on, can have a signi�cant e�ect on bunch motion.

Numerical estimations for the SPS show that this e�ect can be important for manipu-

lations with beam at 26GeV. Measurements of the change in the rate of debunching with

intensity can also be used to estimate the value of the impedance.

The same method is applied in the second part of the paper to analyse time dependent

e�ects of potential well distortion when RF is on.
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1 Introduction

It is well known that voltage induced due to the interaction of high intensity long bunches

with the low frequency reactive part of the broad band impedance can produce signi�cant

potential well distortion when RF is on. Measurements of the resulting bunch-lengthening

(or shortening) allow the value of the low frequency part of the impedance to be estimated.

The purpose of the present work is to evaluate the possible e�ect of the induced voltage

on the motion of the intense single bunch when RF is o�. Without the focusing e�ect of the

external RF system this bunch normally starts to spread out or debunch. Then the induced

voltage which a�ects the bunch motion is also changing with time.

Debunching is often one of the manipulations with the beam in the machine. Smooth

changing of bunch parameters during debunching is also used to measure momentum spread

in the bunch and as a method to investigate beam instabilities. However it was noticed al-

ready in [1] that measurements of microwave instability threshold during debunching don't

give accurate results due to the in
uence of induced voltage on the variation of beam param-

eters. Debunching was recently used during studies of the microwave instability threshold

for the proton beam in the SPS, [2]. The rate of debunching measured from the decay of the

peak line density signal was found to be signi�cantly di�erent from the expected value. It

was suggested, [3], that this fast debunching can also be explained by the defocusing e�ect

of induced voltage.

Below the problem is examined in the following way. To introduce convenient de�nitions

we start with the trivial case of the debunching of a low intensity bunch. In the next chapter

we consider �rst the main equations describing the motion of a dense bunch with RF o� but

in the presence of induced voltage which is changing with time during debunching. With

a special choice of the initial distribution function (elliptic in phase space with parabolic

line density) this nonlinear problem has exact self-consistent solutions. These solutions,

depending on the parameters of the system, describe di�erent kinds of bunch behaviour which

are analysed. A defocusing type of induced voltage makes debunching faster in comparison

with the zero intensity case. With a focusing induced voltage, increase of intensity �rst

slows down debunching, and then starting from some critical intensity leads to oscillations

of the line density. From the exact solutions some simpli�ed expressions are obtained for

the variation of beam parameters during the initial part of debunching and these are used

later for preliminary numerical estimations of the e�ect in the SPS. We show the possibility

of estimating the low frequency part of the impedance from the measured decay of peak line

density during debunching. Finally the variation of microwave instability threshold during

debunching is also discussed.

The same method will be used in the second part of this paper to analyse the e�ect of

induced voltage on the evolution of the bunch injected into machine with RF on.
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2 Bunch motion with RF o� in the low intensity case

Let us start �rst by considering the debunching of the single bunch in the machine with RF

o� and when any intensity e�ects are ignored.

In general at the beginning of debunching the initial distribution function of the bunch

is the function of the Hamiltonian H0 of the system with RF on in the same machine or in

the injector:

F = F (H0): (1)

If bunches are su�ciently short compared with the RF period, the Hamiltonian of the particle

in the single RF system can be written in the form

H0 = _�20 + 
2�20; (2)

where 
 is the frequency of linear synchrotron oscillations in the RF system where the bunch

was created. Here �0 and _�0 are initial values of

� and _� =
d�

dt
;

a pair of conjugate coordinates we shall use to de�ne the position of the single particle in the

longitudinal phase space: � is an azimuthal coordinate measured from the position of the

synchronous particle � = 0 (when RF was on) and _� is connected with momentum deviation

�p = p� ps from the synchronous value ps by the expression

_� = !0�
�p

ps
: (3)

Here f0 = !0=(2�) is the revolution frequency and � = 1=
2t � 1=
2.

Distribution function (1) after integration over _�0 gives the initial line density (at t = 0):

�0 = �(�0) =
Z _�

l

�
_�
l

F ( _�20 + 
2�20)d
_�0; (4)

where the limits of integration are functions of �0

_�l = (Hm � 
2�20)
1=2 (5)

with

Hm = 
2�2m = _�2m: (6)

Above �m and _�m are the maximum values of �0 and _�0 in the bunch.

From the normalisation condition we also have

N =
Z �m

��m
�(�)d�; (7)

where N is the number of particles in the bunch.
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Single particle motion when RF is o� and any intensity e�ects are ignored is governed

by the equation:
d2�

dt2
= 0: (8)

The solution of this equation for the particle with initial coordinates (�0; _�0) has the form:

� = �0 + _�0t; (9)

_� = _�0: (10)

According to Liouville's theorem phase space density doesn't change with time along the

particle trajectories. To calculate line density during the debunching process we can then

substitute the solutions (9)-(10), rewritten in the form

�0 = � � _� t; (11)

_�0 = _�; (12)

into the initial distribution function (1), and integrate it over _�. For the Hamiltonian (2) we

have

H0 = _�20 + 
2�20 = q2
"
_� � 
2�t

q2

#2
+ 
2 �

2

q2
; (13)

where

q = q(t) = (1 + 
2t2)1=2: (14)

The line density can be written as

�(�; t) =
1

q

Z _�
l

�
_�
l

F0

 
_�2 + 
2 �

2

q2

!
d _�; (15)

where the integration variable _� is de�ned by

_� = q

 
_� � 
2�t

q2

!
; (16)

and the integration limits are:

_�l =

 
Hm � 
2 �

2

q2

!1=2

= _�m

 
1� �2

�2mq
2

!1=2

: (17)

The expression for line density (15) should be compared with the expression for the initial

line density (4). As a result the line density during debunching can be written in the form

�(�; t) =
1

q
�0

 
�

q

!
: (18)

As can be checked easily it satis�es the normalisation condition (7).

4



Momentum spread along the bunch during debunching can be found from expressions

(3) and (13).

A useful characteristic of the debunching rate is the time constant

td = 1=
: (19)

This is the time at which the peak line density is reduced by
p
2 from the initial value.

If t � td the line density doesn't change signi�cantly, and for t � td the decrease in line

density is inversely proportional to time.

As we can see, for low intensity bunches the decay of peak line density during debunching

�p =
�p0

(1 + 
2t2)1=2
: (20)

is independent of the form of the initial distribution function assuming that it is the function

of the Hamiltonian for the short bunch in the single RF system with peak value at � = 0.

3 Bunch motion with RF o� in the high intensity case

3.1 Main equations

Here we consider the situation when an intense bunch created in the single RF system is

injected at the moment t = 0 into the machine with RF o�.

The equations of motion for the particles under these conditions become

d�

dt
= !0�

�p

ps
; (21)

d(�p)

dt
=

e

2�R
Ve(�; t); (22)

where R is the average radius of the machine. The voltage Ve induced by the interaction

of the bunch with the low frequency reactive part of the broad band impedance can be

presented in the form:

Ve(�; t) = �L
dI(�; t)

dt
= �Le!2

0

@�(�; t)

@�
; (23)

where I(�; t) is the bunch current and L is the e�ective inductance of the machine connected

with the reactive part of the longitudinal coupling impedance by the relation !0L = ImZ=n.

In expression (23) we neglect derivatives @�(�;t)
@t

describing the slow dependence of �(�; t) on

time during debunching.

Equations (21)-(22) are nonlinear since the induced voltage Ve is de�ned by the derivative

of the line density the variation of which with time depends upon the induced voltage. To

5



�nd a self consistent solution to the system of equations (21)-(22) is equivalent to solving

the nonlinear Vlasov equation for distribution function F = F (�; _�; t)

@F

@t
+ _�

@F

@�
+
!0�eVe(�; t)

2�Rps

@F

@ _�
= 0: (24)

By analogy with the low intensity case, we can try to �nd the distribution function at the

moment t from the initial distribution function

F (�; _�; t) = F0

�
�0(�; _�; t); _�0(�; _�; t); 0

�
; (25)

if initial coordinates �0 and _�0 are de�ned as functions of coordinates �, _� and t.

In general, there are no regular methods which would allow us to �nd solutions to nonlin-

ear problem of this type. However, in this particular case it turns out that analytic solutions

can be obtained with a special choice for the initial distribution function. Let us consider

the case where, at the moment t = 0, the bunch has an elliptical distribution function in

longitudinal phase space

F = F0

�
1 � H0

Hm

�1=2

= F0

 
1� �20

�2m
�

_�20
_�2m

!1=2

; H0 < Hm: (26)

This distribution function corresponds to a bunch with parabolic line density

�(�0) = �p0

 
1� �20

�2m

!
; (27)

where �p0 = F0
_�m�=2 and from the normalisation condition we have also �p0 = 3N=(4�m).

According to (18), the line density of low intensity bunches with this type of particle

distribution would change with time during debunching as

�(�; t) =
�p0

q(t)

"
1 � �2

q2(t)�2m

#
; (28)

where function q(t) is de�ned by expression (14).

For the chosen distribution function the induced voltage can be written at the beginning

of debunching (t = 0) as

Ve(�; 0) = V0 �; (29)

where we de�ne

V0 =
3Ne!0

2�3m

ImZ

n
: (30)

Before describing the nonlinear solution let us �rst introduce some preliminary consider-

ations which may suggest the form in which we can look for the self-consistent solution in

the following section.

6



If we would try to �nd an approximate solution for this problem by iteration we can

use �rst the zero intensity solution (28) to calculate the induced voltage during debunching.

Then the equation of particle motion giving the next approximation is

d2�

dt2
� � �

q3(t)
= 0; (31)

where the parameter

� =
!2
0�eV0

2��2Es
(32)

has the dimensions of frequency squared and can be written also as

� = sgn(�ImZ)
2
� : (33)

Di�erential equation (31) is linear in � with a time dependent coe�cient. The general

solution for the equations of this type can be written in the form

� = �0 f1(t) + _�0 f2(t); (34)

where f1(t) and f2(t) are the fundamental solutions 1 with Wronskian W = f1 _f2 � _f1f2 =

const.

The next step is to express the initial coordinates as functions of �, _� and t and substitute

them in the initial distribution function (26). As a result for the next iteration one obtains

the equation
d2�

dt2
� � �

q31(t)
= 0; (35)

where q1(t) = (f2
1 + 
2f2

2 )
1=2. As we can see this equation repeats the form of equation

(31) but with a di�erent time dependent coe�cient. This suggests that if our iteration

proccess converges we can search for a closed form solution of the same type as presented

by expressions (34) and (35). This is done in the next section.

Note that equation (31) shows the well known fact that if the low frequency part of the

coupling impedance of the machine is inductive (ImZ > 0) then the induced voltage has a

defocusing e�ect above transition (� > 0) and focusing below transition.

3.2 Nonlinear solution

Using the de�nitions introduced above the nonlinear self-consistent system of equations

governing the particle motion during debunching �nally can be presented in the form

d2�

dt2
+

��2m
2�p0

@�

@�
= 0; (36)

1We were not able to �nd analytical expressions for functions f1, f2.
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�(�; t) = F0

Z _�2

_�1

"
1 � �20(�;

_�; t)

�2m
�

_�20(�;
_�; t)

_�2m

#1=2
d _�; (37)

where _�1 = _�1(�; t) and _�2 = _�2(�; t) are solutions of equation

1� �20(�;
_�; t)

�2m
�

_�20(�;
_�; t)

_�2m
= 0: (38)

Suppose that for the particle with initial coordinates (�0; _�0) the system of equations

(36)-(37) has a solution which can be written in the following form

�(t) = �0 y1(t) + _�0 y2(t); (39)

_�(t) = �0 _y1(t) + _�0 _y2(t); (40)

where y1 and y2 are unknown functions of time with initial conditions:

y1(0) = 1; y2(0) = 0; (41)

_y1(0) = 0; _y2(0) = 1: (42)

The Wronskian of this system is

W = y1 _y2 � _y1y2: (43)

Suppose that

W = const (44)

then from initial conditions (41)-(42) it follows that W = 1.

This assumption allows us to use the same method as used above in the low intensity

case, and express the initial coordinates as functions of coordinates � and _� at the moment t

�0 = � _y2 � _� y2; (45)

_�0 = �� _y1 + _� y1: (46)

Substitution of the expressions (45)-(46) into the initial distribution function (26) makes

it possible to �nd the distribution function at the moment t

F = F0

"
1� (� _y2 � _�y2)

2

�2m
� ( _�y1 � � _y1)

2

_�2m

#1=2
: (47)

Then the line density (37), after integration over _� of the above expression and using condition

(44) becomes

�(�; t) =
Z _�2

_�1
F (�; _�; t)d _� =

�p0

r

"
1� �2

r2�2m

#
; (48)
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where we de�ne

r = r(t) = (y21 + 
2y22)
1=2: (49)

The derivative of the line density can also be �nd

@�

@�
= ��p02�

r3�2m
: (50)

Now our main di�erential equation (36) can be rewritten either in the form

d2�

dt2
� ��

r3
= 0 (51)

or as a system of equations for y1 and y2

d2y1

dt2
� �y1

(y21 + 
2y22)
3=2

= 0; (52)

d2y2

dt2
� �y2

(y21 + 
2y22)
3=2

= 0: (53)

It is interesting to note that this last system of equations is also known to describe the

motion of a body in the (y1;
y2) plane under the in
uence of gravitation with attractive

force for � < 0 and repulsive for � > 0.

Let us introduce new variables r(t) and �(t) according to the following formulae

y1 = r cos �; y2 =
r



sin �: (54)

Then equations (52) - (53), using these new variables, can be transformed into the form:

r�� + 2 _r _� = 0; (55)

�r � r _�2 � �

r2
= 0: (56)

This system of nonlinear equations has as �rst integrals of motion

r2 _� = C1; (57)

_r2 +
C2

1

r2
+
2�

r
= C2; (58)

Using again gravitation terminology one can say that the �rst expression corresponds to the

second law of Kepler (law of areas) and the second equation describes conservation of energy

in the system. Constants C1 and C2 are de�ned by the initial conditions (41)-(42) which

now have the form

r(0) = 1; �(0) = 0; (59)

_r(0) = 0; _�(0) = 
: (60)
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Thus for C1 and C2 we get

C1 = 
; (61)

C2 = 
2 + 2�: (62)

We must check now that the Wronskian (43) of the system satis�es our initial assumption

(44) that it is constant and equal to one. Indeed using variables r(t) and �(t) and the

expressions(57), (61) we obtain

W =
r2 _�



=

C1



= 1: (63)

Note, that the solutions found above for y1(t) and y2((t) de�ne, in fact, from expression

(47) a distribution function which is a time dependent solution of the nonlinear Vlasov

equation (24). However this method only works due to the special choice of initial distribution

function, with which the induced voltage is proportional to �.

3.3 Analysis of solutions

3.3.1 Exact solutions

The integrals of motion found in the previous section allow us to rewrite expression (58) in

the form
_r2

2
+ U(r) = 0; (64)

where

U(r) = �
2(r � 1)(ar + 1)

2r2
(65)

and constant

a =
C2

C2
1

= 1 + 2
�


2
= 1 + 2sgn(�ImZ)


2
�


2
: (66)

This equation can be interpreted as the equation of motion of some particle with the co-

ordinate r in the potential U(r). In reality, according to expression (48), r(t) is a positive

de�ned function which describes the variation with time of bunch length �

� (t)

� (0)
= r(t) (67)

or of peak line density
�p(t)

�p0
=

1

r(t)
(68)

with the initial condition

r(0) = 1: (69)

Increasing of r with time means decreasing of peak line intensity - or debunching.
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The solution of equation (64) can be written in the following form:


t = �
Z r

1

rdrq
�(r)

; (70)

where we use the de�nition

�(r) = (r � 1)(ar + 1): (71)

If the solution r(t) is known, then the function �(t) can be found from (57)-(58) and is

de�ned by the expression:

� = �
Z r

1

dr

r
q
�(r)

: (72)

After integration, we have:

r[(
2 + �) cos � � �] = 
2: (73)

Depending on the shape of the e�ective potential U(r) (or value of parameter a) solutions

of equation (64) have di�erent character. Let us consider them.

a= 1. If any intensity e�ects are absent then parameters � = 0 and a = 1, and as follows

from (65) the potential has the shape

U(r) =

2

2

�
1

r2
� 1

�
: (74)

This potential is shown in Fig.1. Expression (70) gives in this case the solution (14) already

found in Chapter 1 for the low intensity case:

r(t) � q(t) = (1 + 
2t2)1=2: (75)

The behaviour of the normalised peak line density �p(t)=�p0 = 1=r for � = 0 (and a = 1) is

shown in Fig.2.

For cases where the intensity e�ects are considered and therefore � 6= 0 there are two

main types of solutions of equation (64) which correspond to in�nite and �nite (periodic)

motion. We analyse them below.

a> 0. The integral (70) gives the solution


t =

q
�(r)

a
+
a� 1

2a3=2
ln
j2
q
a�(r) + 2ar + 1� aj

1 + a
; (76)

where �(r) is de�ned by expression (71). Motion in this case is only in�nite, which means

continuous debunching (r ! 1 with t ! 1). However the character of the debunching

is di�erent depending on the value of a. If a > 1 the induced voltage has a defocusing

e�ect and debunching is faster compared to the low intensity case. For a < 1 debunching is

slowed down by the focusing e�ect of the induced voltage. These two situations are shown

in Figs.1-2 together with the low intensity case a = 1.
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a= 0. This value of parameter a corresponds to the point of bifurcation where the

character of the solution is changing. From (70) we can �nd


t =
2

3
(r � 1)3=2 + 2(r � 1)1=2: (77)

This solution is presented in Figs.1-4.

a< 0. This case can only occur for a focusing type of induced voltage (�ImZ < 0) and


2
� > 
2=2. The potential U(r) has the shape of a potential well and the solutions describe

oscillations of peak line density with time.

If �1 < a < 0 then the solution found from (70) has the form


t =

q
�(r)

a
+

1� a

2ajaj1=2

"
arcsin

2ar + 1 � a

j1 + aj � �

2

#
; (78)

where a 6= �1. In this case oscillations begin with the line density decreasing (which appears

for some time as if it is debunching). Oscillation amplitude is de�ned by the inequality

jaj � 1

r
� 1: (79)

The e�ective potential well is shown in Fig.3 for a = �0:3 together with the a = 0 case for

comparison. The corresponding behaviour of bunch line density is presented in Fig.4.

The period of the oscillations of the line density is

T =
�




(1 � a)

jaj3=2 =
2�
2

�

(2
2
� � 
2)3=2

: (80)

As can be seen from this expression a bunch with an intensity such that 
2
�=


2 = 1=2 (a = 0)

has an in�nitely large oscillation period and continuously debunches.

The period and amplitude of the line density oscillations decrease (compare Fig.5 with

Fig.4) with growing absolute value of parameter a (which can be for example due to increasing

intensity or impedance). As a result at a � �1, the period T � (2�)=
 but with oscillation

amplitude close to zero.

a= �1. This case corresponds to the equilibrium situation when the bunch at the mo-

ment t = 0 is in the minimum of the potential well U(r) with solution r = 1 not changing

with time (see Fig.6). With this value of a, 
2
� = 
2 and the initial bunch is matched to the

waveform created by the induced voltage.

For a < �1 the amplitude of peak line density oscillations starts to grow with increasing

absolute value of parameter a:

1 � 1

r
� jaj (81)

Oscillations now start at t = 0 with the peak line density increasing and have a period also

de�ned by expression (80). The solution found from (70) has the form


t =

q
�(r)

jaj +
1� a

2jaj3=2

"
arcsin

2ar + 1� a

j1 + aj +
�

2

#
; (82)
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where also a 6= �1.
The e�ective potential well is shown in Fig.6 for a = �1:3. Corresponding behaviour of

bunch line density is presented in Fig.7.

3.3.2 Approximate solutions

To estimate these e�ects it is useful to have simpli�ed expressions to describe the variation

of beam parameters during debunching (a > 0).

As follows from (65), at the beginning of debunching, when r � 1, we can obtain an

approximate solution by replacing 
2 by (
2 + �) in the formula (14) and then

r(t) ' [1 + (
2 + �)t2]1=2: (83)

According to the assumption made to obtain this expression it is valid only at the start of

debunching for times t� 1=(
2 + �)1=2.

For r� 1 i.e. when the initial distribution is strongly debunched, the asymptotic solution

can be again obtained from (65) by using the same formula (14) with 
2 ! (
2 + 2�):

r(t) ' [1 + (
2 + 2�)t2]1=2: (84)

Both these approximations are shown together with the exact solution in Fig.8 for a = 3.

As can be seen the exact solution lies between these two limits.

For a rough estimation of the time constant for the debunching of the intense beam at

the beginning of the process (t� 1=
� and t� 1=
) we can use the following approximate

formula

tde ' 1=
p

2 + �: (85)

As can be seen a change in debunching rate due to intensity e�ects can be used to estimate

the inductive part of the broad band impedance if the parameters of initial bunch are known.

However it is interesting to note that if the initial bunch was created in the same machine

and later allowed to debunch, then the measured time tde in �rst approximation is de�ned

only by the external voltage and doesn't depend on intensity. Indeed due to potential well

distortion the matched bunch has dimensions de�ned by

_�m=�m = 
 =
q
!2
s � �;

where !s is the frequency of synchrotron oscillations with RF on. In this situation the

measured debunching time will be

tde ' 1=!s:
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3.4 Numerical estimations for the SPS

3.4.1 Defocusing e�ect

Let us start �rst with the analysis of the case which we had during the MD study, [2]. The

injected bunches of 5-10ns were created in the low frequency RF system (10MHz) of the PS

and can be considered there as "short" bunches. For the SPS, the spectrum of these 5-10ns

long bunches is situated in the inductive part of the broad band impedance with resonant

frequency of 1.3GHz. Previous measurements and estimations show that the space charge

impedance of the SPS at 26GeV is much less than this inductive impedance.

Machine parameters were: Es = 26GeV; 
t = 23:4. For this situation we can expect that

the induced voltage has a defocusing character which makes debunching faster. For the 5ns

long bunch with emittance "L = 0:2eVs we have


 =
_�m

�m
=

2�

�

�pm

ps
= 0:21 � 103s�1;

which should give a debunching time constant in the low intensity case

td = 1=
 = 5ms:

For an intensity N = 5�1010 and the inductive part of the broad band impedance ImZ=n =

20
, we obtain from expression (32)


� = 0:22� 103s�1:

This gives a value a ' 3. Supposing that the initial bunch was close to parabolic then we

can calculate the decay of peak line density. This is shown in Fig.8 as a solid line together

with the low intensity case, a = 1, for comparison. The debunching time constant, which

measurement can provide, is

tde ' 1=
q

2 + 
2

� = 3:3ms:

For 10ns long bunches with the same emittance "L = 0:2eV s and intensity N = 5� 1010

we can compare the values of


 = 51:5s�1 and 
� = 56:6s�1:

Related to these values are the debunching time constants in the low and high intensity

cases,

td = 19:5ms tde ' 13:1ms:

In this case parameter a = 3:4.

For both sets of measurements, with "short" and "long" bunches, we can observe a

signi�cant e�ect of the induced voltage on the debunching process. Moreover, accurate

measurements of the decay of peak line density during debunching in this situation can

give important information about the low frequency part of the coupling impedance of the

machine.
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3.4.2 Focusing e�ect

The interaction of the bunch with the inductive part of the impedance below transition, or

with the capacitive above leads to a focusing e�ect which we would expect to slow down the

debunching of the intense beam. The debunching time constant (at the beginning of the

process) becomes

tde = 1=
q

2 � 
2

� : (86)

Let us estimate the possible e�ect in the SPS in the present �xed target mode of operation

with machine parameters Es = 14GeV; 
t = 23:4. Then for high intensity bunches with

parameters � = 5ns; "L = 0:1eVs;N = 5� 1010, available from the PS for recent MD studies

at 14 GeV, and using again the value ImZ=n = 20
 we obtain


 = 0:95 � 103s�1 and 
� = 0:68� 103s�1:

In this case a = 0:025. For bunches with a line density close to parabolic the corresponding

decay of peak line density is described by the curve shown in Fig.2 for a = 0. From the

previous analysis of di�erent types of possible solutions in this system, at slightly higher

intensities we could expect to observe rebunching.

4 Microwave instability threshold during debunching

The threshold of the microwave instability can be de�ned from the Boussard criterion. For

a parabolic line density it has a form, [4]:

jZLj
n
� F �

Esj�j�2

eI(�)

"
�p̂(�)

p

#2
; (87)

where formfactor F � = 0:7�3=2 = 1:05�. Here ��p̂ is the maximum momentum spread in

the bunch at the position � and I is the local current. During debunching both �p̂ and I

become not only functions of coordinate � but also of time. By analogy with the case when

RF is on, [5], for the type of particle distribution in phase space chosen, the ratio

P =
(�p̂)2

I

does not depend on coordinate � and is constant along the bunch even during debunching.

The variation of line density is described by formula (48). The change of maximum

momentum spread during debunching can be also calculated

�p̂(�; t) =
�pm

r(t)

"
1 � �2

r2(t)�2m

#1=2
; (88)
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where ��pm is the maximummomentum spread in the bunch at t = 0. As a result we have

P (t)

P (0)
=

1

r(t)
: (89)

If the e�ect of induced voltage on the changing of bunch parameters during debunching is

ignored then the function r(t) is simply replaced by q(t) = (1 + 
2t2)1=2.

Using the expressions for 
 and 
�, criterion (87) can be rewritten in our de�nitions as


2
� <


2

r(t)

jImZj
jZLj

: (90)

From the analysis of this expression we can make a few conclusions:

(1) If debunching is used as a method to determine the microwave instability threshold

from criterion (87) it is necessary to take into account the e�ect of induced voltage on the

bunch parameters variation. Otherwise (as was noticed �rst in [1], see also [2]) measurements

do not give consistent results.

(2) Measurements of the peak line density variation during debunching give simultane-

ously information about function P (t), which can be used to de�ne the threshold intensity

for microwave instability.

(3) Possible deviations of the value of the debunching time constant of an intense beam

tde from the low intensity value td should lie within some limits de�ned by the microwave

instability.

5 Conclusions

Analytic solutions of the nonlinear Vlasov equation describing di�erent types of behaviour

with time have been found for an intense bunch, with an initial elliptic distribution function,

under the e�ect of of self induced voltage in the machine with RF o�.

Voltage induced due to the interaction of the beam with the low frequency part of the

coupling impedance of the machine, as in the case with RF on, can have a signi�cant e�ect

on processes when RF is o�. Measurements of the change in the rate of debunching with

intensity can be used to estimate the value of the impedance supposing that the initial

particle distribution in phase space is close to elliptic.

If debunching is used as a method to determine instability thresholds it is necessary to

take into account the e�ect of induced voltage on the variation of the bunch parameters.
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Figure 1: E�ective potential U(r) describing debunching in low intensity case, a = 1, and

high intensity case with di�erent types of induced voltage: defocusing, a = 2, and focusing,

a = 0.

Figure 2: Variation of normalised peak line density 1=r during debunching for low intensity

case, a = 1, and high intensity case with defocusing, a = 2, and focusing, a = 0, type of

induced voltage.
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Figure 3: E�ective potential well U(r) describing oscillations of line density for focusing type

of induced voltage.

Figure 4: Variation of normalised peak line density 1=r for focusing type of induced voltage,

a = �0:3 and a = 0.
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Figure 5: Variation of normalised peak line density 1=r for focusing type of induced voltage,

a = �0:6.

Figure 6: E�ective potential well for equilibrium solution, a = �1, and oscillation of line

density, a = �1:3.
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Figure 7: Variation of normalised peak line density 1=r for focusing type of induced voltage,

a = �1:3.

Figure 8: Exact (solid line) and approximate (dashed lines) solutions for peak line density

variation during debunching of intense beam for defocusing type of induced voltage, a = 3,

together with exact solution for low intensity case, a = 1, (dotted line).
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