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It is widely accepted that in molecular systems the nu-
clear interaction plays a negligible role, because of the strong
Coulomb repulsion of the nuclei at small distances. We are
going to show that this is not always true. The existence
of an extended nuclear resonance may lead to considerably
enhanced nuclear reaction rates in appropriately prepared
molecules. Especially we point out that p + p +16O, i.e.,
the constituents of water, can form a 18Ne(1−) threshold res-
onance which decays under energy release into 17F and a pro-
ton.

In this note we consider the increase of the reaction
probability of nuclei in molecules due to the existence
of nuclear resonances. Appropriate candidates for such
a mechanism are molecules in which the nuclei involved
can form near-threshold resonances. The long tail of the
corresponding wave functions is expected to lead to a no-
ticeable overlap with the molecular functions, and hence
to a measurable transition probability from the molecular
to the nuclear states. For a two-atomic molecule it will
be shown that an even exponential enhancement arises,
instead of the usual reduction of nuclear cross sections
due to Coulomb repulsion.

Let us discuss some examples of such threshold states.
A typical case is the Boron isotope 8B. In its ground state
the proton has a separation energy of only 0.13 MeV,
being thus represented by a wave function with a long-
ranged tail. The treatment [1] of the process p+ 7Be →
8B+γ, which is crucial in the solar neutrino problem [2],
did in fact require integrations up to 300 fm.

Another example is the 5He (3/2+) resonance which
plays a decisive role in muon catalyzed fusion of deuteron
and triton in the dtµ molecule [3]. The presence of this
near-threshold resonance (50 keV resonance energy, 60–
70 keV width) enlarges the fusion probability at least
by four orders of magnitude, as compared with nuclear
reactions in molecules like pdµ or ddµ where no such
resonances occur.

To achieve a similar enhancement of the fusion prob-
ability already in normal (electronic) molecules, we have
to look for a nuclear resonance which lie much closer to
the corresponding threshold energy. The exited 1− state

of the Neon isotope 18Ne satisfies this requirement. Its
experimental energy [4] of 4.522 MeV coincides up to the
given digits with the threshold energy of the three-body
channel p+ p + 16O. Vice versa, any pp16O system, be-
ing rotationally excited into a 1− state, is energetically
degenerate with this 18Ne(1−) resonance. In nature this
system occurs in form of stable, chemically bound water
molecules. These molecules, being rotationally excited,
thus, contain always some 18Ne(1−) admixture. And
this nuclear state can decay not only into the original
p + p + 16O channel, but also into a two-body channel
like 17F + p , with an energy release of 0.6 MeV. Excited
water molecules, thus, have a non-vanishing probability
of “burning” into this final state.

In order to get some feeling for the corresponding tran-
sition probabilities, we consider as a more simple example
the two-atomic D 6Li molecule. There exists also in this
case an excited nuclear state, the Beryllium resonance
8Be(2+), close to the d+ 6Li threshold1. Indeed, accord-
ing to [5] the resonance energy is (22.2 + i 0.8) MeV,
while the threshold, i.e., the energy needed to break up
the 8Be ground state into d+ 6Li, lies at 22.2798 MeV. A
noticeable interference between the nuclear and molecu-
lar wave functions, hence, is again to be expected.

For an estimate of the corresponding transition prob-
ability we use the following model. The resonance state
ψres(r) is simply chosen as an outgoing Coulomb s-wave,

ψres(r) =
1

Nres

eiη lnκr

r
, (1)

with η = Z1 Z2α
√
µc2/2E being the Sommerfeld pa-

rameter. Here, α is the fine structure constant and E, the

relative energy of the outgoing particles, E =
k2

2µ
. The

function (1) is assumed to be normalized to unity within
the range of the nuclear interaction [6]. This choice of
Nres reflects the nuclear origin of the outgoing particles,
which move outside the nuclear volume exclusively under
the influence of the repulsive Coulomb potential. The
molecular wave function ψmol(r), representing the mo-
tion of the nuclei d and 6Li under the influence of an
effective attractive potential with strong Coulomb repul-
sion at the origin, is chosen as a product of the regular

1This resonance can decay into various channels, e.g., n+
7Be, p+ 7Li, α+ α, with noticeable energy yield [5].
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Coulomb solution F0(κ, r) and an exponentiall decreasing
function associated with size of the molecule,

ψmol(r) =
1

Nmol

F0(κ, r)

r
e−κr . (2)

Within our model, the transition amplitude is given by

I =

∫
d3r ψres(r)ψmol(r) . (3)

In order to calculate this overlap integral we use for the
regular Coulomb function the representation

F0(κ, r) = C0(η)re
−irM(1− iη, 2, 2ir), (4)

with

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1dt,

(5)

and C0(η) = exp(−πη/2)Γ(1 + iη)/Γ(2). This integral
representation allows us to perform the space-integration
in (3) analytically. That is, the contributions of the wave
functions to the transition amplitude are taken into ac-
count exactly from all distances,

I ∝ 4πC0(η)
Γ(2)Γ(2 + iη)

|Γ(1 + iη)|2

∫ 1

0

(
1− t

t

)iη
× (6)

×
dt

[1− i(2t − 1)]2+iη
.

Since η � 1 near the threshold, the remaining integral
can be evaluated by means of the saddle point method.
The saddle point, from which the main contribution to
the integral (6) stems, lies at

t1 = 1 +
1

2

[√√
2 + 1 + i

√√
2− 1

]
. (7)

The leading term in (6), thus, looks like

I ∝
C0(η)

κ

Γ(2 + iη)

|Γ(1 + iη)|2
e0.614πη

√
η

[
A+ O

(
1

η

)]
, (8)

with an η-independent constant A. In other words, we
obtain for the relevant transition amplitude

I ∝ η3/2 exp[(0.614− 1/2)πη]. (9)

Thus, opposite to the usual Coulomb barrier factor
exp(−π η) which for increasing η decreases, we have now
an increasing factor. Therefore, due to the fact that in-
stead of a short-ranged bound state we deal with a reso-
nance state of long range, the contributions to the overlap
integral originate essentially from intermediate and large
distance regions.

The present report aimed at pointing out the general
property (9) valid in all situations of the type considered
here. The specific features of any concrete example en-
ter the problem via the reduced mass µ and the charge
numbers Z1, Z2 in the Sommerfeld parameter η, and via
the normalization factors Nres and Nmol. By adequately
choosing these factors, fairly realistic values of the tran-
sition amplitudes (3) can be obtained for the present and
all analogous cases. Multiplying the squares of these am-
plitudes by ω = |εmol|/h̄, with εmol being the binding
energy of the molecular state ψmol, one ends up with es-
timates of the corresponding reaction rates. All this will
be the subject of practical applications of the above for-
malism to special cases, e.g., the d+ 6Li system.

As discussed at the beginning, the rotationally excited
(pp 16O) state appears as a promising example for fu-
sion reactions in normal (electronic) molecules. Qualita-
tively a similar behaviour as in the two-body case is to be
expected also in this three-body case, a prediction con-
firmed by recent calculations based on estimates similar
to the ones described above [7].

ACKNOWLEDGMENTS

This work was partly supported by the Scientific Di-
vision of NATO, grant No. 930102. Two of the authors
(V.B.B. and A.K.M.) would like to thank the Interna-
tional Science Foundation for financial support, grants
No. RFB000 and No. RFB300.

[1] K.H. Kim, M.H. Park, and B.T. Kim, Phys. Rev. C35,
363 (1987).

[2] J.N. Bahcall and R. Ulrich, Rev. Mod. Phys. 60, 297
(1988); C.W. Johnson, E. Kolbe, S.E. Koonin, and K. Lan-
ganke, “The Fate of 7Be in the Sun”, Institut für Theo-
retische Physik I, Universität Münster, Germany.

[3] W.H. Breunlich, P. Kammel, J.S. Cohen, and M. Leon,
Ann. Rev. Nucl. Part. Sci. 39, 311 (1989); L.N. Bog-
danova, and V.E. Markushin, in: Muon Catalyzed Fu-
sion. Vol. 5/6. J.C. Baltzer AG, Basel, 1990/1991, p. 189;
G.M.Hale, Ibid., p. 227; K. Szalevicz, and J. Jezioski, Ibid.,
p. 241.

[4] A.V. Nero, E.G. Adelberger, and F.S. Dietrich, Phys. Rev.
C24, 1864 (1981).

[5] F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A490,
1 (1988).

[6] N.B. Shulgina and B.V. Danilin, Nucl. Phys. A554, 137
(1993).

[7] V.B. Belyaev, A.K. Motovilov, and W. Sandhas, JINR
Rapid Communications 6 [74]–95, 5 (1995) (LANL
E-print nucl-th/9601021).

2


