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ABSTRACT

PHYSICS OF SINGLE-TOP QUARK PRODUCTION AT HADRON COLLIDERS

By

Douglas Olaf Carlson

We discuss the physics of single-top quark production and decay at hadron col-

liders, such as the Tevatron, the Di-TeV and the LHC. Our study includes how to

measure the mass and the width of the top quark produced from a single-t or a single-t̄

process. We also show how to probe new physics by studying the couplings of t-b-W

and show what can be improved from measuring the production rate of single-top

events. We also discuss how to probe CP properties of the top quark by measur-

ing the single-top production rate. Finally, we present a Monte Carlo study on the

detection of single-top events in hadron collisions.
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Chapter 1

Introduction to the Standard
Model

The Standard Model (SM) of elementary particle physics [1, 2, 3, 4] is a Yang–Mills
gauge field theory with symmetry

SU(3)C × SU(2)L × U(1)Y . (1.1)

It has been very successful in explaining and predicting experimental data. The
SU(3)C sector governs the strong force of the SM and is known as quantum chromo-
dynamics (QCD). The SU(2)L × U(1)Y sector unifies the electromagnetic and weak
forces, collectively known as the electroweak force. The unification of the electromag-
netic and weak forces is accomplished in the SM via the mixing of the neutral SU(2)L
gauge boson and the hypercharge gauge boson of U(1)Y . Masses are introduced in
a gauge invariant way through spontaneous symmetry breaking which gives rise to
the as yet undiscovered Higgs boson (H). This process of spontaneous symmetry
breaking is known as the Higgs mechanism.

The standard model does not incorporate the gravitational force. So far, no
definitive quantum field theory of gravity exists. Gravity affects all massive particles,
however, gravitational interactions with elementary particles are too weak and can
be ignored.

In the standard model there are three generations of leptons and quarks as listed
in Table 1.1. Associated with each force is one or several gauge bosons as listed in
Table 1.2. For reference we list the masses of each particle as found in Reference [5].
So far, the only particle for which a discovery is lacking is the scalar Higgs boson.

In what follows, we briefly describe the particle spectrum, particle interactions
and the 18 independent parameters which constitute the standard model.

1.1 The Matter Spectrum of Spin-1
2

Fermions

The matter spectrum consists of twelve fermions which are organized in Table 1.1
according to the symmetry structure of Equation (1.1). Each successive generation

1



2

Table 1.1: Lepton and Quark Masses

Particle Symbol Mass (GeV)

Electron neutrino νe 0
Electron e 0.00051 First
Up quark u 0.002 to 0.008 Generation
Down quark d 0.005 to 0.015

Muon neutrino νµ 0
Muon µ 0.106 Second
Charm quark c 1.3 to 1.7 Generation
Strange quark s 0.1 to 0.3

Tau neutrino ντ 0
Tau τ 1.78 Third
Top quark t 174 Generation
Bottom quark b 4.7 to 5.3

Table 1.2: Boson Masses

Particle Symbol Mass (GeV)

Photon γ 0 Electromagnetic Force
W Boson W± 80.22 Charged Weak Force
Z Boson Z0 91.187 Neutral Weak Force
Gluon G 0 Strong Force

Higgs H 60 < mH < 800 Spontaneous Symmetry Breaking
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Table 1.3: Quantum numbers of the fermion spectrum

Chirality Q T 3
W Y C

νeL 0 1/2 -1 0
eL -1 -1/2 -1 0

uL 2/3 1/2 1/3 r, g, b
dL -1/3 -1/2 1/3 r, g, b

eR -1 0 -2 0

uR 2/3 0 4/3 r, g, b

dR -1/3 0 -2/3 r, g, b

is a more massive copy of the previous generation, so only the quantum numbers
of the first generation are shown in Table 1.3. Under the SU(2)L sector of the SM,
left-handed fermions transform as weak isospin (TW) doublets,

ℓL =
(
νe

e

)

L

, qL =
(
u
d

)

L

, (1.2)

whereas right-handed fermions transform as singlets,

(e)R, (u)R, (d)R. (1.3)

Since neutrinos are massless Dirac fermions in the SM, there are no right-handed
neutrinos. Once the third component of Weak isospin T 3

W is assigned, the values
of hypercharge Y can be determined to cancel the chiral anomalies [6]. With these
quantum numbers in place, the charge quantization is determined by

Q = T 3
W +

Y

2
. (1.4)

Only quarks transform under the SU(3)C sector of the SM. Each quark flavor,
(i.e., q = u, d, s, c, b, t), carries red(r), green(g) or blue(b) color charge and therefore
transforms as a triplet:

Ψq =



qr
qg
qb


. (1.5)
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1.2 Force Mediators as Spin-1 Gauge Bosons

Associated with the group structure of the SM are twelve generators and each gen-
erator is associated with a gauge boson. Therefore, U(1)Y has one generator, the
neutral hypercharge gauge boson Bµ. SU(2)L has three (2 × 2 − 1 = 3) generators,
two of which are charged SU(2)L gauge bosons W±

µ and one neutral SU(2)L gauge

boson W 3
µ . Finally, SU(3)C has eight (3 × 3 − 1 = 8) generators and therefore, eight

gluons, Ga
µ, a = 1, 2, . . . , 8.

As stated earlier, electroweak unification is accomplished by mixing the Bµ and
W 3

µ gauge bosons. Formally this is accomplished via the following rotation,

(
Z0

µ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

) (
W 3

µ

Bµ

)
, (1.6)

where θW , called the weak mixing angle, is chosen such that Aµ only couples with
charged particles. Aµ is then identified as the photon field in quantum electrodynam-
ics (QED) and additionally, a neutral weak force, Z0

µ , is obtained.

At this point in the theory, all fermions and gauge bosons are massless to preserve
gauge invariance. In the next two sections we describe how the force mediators inter-
act with fermions and amongst themselves. The Higgs mechanism is also introduced
to incorporate mass in a gauge invariant way.

1.3 Gauge Invariant Interactions of Fermion and

Gauge Boson Fields

We begin with the lagrangian for a massless free fermion field Ψ,

LFK = Ψ i6∂Ψ. (1.7)

Equation (1.7) is the kinetic term for fermion fields.1 To make the lagrangian gauge
invariant, we introduce the gauge covariant derivative

∂µ → Dµ = ∂µ − ig1
Y

2
Bµ − ig2

τ j

2
W j

µ − ig3
λa

2
Ga

µ, (1.8)

where j = 1, 2, 3 and a = 1, 2, . . . , 8. The τ j ’s are the Pauli matrices defined in

Appendix A and T j
W = τ j

2
is the Weak isospin. The (3 × 3) matrices (generators)

λa, a = 1, 2, . . . , 8, are the SU(3)C matrices. As a result, we obtain gauge interaction
terms in the lagrangian.

The Bµ term acts on all fields with different Y ’s, including leptons and quarks in
Table 1.3 (same for the other two generations) and the Higgs doublet field Φ discussed

1 6∂ = ∂µγµ where ∂µ is the Lorentz invariant space-time derivative and γµ are the Dirac matrices.
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in Section 1.5 below. The W j
µ term acts only on the SU(2)L doublets with non-zero

T 3
W and the field Φ. In the process of obtaining electroweak unification the coupling

constants, g1 and g2 become related through the weak mixing angle θW via

g2

g1
= tan θW , (1.9)

where g1 sin θW = e. The value of e is related to the fine structure constant α by
α = e2/4π.

For electroweak interactions, the colors of the quarks have to be the same since
SU(2)L × U(1)Y does not act on color space. Also, the Aµ and Z0

µ fields do not

induce quark or lepton flavor changing at the Born level, (i.e. no u ↔ c ↔ t,
d ↔ s ↔ b, νe ↔ νµ ↔ ντ or e ↔ µ ↔ τ transitions occur). However, charged
current transitions via W±

µ do occur and for quarks, are not restricted by generation

(i.e. u, c, t ↔ d, s, b transitions are allowed). Lepton flavor changes are restricted
to generation due to massless neutrinos. Finally, the SM does not allow for direct
lepton-quark transitions.

The Ga
µ term in Equation (1.8) only acts on colored fermions, i.e. quarks. The

coupling strength g3 = gS is universal for all colored quarks. Analogous to the
fine structure constant α in electromagnetic theory is the strong coupling constant
αS = g2

S/4π in QCD. Here again, no flavor changes occur.

1.4 Gauge Field Self Interactions

To complete the lagrangian for massless fermions and gauge bosons and their inter-
actions, we must introduce the kinetic term for gauge bosons,

LGK = −1

4
BµνBµν − 1

4
W i

µνW iµν − 1

4
Ga

µνGaµν , (1.10)

where
Bµν = ∂µBν − ∂νBµ, (1.11)

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ǫ

ijkW j
µW

k
ν , (1.12)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gSf

abcGb
µG

c
ν . (1.13)

The Lie group structure constants ǫijk and fabc are defined through the following
anti-commutation relations,

[
τ i

2
,
τ j

2

]
= i ǫijk

τk

2
, i, j, k = 1, 2, 3 (1.14)
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and

[
λa

2
,
λb

2

]
= i fabc

λc

2
, a, b, c = 1, 2, . . . , 8 (1.15)

for SU(2) and SU(3), respectively.

We note that the pure Yang-Mills terms, −1
4
W i

µνW iµν and −1
4
Ga

µνGaµν contain

factors that are trilinear and quadrilinear in W i
µ and Ga

µ. These Yang-Mills terms
expand out partially as

· · · − g2 ǫ
ijk (∂µW

i
ν)W

jµW kν − g2
2

4
ǫijk ǫilm W j

µW
k
νW

lµWmν (1.16)

and

· · · − gS f
abc (∂µG

a
ν)G

bµGcν − g2
S

4
fabc fadeGb

µG
c
νG

dµGeν (1.17)

respectively, and correspond to self-couplings of non-abelian gauge fields. This is
fundamentally different than in the abelian case where, in QED, photons do not
directly couple with photons. It also accounts for the short distance interaction of
the strong force, despite the fact that the gluon is massless. As can be seen in
Chapter 2, the triple gluon interaction contributes to tt̄ production via gg → tt̄ at
hadron colliders.

1.5 The Higgs Mechanism

The goal of the Higgs mechanism is to introduce mass to the particles in the SM in a
gauge invariant way. We begin by defining a complex doublet scalar field Φ composed
of four real scalar fields H, φ0, φ1 and φ2 where

Φ =
1√
2

(
v +H + iφ0

iφ1 − φ2

)
=




v+H+iφ0

√
2

iφ−


. (1.18)

The quantum numbers of the Higgs field are as shown in Table 1.4.

The fields φ0 and φ± = (φ1 ∓ iφ2)/
√

2 are the unphysical would-be Goldstone
bosons associated with spontaneous symmetry breaking. They give rise to the masses
of the gauge bosons W± and Z0. One physical field thus remains, which is the Higgs
field H . The constant v ≃ 246 GeV is the scale characterizing the symmetry breaking
scale and is called the vacuum expectation value of Φ, where

〈Φ〉0 ≡ 〈0|Φ|0〉 =
( v√

2
0

)
. (1.19)
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Table 1.4: Quantum numbers of the Higgs doublet

Q T 3
W Y C

v+H+iφ0

√
2

0 1/2 -1 0

iφ− -1 -1/2 -1 0

The lagrangian for the Higgs sector is

LΦ = (DµΦ)†(DµΦ) − λ

2
(Φ†Φ)2 − µ2(Φ†Φ), (1.20)

with

DµΦ =

[
∂µ − ig1

Y

2
Bµ − ig2

τ j

2
W j

µ

]
Φ (1.21)

as in Equation (1.8) without the gluon interaction.

If µ < 0 and λ > 0 then the minimum of the potential energy occurs at

v =

√
−2µ

λ
. (1.22)

The Goldstone bosons φ± and φ0 are “eaten” by the vector bosons W± and Z0,
respectively, where

MW =
1

2
g2v and MZ =

MW

cos θW
. (1.23)

Therefore, W± and Z0 have three polarization states; two transverse and one longi-
tudinal. The massless photon and gluon have only the two transverse polarization
states. The Higgs mass is given by

mH = v
√
λ. (1.24)

To introduce fermion mass in a gauge invariant way one introduces the Higgs
mechanism through Yukawa coupling interactions. For the first generation

LY ukawa =

√
2mu

v
(ūL d̄L) ΦuR +

√
2md

v
(ūL d̄L) (−iτ2Φ∗) dR

+

√
2me

v
(ν̄L ēL) (−iτ2Φ∗) eR + hermitian conjugate (1.25)
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where mu, md and me are up quark, down quark and electron masses, respectively
(neutrinos are massless) and

− iτ2Φ
∗ =

(
0 −1
1 0

)
Φ∗ =




iφ+

v+H+iφ0

√
2


 . (1.26)

As mentioned in Section 1.3, neutral currents coupled to γ, Z0 and G do not
change flavor, although G changes color, but charged currents coupled to W± do
change flavor. For leptons, the flavor change does not exceed generational bounds,
due to the massless neutrino. However, there is a chance that an up quark, for
instance, can change to a down quark, a strange quark or even a bottom quark.
This is called quark mixing, which is due to the weak eigenstates (indicated by the
subscript “Weak”) of quarks being different than the mass eigenstates (indicated by
the subscript “Mass”).

By convention, the three charge 2/3 quarks u, c and t are unmixed:



u
c
t




Weak

=



u
c
t




Mass

. (1.27)

All the mixing is therefore expressed in terms of a (3×3) unitary matrix V operating
on the charge (-1/3) quarks d, s and b:



d
s
b




Weak

≡



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






d
s
b




Mass

≈




1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1






d
s
b




Mass

. (1.28)

The matrix V is known as the Cabibbo–Kobayashi–Maskawa matrix (CKM), which
consists of three mixing angles and one phase. The second parameterization is due
to Wolfenstein [7], where λ ≃ 0.22, A ≃ 1, η ≃ 0.5 and −0.4 ≤ ρ ≤ 0.2. CP
violation, which is the violation of combined charge conjugation C and the parity
transformation P , is characterized by the CP violating phase in ρ− iη.

1.6 Review

In this introduction to the SM, we have outlined how the SM is constructed based
on gauge invariance and the Higgs mechanism. Although the SM has been successful
in describing experimental data, there are 18 independent parameters which must be
determined experimentally. These parameters are:
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• nine fermion masses: me, mµ, mτ , mu, md, mc, ms, mt, mb (neutrinos are mass-
less),

• four CKM parameters: λ,A, η, ρ,

• four electroweak parameters: e, θW ,MW , mH ,

• the strong coupling constant: αS.



Chapter 2

Introduction to the Top Quark

If the SU(2) structure of the Standard Model (SM) holds, the top quark (t) has to
exist as the weak isospin partner of the bottom quark (b) [8]. If the coupling of
t-t-Z is as predicted in the SM, then from LEP and SLAC experiments the mass
of the top quark (mt) has to be larger than half of the Z-boson mass (∼ 45GeV)
independent of how the top quark decays. If the coupling of t-b-W is as predicted in
the SM, then from the measurement of the total width of the W–boson, by measuring
the ratio of the event rates of p̄p → W (→ ℓν) to p̄p → Z(→ ℓ+ℓ−) 1, the mass of
the top quark (mt) has to be larger than 62 GeV independent of how the top quark
decays [9]. From examining the radiative corrections to low energy observables, such
as the ρ parameter2 which is proportional to m2

t at the one loop level [10], mt has
to be less than about 200GeV. Based upon analysis of a broad range of Electroweak
data, the mass of the SM top quark is expected to be in the vicinity of 150 to 200 GeV
[11, 12, 13, 14]. Independently, from the direct search at the Tevatron, the top quark
has been discovered and found to have mass of mt = 176 ± 8 (stat.) ± 10(sys.) GeV

from CDF data [15], and mt = 199+29
−21 (stat.) ± 22(sys.) GeV from DØ data [16].

For a heavy top quark, mt is of the order of the electroweak symmetry breaking

scale v = (
√

2GF )
−1/2

= 246GeV. In fact, recall the Yukawa coupling interaction,
this time for third generation quarks,

LY ukawa =

√
2mt

v
(t̄L b̄L) Φ tR +

√
2mb

v
(t̄L b̄L) (−iτ2Φ∗) bR. (2.1)

We see that

√
2mt

v
∼ 1, (2.2)

1A proton is denoted by p and an anti-proton by p̄
2 ρ =

M2

W

M2

Z
cos2θW

, where MW (or MZ) is the mass of W± (or Z) boson. θW is the weak mixing

angle. ρ has been measured to the accuracy of about 0.1%.

10
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Figure 2.1: Diagrams contributing to the QCD production of qq̄, gg → tt̄

for mt = 175 GeV. Because the generation of fermion mass can be closely related
to the electroweak symmetry breaking [17, 18], effects from new physics should be
more apparent in the top quark sector than any other light sector of the electroweak
theory. Thus, the top quark system may be used to probe the symmetry breaking
sector. A few examples were discussed in Ref. [19] to illustrate that different models of
electroweak symmetry breaking mechanism will induce different interactions among
the top quark and the W– and Z–bosons. Therefore, hopefully through studying the
top quark system one may eventually learn about the symmetry breaking sector of
the electroweak theory.

The most important consequence of a heavy top quark is that to a good approxi-
mation it decays as a free quark because its lifetime is short and it does not have time
to bind with light quarks before it decays [20]. Furthermore, because the heavy top
quark has the weak two-body decay t → bW+, it will analyze its own polarization.
Thus we can use the polarization properties of the top quark as additional observables
to test the SM and to probe new physics. In the SM, the heavy top quark produced
from the usual QCD process, at the Born level, is unpolarized. However, top quarks
will have longitudinal polarization if weak effects are present in their production [21].
For instance, the top quark produced from the W–gluon fusion process is left-hand
polarized. With a large number of top quark events, it will be possible to test the
polarization effects of top quarks.

How to detect a SM top quark pair produced via the QCD processes qq̄, gg → tt̄,
as shown in Figure 2.1, has been extensively studied in the literature [22]. In this
paper we will concentrate on how to detect and study the top quark produced from
the single-top quark processes q′g(W+g) → qtb̄, q′b → qt, gb → W−t, and q′q̄ →
W ∗ → tb̄. For the single-top production we will only consider the decay mode of
t → bW+ → bℓ+ν, with ℓ+ = e+ or ν+. (The branching ratio for this decay mode is
Br = 2

9
.)

The rest of this paper is organized as follows. In Chapter 3 we discuss the pro-
duction rates of top quarks at hadron colliders. Following that, we will discuss in
Chapters 4 and 5, respectively, how to measure the mass and the width of the top
quark. In Chapter 6 we discuss what we have learned about the couplings of the top
quark to the weak gauge bosons and show what can be improved from measuring
the production rate of single-top quark events. We will also discuss in Chapter 7 the
potential of the Tevatron as a p̄p collider to probe CP properties of the top quark
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by simply measuring the single-top quark production rate. Finally, in Chapter 8 we
present a Monte Carlo study on the detection of a single-top quark event in hadron
collisions. Various unique features of the kinematics of the single-top quark signal
will be discussed. Chapter 9 contains our conclusions. Based upon the results of the
FNAL CDF and DØ , the mass of the SM top quark mt is not likely to be lighter
than, say, 140GeV. Throughout this paper we will use mt = 180GeV (or 140GeV)
as an example of a heavy (or a light) top quark for our studies.



Chapter 3

The Single-Top Production
Mechanism

In this chapter we consider the production rate of a single-top quark at the Tevatron,
the Di-TeV (the upgraded Tevatron) and the LHC (Large Hadron Collider) colliders.
In referring to single-top production, unless stated otherwise, we will concentrate
only on the positive charge mode (i.e., only including single-t, but not single-t̄).
The colliders we consider are the Tevatron (a p̄p collider) with the Main Injector at
√
S = 2 TeV, the Di-TeV (a p̄p collider) at 4 TeV and the LHC (a pp collider) at

√
S =

14 TeV with an integrated luminosity of 1 fb−1, 10 fb−1, and 100 fb−1, respectively.1

A single-top quark signal can be produced from either the W–gluon fusion process
q′g(W+g) → qtb̄ (or q′b → qt) [23, 24], the Drell-Yan type process q′q̄ → W ∗ → tb̄
(also known as “W ∗” production) [25], or Wt production via gb → W−t [26]. The
corresponding Feynman diagrams for these processes are shown in Figure 3.1.

In Figures 3.2 and 3.3 we show the total cross sections of these processes for
the Tevatron, the Di-TeV and the LHC energies referred to above. For reference
we include plots of the cross sections of top quarks as a function of mt in both
the p̄p collisions, shown in Figure 3.2, and pp collisions, shown in Figure 3.3. The
parton distribution function (PDF) used in our calculation is the leading order set
CTEQ2L [27]. We note that taking the ΛQCD value given in CTEQ2L PDF we obtain
αs(MZ) = 0.127 which is about 15% larger than the value of 0.110 in CTEQ2M PDF
[27]. We found that if we rescale the tt̄ production rates obtained from CTEQ2L
PDF with born level amplitudes by the ratio of α2

s(Q,ΛQCD) from CTEQ2M and
that from CTEQ2L, which yields 0.7 for Q = MZ , then our total rates are in good
agreement with those obtained using NLO PDF and NLO amplitudes [28], see, for
example, Reference [29]. Hereafter we shall use the scaled results for our rates. The
constituent cross sections are all calculated at tree level for simplicity to study the
kinematics of the top quark and its decay products.

To include the production rates for both single-t and single-t̄ events at p̄p colliders,

1 In reality, the integrated luminosity can be higher than the ones used here. For instance, with
a couple of years of running a 2 TeV Tevatron can accumulate, say, 10 fb−1 luminosity. Similarly, it
is not out of question to have a 4 TeV Di-TeV to deliver an integrated luminosity of about 100 fb−1.

13
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Figure 3.1: Diagrams for various single-top quark processes.
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Table 3.1: Rates of the above processes for mt = 180(140)GeV. (Branching ratios
are not included here.) For

√
S = 2 TeV and 4 TeV we include rates for a p̄p machine.

At
√
S = 14 TeV the rates are for a pp machine. For the single-top rates we only

include single-t production.

Cross Section (pb)√
S(TeV) qq̄, gg → tt̄ q′g → qtb̄ (or q′b→ qt) q′q̄ →W ∗ → tb̄ gb→ W−t

2 4.5(16) 1(2) 0.3(0.8) 0.1(0.3)
4 26(88) 7(11) 0.8(2.1) 1.3(2.9)
14 430(1300) 100(140) 4.6(11) 3.6(8.8)

a factor of 2 should be multiplied to the single-t rates shown in Figures 3.2 and 3.3
because the parton luminosity for single-t̄ production is the same as that for single-t.
Similarly, at pp colliders the rates should be multiplied by about 1.5 for the center-

of-mass energy (
√
S) of the collider up to approximately 4 TeV, but almost a factor

of two at higher energies (say,
√
S ≥ 8 TeV up to about 14 TeV) because the relevant

parton luminosities for producing a single-t and a single-t̄ event in pp collisions are
different. As shown in Figures 3.2 and 3.3 the total rate for single-top production is

about the same at p̄p and pp colliders for
√
S ≥ 8TeV because the relevant valence

and sea quark parton distributions are about equal for 100 GeV < mt < 300GeV.

For smaller
√
S, up to about 4 TeV, a p̄p collider is preferred over a pp collider for

heavy top quark production because of its larger parton luminosities. Similarly, for tt̄

pair productions at small
√
S, the quark initiated process qq̄ → tt̄ is more important

than the gluon fusion process gg → tt̄. At
√
S from 8 to 14 TeV the tt̄ rate is about

the same in p̄p and pp collisions because the gg → tt̄ subprocess becomes dominant.

For later reference in this paper, we show the rates of the above processes in
Table 3.1 for mt = 180(140)GeV. (Branching ratios are not included here.) For
√
S = 2 and 4 TeV we include only the rates for a p̄p machine, whereas at

√
S = 14

TeV the rates are for a pp machine. Again, for the single-top rates we only include t
production.

Both in Figures 3.2 and 3.3 and Table 3.1, we have given the cross section of
single-top quarks produced from either the q′g(W+g) → qtb̄ or q′b → qt processes.
From now on, we will refer to this production rate as the rate of the W–gluon fusion
process. The single-top quark produced from the W–gluon fusion process involves a
very important and not yet well-developed technique of handling the kinematics of
a heavy b parton inside a hadron. Thus the kinematics of the top quark produced
from this process can not be accurately calculated yet. However, the total event rate
for single-top quark production via this process can be estimated using the method
proposed in Reference [30]. The total rate for the W–gluon fusion process involves the
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Figure 3.4: Feynman diagrams illustrating the subtraction procedure for calculating
the total rate for W–gluon fusion: q′b→ qt⊕ q′g(W+g) → qtb̄⊖ (g → bb̄ ⊗ q′b → qt).

O(α2) (2 → 2) process q′b → qt plus the O(α2αs) (2 → 3) process q′g(W+g) → qtb̄
(where the gluon splits to bb̄) minus the splitting piece g → bb̄ ⊗ q′b→ qt in which bb̄
are nearly collinear. These processes are shown diagrammatically in Figure 3.4. The
helicity amplitudes and the cross sections for these processes are given in Appendices
A and B respectively.

The splitting piece is subtracted to avoid double counting the regime in which
the b propagator in the (2 → 3) process is close to on-shell.2 The procedure is to
resum the large logarithm αs ln(m2

t/m
2
b) in the W–gluon fusion process to all orders

in αs and include part of the higher order O(α2αs) corrections to its production rate.
(mb is the mass of the bottom quark.) We note that to obtain the complete O(α2αs)
corrections beyond just the leading log contributions one should also include virtual
corrections to the (2 → 2) process, but we shall ignore these non-leading contributions
in this work. Using the prescription described as above we found that the total rate
of the W–gluon fusion process is about 25% less as compared to the (2 → 2) event
rate for mt = 180 (140) GeV regardless of the energy or the type (i.e., pp or p̄p) of
the machine. In Figures 3.5 and 3.6 we show the total rate of W–gluon fusion versus
mt with scale Q = mt as well as a breakdown of the contributing processes at the
Tevatron, the Di-TeV and the LHC.

To estimate the uncertainty in the production rate due to the choice of the scale
Q in evaluating the strong coupling constant αs and the parton distributions, we
show in Figure 3.7 the scale dependence of the W–gluon fusion rate. As shown in
the figure, although the individual rate from either (2 → 2), (2 → 3) or the splitting
piece is relatively sensitive to the choice of the scale, the total rate as defined by
(2 → 2) + (2 → 3) − (splitting piece) only varies by about 30% for MW/2 < Q < 2mt

at the Tevatron. At the Di-TeV and the LHC, it varies by about 30% and 10%,
respectively. Based upon the results shown in Figure 3.7, we argue that Q < MW/2
probably is not a good choice as the relevant scale for the production of the top
quark from the W–gluon fusion process because the total rate rapidly increases by
about a factor of 2 in the low Q regime. In view of the prescription adopted in

2 The total rate of the (2 → 3) process is extensively discussed in the Appendix C.
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calculating the total rate, the only relevant scales are the top quark mass mt and
the virtuality of the W -line in the scattering amplitudes. Since the typical transverse
momentum of the quark (q), which comes from the initial quark (q′) after emitting
the W -line, is about half of the W–boson mass, the typical virtuality of the W -
line is about MW/2 ≃ 40GeV. mb ≃ 5GeV is thus not an appropriate scale to be
used in calculating the W–gluon fusion rate using our prescription. We note that
in the (2 → 2) process the b quark distribution effectively contains sums to order
[αs ln(Q/mb)]

n from n-fold collinear gluon emission, whereas the subtraction term
(namely, the splitting piece) contains only first order in αs ln(Q/mb). Therefore, as
Q → mb the (2 → 2) process picks up only the leading order in αs ln(Q/mb) and
so gets largely cancelled in calculating the total rate. Consequently, as shown in
Figure 3.7, the total rate is about the same as the (2 → 3) rate for Q → mb. We
also note that at Q ≃ MW/2, the (2 → 2) and (2 → 3) processes have about the
same rate. As Q increases the (2 → 2) rate gradually increases while the (2 → 3)
rate decreases such that the total rate is not sensitive to the scale Q. It is easy to see
also that the total rates calculated via this prescription will not be sensitive to the
choice of PDF although each individual piece can have different results from different
PDF’s, based upon the factorization of the QCD theory [30].

Another single-top quark production mechanism is the Drell-Yan type process
q′q̄ → W ∗ → tb̄. As shown in Figures 3.2 and 3.3, for top quarks with mass on the
order of 180GeV the rate for W ∗ production is about one fifth that of W–gluon fusion

at
√
S = 2TeV. The W ∗ process becomes much less important for a heavier top quark.

This is because at higher invariant masses ŝ (for producing a heavier top quark) of
the tb̄ system, W ∗ production suffers the usual 1/ŝ suppression in the constituent
cross section. However, in the W–gluon fusion process the constituent cross section
does not fall off as 1/ŝ but flattens out asymptotically to 1/M2

W . (The analytical
results of these amplitudes are given in Appendix A for reference.) For colliders
with higher energies, therefore with large range of ŝ, the W ∗ production mechanism
for heavy top quarks becomes much less important. However, the kinematics of
the top quarks produced from this process are different from those in the W–gluon
fusion events. Moreover, possible new physics may introduce a high mass state (say,
particle V ) to couple strongly with the tb̄ system such that the production rate from
q′q̄ → W ∗ → V → tb̄ can largely deviate from the SM W ∗ rate.3 We will however
not discuss it in detail here because its rate is highly model dependent.

The W–gluon fusion process becomes more important for a heavier top quark.
Why? Effectively, the W–gluon fusion process can be viewed as the scattering of a
longitudinal W–boson (WL) with gluon to produce a top quark and a bottom anti-
quark (W+

L g → tb̄) after applying the effective-W approximation [32]. For large ŝ
this scattering process is equivalent to (φ+g → tb̄) where φ+ is the corresponding
Goldstone boson of the gauge boson W+ due to the Goldstone Equivalence Theorem
[33, 34]. Since the coupling of t-b-φ is proportional to the mass of the top quark,
the constituent cross section of the W–gluon fusion process grows like m2

t/M
2
W when

mt increases. This explains why the W–gluon fusion rate only decreases slightly as
the mass of the top quark increases even though both the parton luminosity and the
available phase space decrease for a heavier top quark. In contrast, the tt̄ pair produc-
tion rate from the QCD processes decreases more rapidly as mt increases because the

3 This is similar to the speculations made in Reference [31] for having some high mass resonance
in tt̄ production.
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constituent cross section of qq̄, gg → tt̄ goes as 1/ŝ and the phase space for producing
a tt̄ pair is smaller than that for producing a single-t. Therefore, the W–gluon fusion
process becomes more important for the production of a heavy top quark.

Before closing this chapter, we note that the Effective-W approximation has been
the essential tool used in studying the strongly interacting longitudinal W system
to probe the symmetry breaking sector at the supercolliders such as the LHC [35].
By studying single-top production from the W–gluon fusion process at the Teva-
tron, one can learn about the validity of the Effective-W approximation prior to the
supercolliders.



Chapter 4

Measuring the Top Quark Mass

By the year 2000, we expect results from the Tevatron (with 1 fb−1) and results
from LEP-200, giving an error of about 50MeV on MW . Due to Veltman’s screening
theorem, the low energy data are not sensitive to the mass of the Higgs boson [36]. For
a heavy Higgs boson, the low energy data can at most depend on mH logarithmically
up to the one loop level. Therefore, within the SM one needs to also know the mass
of the top quark to within about 5GeV to start getting useful information on mH

with an uncertainty less than a few hundred GeV. This can be done by studying
radiative corrections to the low energy data which include LEP, SLC, and neutrino
experiments [11, 12, 13, 14]. (Of course, mH will be measured to better precision if
it is detected from direct production at colliders.)

How accurate can the mass of the top quark be measured at hadron colliders? At
hadron colliders, mt can be measured in the tt̄ events by several methods [22, 37].
The first method is to use the lepton+jet decay mode of the tt̄ pair, as shown in
Figure 4.1. This is done by reconstructing the invariant mass of the three jets in
the opposite hemisphere from the isolated lepton ℓ (= e orµ) in t → bW (→ ℓν),
and requiring that two of the three jets reconstruct to a W and the third be tagged
as a b-jet. The second method is to use the di-lepton decay mode of the tt̄ pair,
as shown in Figure 4.2. Here it is required that both W ’s decay leptonically. In
addition, one of the b’s must decay semileptonically to measure the mass distribution
of the non-isolated lepton ℓb (from b decay) and one of the two isolated leptons (ℓ1
and ℓ2 from W± decay) which is closer to ℓb. The third method is to measure the
cross section of the di-lepton decay mode of the tt̄ pair. At the LHC, there will be
about 108 tt̄ pairs produced in one year of running for mt < 200GeV. With such a
large number of events, the ATLAS and CMS collaborations concluded that mt can
be measured with a precision of ≤ 5GeV using the first method described above and
with about a factor of 2 improvement using the second method [38, 39]. A similar
conclusion was also drawn by the CDF and the DØ collaborations for the Tevatron
with Main Injector after the upgrade of their detectors [40]. This is remarkable given
that the tt̄ cross section at the Tevatron is smaller by about two orders of magnitude
as compared with that at the LHC, as shown in Figures 3.2 and 3.3.

Next, we would like to discuss how to measure the mass of the top quark in
the W–gluon fusion process. Since mt has been measured by the FNAL CDF and
DØ groups in the tt̄ events [15, 16], why do we care? To check whether it is a SM top
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Figure 4.1: The lepton+jet decay mode of tt̄ production.
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Figure 4.2: The di-lepton decay mode of tt̄ production.
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quark, we should verify its production rate predicted by the SM for other production
processes such as the single-top quark process.

Suppose the coupling of t-b-W is not of the SM nature, then we would find that
the single-top quark production rate of the W–gluon fusion process is different from
the SM prediction because its production rate is directly proportional to the square
of this coupling. (We will discuss more on this point in Chapter 6.) Hence, without
knowing the nature of the t-b-W interactions one can not use the production rates of
the single-top quark events to measure mt. Alternatively, we propose two methods to
measure mt in the single-top quark events. We will refer to them as the fourth and the
fifth method. The fourth method is a slight variation of the second method. Instead
of measuring the invariant mass of the leptons, we propose to directly measure the
invariant mass (mbℓ) of the ℓ and b in t → bW (→ ℓν). We expect that the efficiency
of b tagging using the displaced vertex is higher for detecting a heavier top quark,
and the b jet energy measurement is better for b having larger transverse momentum
from a heavy top quark decay. Thus mbℓ can be used to measure the mass of a
SM top quark. The details of our Monte Carlo study are given in Chapter 8 for a
single-top quark event. In the tt̄ event there are two b’s, therefore this method may
not work as well as in the single-top event which only contains one b. However it is
not entirely impossible to use this method because, as shown in Figure 4.3, the sum
of the invariant mass distributions of bℓ and b̄ℓ for a 180 GeV top quark still show
a bump near the region that the distribution of mbℓ peaks. (With a larger sample
of tt̄ events one might be able to afford using the electric charge of the soft-lepton
from b-decay to separate b from b̄ on an event-by-event basis at the cost of the small
branching ratio of b → µ + X, of about 10%.) We will explain in more detail how
to use fLong (the fraction of longitudinal W–bosons from top quark decay), derived
from the distribution of mbℓ, to measure mt in Chapter 6.

The fifth method is to reconstruct the invariant mass of the top quark in the
t → bW (→ ℓν) decay mode by measuring the missing transverse momentum and
choosing a two-fold solution of the longitudinal momentum of the neutrino from the
mass constraint of the W boson. In Chapter 8 we conclude that it is possible to
measure mt using either of these last two methods to a precision of 5GeV at the

Tevatron (
√
S = 2 TeV) with 1 fb−1 integrated luminosity. We also find that after

applying all the kinematical cuts to suppress the dominant background W + bb̄, at
most 10% of W ∗ events contribute to single-top production for a 180 (140)GeV top
quark. The SM W ∗ production rate is already much smaller than the W–gluon fusion
rate for a heavier top quark, therefore the contribution from the W ∗ is not important
in our study although we do include its small effects in our analysis as described in
Chapter 8.
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Figure 4.3: Distributions of mbℓ (solid) and mb̄ℓ (dash) in tt̄ events for a 180 GeV
top quark.



Chapter 5

Measuring the Top Quark Width

As shown in Reference [41] the intrinsic width of the top quark can not be measured
at a high energy hadron collider such as the LHC through the usual QCD processes.1

For instance, the intrinsic width of a 150 GeV Standard Model top quark is about 1
GeV, and the full width at half maximum of the reconstructed top quark invariant
mass (from t → bW (→ jets) decay mode) is about 10 GeV after including the
detector resolution effects by smearing the final state parton momenta. Here, the
ratio of the measured width and the intrinsic width for a 150 GeV top quark is about
a factor of 10. For a heavier top quark, this ratio may be slightly improved because
the jet energy can be better measured. (The detector resolution ∆E/E for a QCD jet

with energy E is proportional to 1/
√
E.) A similar conclusion was also given from a

hadron level analysis presented in the SDC Technical Design Report which concluded
that reconstructing the top quark invariant mass gave a width of 9 GeV for a 150
GeV top quark [42]. Is there a way to measure the top quark width Γ(t → bW+),
say, within a factor of 2 or better, at hadron colliders? Yes, it can in principle be
measured in single-top events.

The width Γ(t → bW+) can be measured by counting the production rate of top
quarks from the W–b fusion process which is equivalent to the W–gluon fusion process
by a proper treatment of the bottom quark and the W boson as partons inside the
hadron. The W–boson which interacts with the b-quark to produce the top quark can
be treated as an on-shell boson in the leading log approximation [32, 43]. The result
is that even under the approximations considered, a factor of 2 uncertainty in the
production rate for this process gives a factor of 2 uncertainty in the measurement
of Γ(t → bW+). This is already much better than what can be measured from the
invariant mass distribution of the jets from the decay of top quarks in the tt̄ events
produced via the usual QCD processes. More precisely, as argued in Chapter 3, the
production rate of single-top events at the Tevatron can probably be known within
about 30%, thus it implies Γ(t→ bW+) can be measured to about the same accuracy.2

1 In Reference [41], the effects of QCD radiation in top quark decay (at one loop level) to the
measurement of mt in tt̄ events produced in hadron collisions was studied. It was concluded that
the peak position of the mt distribution remains about the same as the tree level result, but the
shape is different. It was also found that the mbℓ distribution is not sensitive to QCD radiation in
top decay.

2 Strictly speaking, from the production rate of single-top events, one measures the sum of all the
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Therefore, this is an extremely important measurement because it directly tests the
couplings of t-b-W .

W–gluon fusion can also tell us about the CKM matrix element |Vtb|. Assuming
only three generations of quarks, the constraints from low energy data together with
unitarity of the CKM matrix require |Vtb| to be in 0.9988 to 0.9995 at the 90%
confidence level [5]. As noted in Reference [5] the low energy data do not preclude
there being more than three generations of quarks (assuming the same interactions
as described by the SM). Moreover, the entries deduced from unitarity might be
altered when the CKM matrix is expanded to accommodate more generations. When
there are more than three generations the allowed ranges (at 90% CL) of the matrix
element |Vtb| can be anywhere between 0 and 0.9995 [5]. Since |Vtb| is directly involved
in single-top production via W–gluon fusion, any deviation from SM value in |Vtb| will
either enhance or suppress the production rate of single-top events. It can therefore be
measured by simply counting the single-top event rates. For instance, if the single-top
production rate is measured to within 30%, then |Vtb| is determined to within 15%.

In conclusion, after the top quark is found, the branching ratio of t → bW+(→
ℓ+ν) can be measured from the ratio of (2ℓ+ jets) and (1ℓ+ jets) rates in tt̄ events.
The measured single-top quark event rate is equal to the single-top production rate
multiplied by the branching ratio of t → bW+(→ ℓ+ν) for the (1ℓ + jets) mode
and the same t-b-W couplings appearing in the decay of t in this process appear
also in the production of t. Thus, a model independent measurement of the decay
width Γ(t → bW+) can be made by simply counting the production rate of t in the
W–gluon fusion process. Should the top quark width be found to be different from
the SM expectations, we would then have to look for non-standard decay modes of
the top quark. We note that it is important to measure at least one partial width
(say, Γ(t→ bW+)) precisely in order to discriminate between different models of new
physics, if any. In the SM, the partial width Γ(t → bW+) is about the same as the
total width of the top quark at the tree level because of the small CKM matrix element
|Vts|, thus measuring the single-top quark production rate measures the lifetime of
the top quark.

possible partial decay widths, such as Γ(t → bW+) + Γ(t → sW+) + Γ(t → dW+) + · · ·, therefore,
this measurement is really measuring the width of Γ(t → XW+) where X can be more than one
particle state as long as it originates from the partons inside the proton (or anti-proton). In the SM,
Γ(t → bW+) is about equal to the total width of the top quark.



Chapter 6

Top Quark Couplings to the W
Gauge Boson

It is equally important to ask what kind of interactions the t-b-W vertex might involve
[44]. For instance, one should examine the form factors of t-b-W which result from
higher order corrections due to SM strong and/or electroweak interactions. It is
even more interesting to examine these form factors to test the plausibility of having
nonuniversal gauge couplings of t-b-W due to some dynamical symmetry breaking
scenario [45, 19].

The QCD [46] and the electroweak [47] corrections to the decay process t→ bW+

in the SM have been done in the literature. The most general operators for this
coupling are described by the interaction lagrangian

L =
g√
2

[
W−

µ b̄γ
µ(fL

1 P− + fR
1 P+)t− 1

MW
∂νW

−
µ b̄σ

µν(fL
2 P− + fR

2 P+)t
]

+
g√
2

[
W+

µ t̄γ
µ(fL

1

∗
P− + fR

1

∗
P+)b− 1

MW
∂νW

+
µ t̄σ

µν(fR
2

∗
P− + fL

2

∗
P+)b

]
,

(6.1)

where P± = 1
2
(1 ± γ5), iσ

µν = −1
2
[γµ, γν ] and the superscript ∗ denotes the complex

conjugate. In general, the form factors fL,R
1 and fL,R

2 can be complex. Note that in
Equation (6.1), if there is a relative phase between fL

1 and fR
2 or between fR

1 and fL
2 ,

then CP is violated. For instance, in the limit of mb = 0 , a CP-violating observable
will have a coefficient proportional to Im(fL

1 f
R
2
∗
) for a left-handed bottom quark,

and Im(fR
1 f

L
2
∗
) for a right-handed bottom quark [44]. (We will discuss more on CP

violation in Chapter 7.) If the W–boson can be off–shell then there are additional
form factors such as

∂µW−
µ b̄(f

L
3 P− + fR

3 P+)t+ ∂µW+
µ t̄(f

R
3

∗
P− + fL

3

∗
P+)b , (6.2)

which vanish for an on–shell W–boson or when the off–shell W–boson couples to
massless on–shell fermions. Here, we only consider on–shell W–bosons for mt >

30



31

MW +mb. At tree level in the SM the form factors are fL
1 = 1 and fR

1 = fL
2 = fR

2 = 0.
These form factors will in general affect the experimental observables related to the
top quark, such as the fraction of longitudinal W ’s produced in top quark decays.

The fraction (fLong) of longitudinally polarized W–bosons, produced in the rest

frame of the decaying top quark, strongly depends on the form factors fL,R
1 and

fL,R
2 , as shown in Appendix C. Hence, fLong is a useful observable for measuring

these form factors. The definition of fLong is simply the ratio of the number of
longitudinally polarized W–bosons produced with respect to the total number of W–
bosons produced in top quark decays:

fLong =
Γ(λW = 0)

Γ(λW = 0) + Γ(λW = −) + Γ(λW = +)
. (6.3)

We use Γ(λW ) to refer to the decay rate for a top quark to decay into a W–boson with
polarization λW . (λW = −,+, 0 denotes a left-handed, right-handed, and longitudinal
W–boson.) Clearly, the polarization of the W–boson depends on the form factors f1

and f2.
1 Therefore, one can measure the polarization of the W–boson to measure

these form factors. As shown in Appendix C, the polarization of the W–boson can be
determined by the angular distribution of the lepton, say, e+ in the rest frame ofW+ in
the decay mode t→ bW+(→ e+ν). However, the reconstruction of the W–boson rest
frame (to measure its polarization) could be a non-trivial matter due to the missing
longitudinal momentum (PZ) (with a two-fold ambiguity) of the neutrino (ν) from W
decay. Fortunately, as shown in Equation (6.4), one can determine the polarization
of the W–boson without reconstructing its rest frame by using the Lorentz-invariant
observable mbe, the invariant mass of b and e from t decay.

The polar angle θ∗e+ distribution of the e+ in the rest frame of the W+ boson,
whose z-axis is defined to be the moving direction of the W+ boson in the rest frame
of the top quark, can be written in terms of mbe through the following derivation:

cos θ∗e+ =
EeEb − pe · pb

|~pe||~pb|

≃ 1 − pe · pb

EeEb

= 1 − 2m2
be

m2
t −M2

W

. (6.4)

The energies Ee and Eb are evaluated in the rest frame of the W+ boson from the
top quark decay and are given by

Ee =
M2

W +m2
e −m2

ν

2MW
, |~pe| =

√
E2

e −m2
e,

Eb =
m2

t −M2
W −m2

b

2MW

, |~pb| =
√
E2

b −m2
b . (6.5)

1 The fraction of longitudinal W ’s in top quark decays contributed from the form factor fR
1 is

the same as that from fL
1 [44].
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me (mν) denotes the mass of e+ (νe) for the sake of bookkeeping. The first line
in Equation (6.4) is exact when using Equation (6.5), while the second line of Equa-
tion (6.4) holds in the limit ofmb = 0. It is now trivial to find fLong by first calculating
the cos θ∗e+ distribution then fitting it according to the decay amplitudes of the W–
boson from top quark decay, as given in the Appendix C. In what follows we will
show how to use the distribution of mbe to measure the mass of the top quark and its
couplings to the W–boson.

In Reference [19], we considered the effective couplings

W − tL − bL :
g

2
√

2

1 + κCC
L

2
γµ(1 − γ5) (6.6)

and

W − tR − bR :
g

2
√

2

κCC
R

2
γµ(1 + γ5) (6.7)

derived from an electroweak chiral lagrangian with the symmetry SU(2)L × U(1)Y

broken down to U(1)EM. (Here, κCC
L = fL

1 − 1, and κCC
R = fR

1 .) At the Tevatron
and the LHC, heavy top quarks are predominantly produced from the QCD process
gg, qq̄ → tt̄ and the W–gluon fusion process qg(Wg) → tb̄, t̄b. In the former process,
one can probe κL

CC and κR
CC from the decay of the top quark to a bottom quark and

a W–boson. In the latter process, these non-standard couplings can also be measured
by simply counting the production rates of signal events with a single t or t̄. Let us
discuss κL

CC and κR
CC in more detail as follows.

6.1 From the Decay of Top Quarks

To probe κL
CC and κR

CC from the decay of the top quark to a bottom quark and aW–
boson, one needs to measure the polarization of the W–boson, which can be measured
from the distribution of the invariant mass mbℓ. For a massless b, the W–boson from
top quark decay can only be either longitudinally or left-hand polarized for a left-
hand charged current (κR

CC = 0). For a right-hand charged current (κL
CC = −1)

the W–boson can only be either longitudinally or right-hand polarized. (Note that
the handedness of the W–boson is reversed for a massless b̄ from t̄ decays.) This
is a consequence of helicity conservation, as diagrammatically shown in Figures 6.1
and 6.2 for a polarized top quark. In these figures we show the preferred moving
direction of the lepton from a polarized W–boson in the rest frame of a polarized
top quark for either a left-handed or a right-handed t-b-W vertex. As indicated in
these figures, the invariant mass mbℓ depends on the polarization of the W–boson
from the decay of a polarized top quark. Also, mbℓ is preferentially larger for a
pure right-handed t-b-W vertex than a pure left-handed one. This is clearly shown
in Figure 6.3, in which the peak of the mbℓ distribution is shifted to the right and the
distribution falls off sharply at the upper mass limit for a pure right-handed t-b-W
vertex. In terms of cos θ∗ℓ , their difference is shown in Figure 6.4. However, in both
cases the fraction (fLong) of longitudinal W ’s from top quark decay is enhanced by



33

=) (=(==) (=(=t boost direction
ttW+Long

l+
bbl+ W+(left�hand)(a) left-handed top =) =)=) (=

t boost directiontt W+LongbbW+(left�hand)=)=)l+ l+=)(b) right-handed top=)
Figure 6.1: For a left-handed t-b-W vertex.
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Figure 6.2: For a right-handed t-b-W vertex.
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Figure 6.3: mbℓ distribution for SM top quark (solid) and for pure right-
handed t-b-W coupling of tbW (dash).
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Figure 6.4: cos θ∗ℓ distribution for SM top quark (solid) and for pure right-
hand t-b-W coupling of tbW (dash).
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mt
2/2MW

2 as compared to the fraction of transversely polarized W ’s [44], namely,

fLong =

m2
t

2M2
W

1 +
m2

t

2M2
W

. (6.8)

Therefore, for a heavier top quark, it is more difficult to untangle the κL
CC and κR

CC

contributions. On the other hand, because of the very same reason, the mass of a
heavy top quark can be accurately measured from fLong (discussed below) irrespective
of the nature of the t-b-W couplings (either left-handed or right-handed).

The QCD production rate of tt̄ is obviously independent of κL
CC and κR

CC . (Here
we assume the electroweak production rate of qq̄ → A,Z → tt̄ remains small as in
the SM.) Let us estimate how well the couplings κL

CC and κR
CC can be measured at

the Tevatron, the Di-TeV, and the LHC. First, we need to know the production rates
of the top quark pairs from the QCD processes. As shown in Table 3.1, the QCD
production rate of gg, qq̄ → tt̄ for a 180GeV top quark is about 4.5 pb, 26 pb and
430 pb at the Tevatron, the Di-TeV, and the LHC, respectively. For simplicity, let’s
consider the ℓ±+ ≥ 3 jet decay mode whose branching ratio is Br = 22

9
6
9

= 8
27

, where

the charged lepton ℓ± can be either e± or µ±. We assume the experimental detection
efficiency (ǫ), which includes both the kinematic acceptance and the efficiency of b-
tagging, to be 15% for the signal event [48]. Let’s further assume that there is no
ambiguity in picking up the right b (b̄) to combine with the charged lepton ℓ+ (ℓ−)

to reconstruct t (or t̄), then in total there are 4.5 pb × 103 pb−1 × 8
27

× 0.15 = 200

reconstructed tt̄ events to be used in measuring κL
CC and κR

CC at
√
S = 2TeV. The

same calculation at the Di-TeV and the LHC yields 1100 and 19000 reconstructed tt̄
events, respectively. Given the number of reconstructed top quark events, one can fit
the mbℓ distribution to measure κL

CC and κR
CC . For example we have done a study

for the Tevatron. Let us assume the effects of new physics only modify the SM results

(fL
1 = 1 and fR

1 = 0 at Born level) slightly and the form factors fL,R
2 are as small

as expected from the usual dimensional analysis [49, 50].2 We summarize our results

on the accuracy of measuring fL,R
1 for various luminosities in Table 6.1 [51]. (Only

statistical errors are included at the 95% confidence level.)

In the same table (i.e.,Table 6.1) we also show our estimate on how well the mass
of the top quark mt can be measured from fLong. By definition of fLong, for a SM top

quark (i.e., fL
1 = 1 and fR

1 = 0), the distribution of cos θ∗ℓ has the functional form

F (cos θ∗ℓ ) ∼ (1 − fLong)

(
1 − cos θ∗ℓ

2

)2

+ fLong

(
sin θ∗ℓ√

2

)2

. (6.9)

2 The coefficients of the form factors fL,R
2 , assumed to be induced through loop effects, will be

a factor of 1

16π2 smaller than that of the form factors fL,R
1 .
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Table 6.1: Results on the accuracy of measuring fL,R
1 for various luminosities. (Only

statistical errors are included at the 95% confidence level.)

Integrated Number of

Luminosity reconstructed
∆fL

1

fL
1

∆fR
1

∆mt

mt

fb−1 tt̄ events.
1 200 8% ±0.5 4%
3 600 4% ±0.3 2%
10 2000 2% ±0.2 1%

Therefore, fLong can be calculated by fitting with the distribution of cos θ∗ℓ , or equiv-

alently with the distribution of mbℓ. We prefer to measure κL
CC and κR

CC using the
distributions of mbℓ than of cos θ∗ℓ because the former can be directly calculated from
the measured momenta of b and ℓ. However, to convert from the distributions of mbℓ

to cos θ∗ℓ , as given in Equation (6.4), the effects from the width of the W–boson and
the top quark might slightly distort the distribution of cos θ∗ℓ . (Notice that in the
full calculation of the scattering amplitudes the widths of the W–boson and the top
quark have to be included in the Breit-Wigner form to generate a finite event rate.)

However, in reality, the momenta of the bottom quark and the charged lepton will
be smeared by detector effects and another problem in this analysis is the identifica-
tion of the right b to reconstruct t. There are three possible strategies to improve the
efficiency of identifying the right b. One is to demand a large invariant mass of the tt̄
system so that t is boosted and its decay products are collimated. Namely, the right
b will be moving closer to the lepton from t decay. This can be easily enforced by
demanding leptons with a larger transverse momentum. Another is to identify the
soft (non-isolated) lepton from b̄ decay (with a branching ratio Br(b̄ → µ+X) ∼ 10%).
The other is to statistically determine the electric charge of the b-jet (or b̄-jet) to be
1/3 (or −1/3) [52]. All of these methods may further reduce the reconstructed signal
rate by an order of magnitude. How will these affect our conclusion on the determi-
nation of the non-universal couplings κL

CC and κR
CC? It can only be answered by

detailed Monte Carlo studies which are yet to be done.

6.2 From the Production of Top Quarks

Here we propose another method to measure the couplings κL
CC and κR

CC from the
production rate of the single-top quark process.

For mt = 180 GeV, the sum of the production rates of single-t and single-t̄ events

is about 2 pb and 14 pb for
√
S = 2TeV and

√
S = 4TeV respectively. The branching

ratio of interest is Br = 2
9
. The kinematic acceptance of this event at

√
S = 2TeV

is about 0.55, as shown in Chapter 8. Assuming the efficiency of b-tagging is about
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30%, then there will be 2 pb × 103 pb−1 × 2
9
× 0.55 × 0.3 = 75 events reconstructed

for a 1 fb−1 integrated luminosity. At
√
S = 4TeV, as shown in Chapter 8, the

kinematic acceptance of this event is about 0.40 which, from the above calculation,
yields about 3700 reconstructed events for 10 fb−1 integrated luminosity. Based on
statistical error alone, this corresponds to a 12% and 2% measurement on the single-
top cross section. A factor of 10 increase in the luminosity of the collider can improve
the measurement by a factor of 3 statistically. Taking into account the theoretical
uncertainties, as discussed in Chapter 3, we examine two scenarios: 20% and 50%
error on the measurement of the cross section for single-top production. The results,
which are not sensitive to the energies of the colliders considered here (either 2TeV
or 4TeV), are shown in Figure 6.5 for a 180 GeV top quark at the Tevatron. We
found that κL

CC and κR
CC are well constrained inside the region bounded by two

(approximate) ellipses (cf. Appendix A). To further determine the sizes of κL
CC and

κR
CC one needs to study the kinematics of the decay products, such as the charged

lepton ℓ, of the top quark. Since the top quark produced from the W–gluon fusion
process is almost one hundred percent left-hand (right-hand) polarized for a left-
hand (right-hand) t-b-W vertex, the charged lepton ℓ+ from t decay has a harder
momentum for a right-handed t-b-W coupling than for a left-handed coupling. (Note
that the couplings of light-fermions to W–boson have been well tested from the low
energy data to be left-handed as described in the SM.) As shown in Figures 6.1
and 6.2, this difference becomes smaller when the top quark is much heavier because
the W–boson from the top quark decay tends to be more longitudinally polarized.

A right-hand charged current is absent in a linearly SU(2)L invariant gauge theory

with massless bottom quark. In this case, κR
CC = 0, then κL

CC can be constrained
to within about −0.08 < κL

CC < 0.03 (−0.20 < κL
CC < 0.08) with a 20% (50%)

measurement on the production rate of single-top quark at the Tevatron [19]. (Here
we assume the experimental data agrees with the SM prediction within 20% (50%).)
This means that if we interpret (1 + κL

CC) as the CKM matrix element |Vtb|, then
|Vtb| can be bounded as |Vtb| > 0.9 (or 0.75) for a 20% (or 50%) measurement on the
single-top production rate.

Before closing this chapter, we remark that in the Refs. [19] and [53] some bounds
on the couplings of κL

CC and κR
CC were obtained by studying the low energy data

with the assumption that the effects of new physics at low energy can only modify
the couplings of κL

CC and κR
CC but not introduce any other light fields in the ef-

fective theory. However, nature might not behave exactly in this way. It is possible
that some light fields may exist just below the TeV scale, then the bounds obtained
from Refs. [19] and [53] may no longer hold. Thus, it is important to have direct
measurements on all the form factors listed in Equation (6.1) from the production of
top quarks, in spite of the present bounds on κ’s derived from radiative corrections
to low energy data.
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Figure 6.5: Constraint on |κL
CC | and κR

CC given 20% and 50% error in measurement
of Standard Model rate for W–gluon fusion. Curves are identical for mt = 140 GeV
and mt = 180 GeV.



Chapter 7

Probing CP Properties in Top
Quarks

It is known that explicit CP violation requires the presence of both the CP non-
conserving vertex and the complex structure of the physical amplitude. Due to the
origin of this complex structure, the possible CP-violating observables can be sepa-
rated into two categories. In the first category, this complex structure comes from
the absorptive part of the amplitude due to the final state interactions. In the sec-
ond category, this complex structure does not arise from the absorptive phase but
from the correlations in the kinematics of the initial and final state particles involved
in the physical process. Hence, it must involve a triple product correlation (i.e., a
Levi-Civita tensor).

To distinguish the symmetry properties between these two cases, we introduce

the transformation T̂, as defined in Reference [54], which is simply the application of
time reversal to all momenta and spins without interchanging initial and final states.

The CP-violating observables in the first category are CP-odd and CPT̂-odd, while

those in the second category are CP-odd and CPT̂-even. Of course, both of them are
CPT-even.

To illustrate the above two categories, we consider CP-violating observables for
the decay of the top quark. Consider the partial rate asymmetry

AbW ≡ Γ(t→ bW+) − Γ(t̄→ b̄W−)

Γ(t→ bW+) + Γ(t̄→ b̄W−)
. (7.1)

A non-vanishing AbW clearly violates CP and CPT̂, therefore this observable belongs
to the first category. We note that because of CPT invariance, the total decay width
of the top quark Γ(t) has to equal the total decay width of the top anti-quark Γ(t̄).
Thus, any non-zero AbW implies that there exists a state (or perhaps more than one
state) X such that t can decay into X and t̄ into X̄. The absorptive phase of t→ bW+

is therefore generated by re-scattering through state X, i.e., t → X → bW+, where
X 6= bW+ because the final state interaction should be off-diagonal [55].
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Next, let’s consider the observable of the second category. In the decay of t →
bW+(→ ℓ+νℓ), for a polarized t quark, time reversal invariance (T) is violated if the
expectation value of

~σt × ~pb · ~pℓ+ (7.2)

is not zero [44]. Assuming CPT invariance, this implies CP is violated. Therefore, this

observable is CP-odd but CPT̂-even. A non-vanishing triple product observable, such
as that in Equation (7.2), from the decay of the top quark violates T. However, it may
be entirely due to final state interaction effects without involving any CP-violating
vertex. To construct a truly CP-violating observable, one must combine information
from both the t and t̄ quarks. For instance, the difference in the expectation values
of ~σt × ~pb · ~pℓ+ and ~σt̄ × ~pb̄ · ~pℓ− would be a true measure of an intrinsic CP violation.

There have been many studies on how to measure the CP-violating effects in the
tt̄ system produced in either electron or hadron collisions. (For a review, see a recent
paper in Reference [56].) At hadron colliders, the number of tt̄ events needed to
measure a CP-violating effect of the order of 10−3 − 10−2 is about 107 − 108. To
examine the potential of various current and future hadron colliders in measuring
the CP-violating asymmetries, we estimate the total event rates of tt̄ pairs for a 180
GeV SM top quark produced at these colliders. At the Tevatron, the Di-TeV and the
LHC, an integrated luminosity of 10, 100 and 100 fb−1 will produce about 4.5 × 104,
2.6 × 106 and 4.3 × 107 tt̄ pairs, respectively, as given in Table 3.1. Therefore, the
LHC would be able to probe the CP asymmetry of the top quark at the level of a few
percent. A similar number of the tt̄ pairs is required in electron collisions to probe

the CP asymmetry at the same level. Thus, for a
√
S = 500 GeV e−e+ collider, an

integrated luminosity of about 104 − 105 fb−1 has to be delivered. This luminosity is
at least a factor of 100 higher than the planned next linear colliders. We note that
although the initial state in a pp collision (such as at the LHC) is not an eigenstate
of a CP transformation, these CP-odd observables can still be defined as long as the
production mechanism is dominated by gg fusion. This is indeed the case for tt̄ pair
production at the LHC.

In the SM, the top quark produced via the W–gluon fusion process is about one
hundred percent left-hand (longitudinally) polarized, see Appendix A. Given a polar-
ized top quark, one can use the triple product correlation, as defined in Equation (7.2),
to detect CP violation of the top quark. For a polarized top quark, one can either
use ~σt × ~pb or ~pLab

t × ~pb to define the decay plane of t→ bW (→ ℓ+ν). Obviously, the
latter one is easier to implement experimentally. Define the asymmetry to be

Aio ≡ N(ℓ+ out of the decay plane) −N(ℓ+ into the decay plane)

N(ℓ+ out of the decay plane) +N(ℓ+ into the decay plane)
. (7.3)

If Aio is not zero, then the time-reversal T is not conserved, therefore CP is violated
for a CPT invariant theory. Due to the missing momentum of the neutrino from the
decay of the W–boson, it is difficult to reconstruct the azimuthal angle (φW ) of the
W–boson from the decay of the top quark. Once the angle φW is integrated over,
the transverse polarization of the top quark averages out and only the longitudinal
polarization of the top quark contributes to the asymmetry Aio. Thus, the asymmetry
Aio can be used to study the effects of CP violation in the top quark, which in the
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SM is about one hundred percent left-hand (longitudinally) polarized as produced
from the W–gluon fusion process. To apply the CP-violating observable Aio, one
needs to reconstruct the directions of both the t and b quarks. It has been shown in
Reference [57] that it takes about 107 − 108 single-top events to detect CP violation
at the order of ∼ 10−3 − 10−2.

For mt = 180 GeV at the Tevatron, the Di-TeV and the LHC, an integrated
luminosity of 10, 100 and 100 fb−1 will produce about 2× 104, 1.4× 106 and 2× 107

single-t or single-t̄ events, respectively, from Table 3.1. At the NLC, the single top
quark production rate is much smaller. For a 2 TeV electron collider, the cross sections
for e−e+ → e−ν̄etb̄ and e+γ → ν̄etb̄ are 8 fb and 60 fb, respectively [58]. Hence, it
will be extremely difficult to detect CP violation effects at the order of ≤ 10−2 in the
single-top events produced in electron collisions.

A few comments are in order. First, to extract the genuine CP-violating effects,
we need to study the difference in the asymmetry Aio measured in the single-t and
single-t̄ events because the time-reversal violation in Aio of the t (or t̄) alone could be
generated by final state interactions without CP-violating interactions. Second, the
detection efficiency for this method is not close to one, so a good understanding of
the kinematics of the decay products and how the detector works are needed to make
this method useful.

The asymmetry Aio belongs to the second category of CP-violating observables

and is CP-odd and CPT̂-even. Consider another asymmetry At which belongs to the

first category of CP-violating observables and is CP-odd and CPT̂-odd. Using At for
detecting CP-violating effects is to make use of the fact that p̄p is a CP eigenstate;
therefore, the difference in the production rates for p̄p → tX and p̄p → t̄X is a signal
of CP violation. This asymmetry is defined to be

At ≡ σ(p̄p → tX) − σ(p̄p → t̄X)

σ(p̄p → tX) + σ(p̄p → t̄X)
. (7.4)

As discussed in Chapter 6, the production rate of p̄p → tX is proportional to the
decay rate of t → bW+ and the rate of p̄p → t̄X is proportional to the rate of
t̄ → b̄W−. This implies that At = AbW , cf. Equation (7.1). There have been quite
a few models studied in the literature about the asymmetry in AbW . For instance,
in the Supersymmetric Standard Model where a CP-violating phase may occur in
the left-handed and right-handed top-squark, AbW can be as large as a few percent
depending on the details of the parameters in the model [59].

Next, let’s examine how many top quark events are needed to detect a few percent
effect in the CP-violating asymmetry At. Consider t → bW+ → bℓ+ν, where ℓ =
e orµ. Define the branching ratio BW as the product of Br(t→ bW+) and Br(W+ →
ℓ+ν), where Br(W+ → ℓ+ν) is 2/9. (Br(t → bW+) depends on the details of a
model and is almost 1 in the SM.) Let us assume that the efficiency of b-tagging
(ǫbtag) is about 30% and the kinematic acceptance (ǫk) of reconstructing the single-
top event, p̄p → tX → bW+X → bℓ+νX, is about 50%. (See, a Monte Carlo study
in Chapter 8.) The number of single-t and single-t̄ events needed to measure At is

Nt =
1

BW ǫbtagǫk

(
1

At

)2

. (7.5)
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Thus, to measure At of a few percent, Nt has to be as large as ∼ 106, which corre-
sponds to an integrated luminosity of 100 fb−1 at the Di-TeV.



Chapter 8

A Monte Carlo Study

It was shown in Reference [24] that due to the characteristic features of the transverse
momentum and rapidity distributions of the spectator quark which emitted the virtual
W an almost perfect efficiency for “kinematic b tagging” can be achieved. In addition,
the ability of performing b-tagging using a vertex detector increases the detection
efficiency of a heavy top quark produced via the W–gluon fusion process. In this
chapter we show that this process is useful at the Tevatron with the Main Injector.

We also estimate results for
√
S = 4 TeV at the Di-TeV and for

√
S = 14 TeV at the

LHC in separate subsections.

To show that a heavy top quark produced from the W–gluon fusion process can
be detected at the Tevatron, we performed a Monte Carlo study on the W + 2 jets
mode of the (2 → 2) process

q′b→ qt(→ bW+(→ ℓ+ν)) (8.1)

with ℓ+ = e+ orµ+. More specifically, we assume that the b-quark jet from the top
quark decay can be tagged so that the decay mode of interest is identified to be
W + b + jet. Throughout this study, we assume that the efficiency of the b-quark
tagging is 30% for P b

t > 30 GeV with no misidentifications of a b-jet from other
QCD jets. For clarity we only give rates for top quark (not including top-antiquark)
production in this chapter, unless specified otherwise. To include the top-antiquark
production one can refer to Chapter 3 for its production rate as compared with that
of a top quark.

For simplicity we only consider the intrinsic backgrounds (i.e., those present at
the parton level) for the W + b + jet final state, and will not invoke any detailed
study on effects due to hadronization of the partons or the imperfectness of the
detectors used in experiments. The intrinsic backgrounds in the SM for the mode
W + b + jet are the electroweak-QCD process q′q̄ → W + b + b̄ and QCD process
qq̄, gg → tt̄ → W + b + jet. We will show that the dominant backgrounds for the
single-top signal come from the electroweak-QCD processes (as shown in Figure 8.1)

ud̄, cs̄→ bb̄W+(→ ℓ+ν). (8.2)

The other backgrounds such as cg → bW+ are suppressed due to the small CKM
matrix element |Vcb| ≃ 0.03 to 0.048 [5]. As done in the previous sections, we will give
our numerical results in this section for either a 140GeV or a 180GeV top quark.
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8.1 Tevatron with
√
S = 2 TeV

At the Tevatron (p̄p,
√
S = 2 TeV) the single-top production rate from the W–gluon

fusion process is 1(2) pb, as shown in Table 3.1. For the final state of Equation (8.1),
the branching ratio of t→ bW+(→ ℓ+ν) for ℓ+ = e+ orµ+ is about 2/9 in the SM. As
discussed in Chapter 3, we found that after properly treating the b quark as a parton
inside the proton (or antiproton) the total rate for the W–gluon fusion process is
about 30% smaller than that of the (2 → 2) process. Hereafter, we shall rescale all
the numerical results of our analysis for the (2 → 2) process to the total event rate
of the W–gluon fusion process by multiplying them by a factor of 0.7.

To show that a 180 (140) GeV top quark produced from this process can be
detected at the Tevatron, we first impose the following kinematic cuts:

P q
T > 15 GeV, |ηq| < 3.5,

P ℓ
T > 15 GeV, |ηℓ| < 2,

P b
T > 35 GeV, |ηb| < 2,

6ET > 15 GeV, ∆Rqb > 0.7 . (8.3)

The efficiency of these cuts for a 180 (140)GeV top quark is 32%(53%). Including the
reduction factor from the assumed b-tagging efficiency, 30%, the signal rate is found to
be about 0.045 (0.063) pb. In Equation (8.3), PT stands for transverse momentum, η

for pseudo-rapidity, 6ET for missing transverse momentum, and ∆R =
√

(δη)2 + (δφ)2

with φ being the azimuthal angle. It is important to note in Figure 8.2 that the typical
rapidity of the spectator jet in the signal event is about 1.6 although almost all the
signal events have |ηq| < 3.5 [24]. The distribution of ηq is asymmetric because the
Tevatron is a p̄p collider. To produce a heavy top quark, which decays to a positively
charged lepton, the valence quark from the proton is most important, implying a large
probability for ηq to be positive. (We define the positive z-direction to be the proton
moving direction in the laboratory frame.) Similarly, a top-antiquark produced from
the W–gluon fusion process would prefer a negative ηq due to the large up-antiquark
PDF inside the antiproton.

In the W + bb̄ background process, the bb̄ pair comes from a virtual gluon con-
version, therefore its rate is highly suppressed if the invariant mass of the bb̄ pair is

W+ �b�bg�d; �su; c u; c l+ �bb�W+�d; �su; c g�d; �s l+
Figure 8.1: Diagrams for ud̄, cs̄→ bb̄W+(→ ℓ+ν).
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Figure 8.2: The rapidity distribution of the spectator quark q, after cuts in Equa-
tion (8.3), for the signal q′b → qt(→ bW+(→ ℓ+ν)), and of the spectator quark b̄
for the major background q′q̄ → b̄bW+(→ ℓ+ν) (dots), for mt = 180 GeV (solid) and
140GeV (dash), at the Tevatron. (The vertical scale is arbitrary, but the relative size
among these curves are absolute.)
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large. Since both b and b̄ have about the same transverse momentum (PT ) in the
background event, the requirement of P b

T > 35 GeV effectively forces a similar PT

cut on b̄. This generates a large invariant mass of b and b̄ (i.e., the virtuality of the
gluon), strongly suppressing the background rate. In contrast, in the signal event the
final parton q (from q′, after emitting a virtual W ) typically has a smaller PT than
the b-quark (from the decay of a heavy top quark). Typically, in the signal event,
P b

T ≃ mt/3. In Figure 8.3 we show the PT distribution of the tagged b from t in both
the signal and the background events. Hence, demanding an asymmetric cut on PT

(i.e., P q
T > 15 GeV and P b

T > 35 GeV) will suppress background effectively and keep
most of the signal events. This is why an asymmetric cut on PT was used in our
analysis to suppress the major background process W + bb̄. To compare the efficiency
of this asymmetric cut in PT , we note that using P b

T > 15 GeV along with all the
other cuts in (8.3) yields a signal-to-background ratio (S/B) of about 1/3(2/3). Re-
quiring P b

T > 35 GeV excludes about 60% of the background events sacrificing about
10%(30%) of the signal.

After imposing the kinematic cuts in Equation (8.3), we found that S/B ≃ 0.9(1.3).
However, the signal-to-background ratio can be further improved by imposing

cos θℓq > −0.4. (8.4)

Because the top quark produced from the W–gluon fusion process is left-hand polar-
ized, ℓ+ tends to move against the moving direction of the top quark in the center-
of-mass frame of q and t, cf. Figure 6.1. However, in the background event, the
distribution of cos θℓq, as shown in Figure 8.4, is almost flat after imposing the cuts
of (8.3). (θℓq = π − θℓ, where θl is the the polar angle of ℓ+ in the rest frame of t
defined in the center-of-mass frame of q and t.)

To calculate cos θℓq, the P ν
Z

information must be constructed. Since both ℓ+ and
ν come from a real W+ boson, we can use the W–boson mass constraint

M2
W = (pℓ + pν)

2 (8.5)

and the 6ET information to specify the longitudinal momentum P ν
Z

of the neutrino.
There are two solutions for P ν

Z
and typically, both of them are physical solutions for

a signal event. Therefore, one has to fix a prescription to choose the one which will
most likely give the correct distribution of the invariant mass of ℓ+, ν and b. We
choose the solution which has the smaller |P ν

Z
|. Here we exploit the fact that the W

has finite width. If a physical solution for P ν
Z

is not found with MW = 80 GeV, we
generate a resonant mass of the W–boson using a Breit-Wigner distribution. We use
a full half-maximum width of the W–boson, where ΓW = 2.1 GeV, and solve for P ν

Z
,

repeating the algorithm for up to three trials if necessary. We found that the survival
probability for finding a solution using this algorithm is about 90%, and the difference
between this solution and the value actually generated by the Monte Carlo generator
is a Gaussian distribution peaking at 0 with a width about the order of ΓW . After
the additional cut imposed on cos θℓq, we obtained S/B ≃ 1.2(1.8). About 55%(40%)
of the total signal event rate remains after applying the cuts (8.3) and (8.4) to the

process (8.1). We conclude that for an integrated luminosity of 1 fb−1 at a 2TeV p̄p

collider, there will be about 75(105) signal events detected with a significance S/
√

B
of about 10(14), including both the single-t and single-t̄ events as defined in (8.1).
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Figure 8.3: PT distribution of the b quark, after requiring P b
T > 15 GeV along with

all the other cuts in (8.3), for the signal q′b → qt(→ bW+(→ ℓ+ν)), and the major
background q′q̄ → b̄bW+(→ ℓ+ν), at the Tevatron.
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Figure 8.4: The cos θℓq distribution prior to cut Equation (8.4) for the signal q′b →
qt(→ bW+(→ ℓ+ν)) and the major background q′q̄ → b̄bW+(→ ℓ+ν), at the Tevatron.
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Figure 8.5: The mt distribution after the cuts Equation (8.3) and Equation (8.4) for
mt = 180 GeV (solid) and 140 GeV (dash) at the Tevatron including both the signal
and background events with W± → e± orµ±.
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To measure the mass of the top quark, we calculate the reconstructed invariant
mass (mt) of the top quark using

m2
t = (pb + pℓ + pν)

2. (8.6)

The distribution of mt, including both the signal and the backgrounds, is shown in
Figure 8.5, in which a clear mass peak appears unmistakably. Therefore, we conclude
that the top quark can be detected and studied via this process at the Tevatron. In
Figure 8.5, other less important backgrounds, such as tt̄ events, were also included.

The tt̄ background is not important after vetoing the events with more than 2 jets
[24]. To support this we did a study for the two decay modes of tt̄:

tt̄→ bW+(→ ℓ+ν) b̄W−(→ q′q̄) (8.7)

and
tt̄→ bW+(→ ℓ+ν) b̄W−(→ ℓ−2 ν̄), ℓ2 = e orµ. (8.8)

For both modes we require one of the jets to be a b or b̄.

Consider first the t̄ → b̄q′q̄ decay mode. We require at least one of the q′- and
q̄-jets and b̄ (if b is tagged) or b (if b̄ is tagged) to be within rapidity 3.5, otherwise
we reject the event. If any one (and only one) of the untagged jets is within rapidity
3.5 we call it the spectator jet and then apply our cuts. If two of the untagged jets
are within rapidity 3.5, then we require their ∆R separation to be less than 0.7 to
classify them as one spectator jet. When all three untagged jets are within rapidity
3.5 we choose the jet with the largest PT and check its ∆R separation with the other
two. If the lower PT jets are within ∆R = 0.7 of the high PT jet, we call this the
spectator jet and apply our cuts, otherwise, reject the event. Recall from Table 3.1
for a 180 GeV top quark, the tt̄ rate is about 4.5 pb. After applying the cuts (8.3)
and (8.4) and including the branching ratio for this mode, 2

9
6
9

= 4
27

, the event rate, of

approximately 3 × 10−4 pb, is very small as compared with the signal rate of 0.075
pb (including t and t̄). This is because for most of the t̄→ b̄q′q̄ decay modes all three
jets are within rapidity 3.5 and ∆Rbj and ∆Rb̄j are in general large .

For the t̄ → b̄ℓ−2 ν̄ decay mode we require that ℓ2 be undetected. Specifically, if

ℓ2 is within rapidity 2 with P ℓ2
T > 15 GeV we reject the event. If 2 < |ηℓ2| < 3.5 we

require P ℓ2
T to be less than the minimum PT for detecting leptons, i.e., < 15 GeV in

accordance with Equation (8.3). After the cuts in (8.3), this mode (with branching
ratio 2

9
2
9

= 4
81

) already suffers, being about 5% of the signal rate. This mode suffers
another factor of about two loss to the failure of reconstructing P ν

Z
due to the presence

of two neutrinos in the final state. After imposing the cos θℓq cut the rate for tt̄ →
bW+(→ ℓ+ν) b̄W−(→ ℓ−2 ν̄) is about 3× 10−3 pb which is about a factor of 25 smaller
than the signal rate. Hence the dominant background (of the same order as the signal
rate) comes from the electroweak-QCD processes as given in Equation (8.2).

As summarized in Figure 8.5, even with the very minimum kinematic cuts of (8.3)
and (8.4) the single-top signal can already be detected, assuming a perfect detector
with b-tagging efficiency of 30%. To incorporate the effects of detector efficiencies,
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we smear the final state parton momenta using a Gaussian distribution with

(∆E/E)ℓ = 15%/
√
E, and (∆E/E)q,b = 50%/

√
E. (8.9)

The mt distribution becomes slightly broader as shown in Figure 8.6; however, both
the signal and the background rates are almost the same as those obtained with
a perfect detector. As discussed in the previous chapters, the distribution of the
invariant mass mbℓ is extremely useful in either determining the mass of the top quark
or measuring the form factors of t-b-W . For completeness we show in Figure 8.7 the
distribution of mbℓ with or without smearing, after all the above analysis. Because
the b-jet is required to have large PT , cf. Equation (8.3), so ∆E/E for the b-jet
is small, therefore the two mbℓ distributions do not differ much and the difference
becomes smaller for larger mbℓ. Thus, the position of the bump at large mbℓ in
the signal events remain a good signature for detecting the single-top signals and
determining the mass of the top quark (discussed in Chapter 4) or the couplings of
t-b-W (discussed in Chapter 6).

We note that the data sample obtained after all the above analysis can be further
purified at the cost of somewhat reducing the signal rates. This can be easily done,
for instance, by noting the distinct differences between the signal events and the
background events from the distributions of rapidity of the spectator jet (Figure 8.2),
transverse momentum of the bottom quark (Figure 8.3), and the angular correlation
cos θℓq (Figure 8.4) due to the polarization of the top quark in signal events. However,
for a more realistic simulation, one should also consider the possibility of having a
charm-jet (or even an ordinary QCD-jet) faking a bottom jet in b-tagging so that the
actual background rate measured by the detector would be larger than that given
here. This is outside the scope of our parton level study.

As discussed in Chapter 3, another process which produces a single-top is the W ∗

production
q′q̄ →W ∗ → tb̄. (8.10)

At 2 TeV for a 180 (140) GeV top quark, the W ∗ production rate is about 1/5(1/3)
of the W–gluon fusion rate. Applying the kinematic cuts defined in Equation (8.3)
we find that the W ∗ process passes with about the same efficiency as the W–gluon
fusion process. However, there are a few obvious differences in the kinematics of their
final state partons. First, in the W ∗ event, there are two b-jets (one for b from t
decay and another for b̄ from production), therefore there is a 50% chance of tagging
the wrong b and giving the wrong reconstructed top quark invariant mass, as defined
in Equation (8.6). To improve the invariant mass distribution of the top quark, one
has to be able to distinguish a b-jet from a b̄-jet by making further selections at the
cost of reducing the single-top rate from this process. (Some of the techniques have
been discussed in Chapter 4.) Second, the rapidity distribution of the spectator jet
(i.e., b̄-jet if b-jet identified) in the W ∗ event peaks around zero (i.e., central, as
shown in Figure 8.8) because tb̄ is produced through the s–channel process.1 This is
in contrast to that in the W–gluon fusion event where the rapidity distribution (ηq)

1 We note that the rapidity distribution of the b̄-quark in the W ∗ → tb̄ event is slightly asymmetric
around zero. It favors a slightly negative rapidity. (Recall that in the W–gluon events for producing
single-t, the rapidity of the spectator quark q favors positive values.) This is similar to the lepton
rapidity asymmetry observed in the p̄p → W+ → ℓ+ν events due to the ratio of the down-quark
and the up-quark parton distributions inside the proton and the anti-proton.
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Figure 8.6: Same as Figure 8.5, but with detector resolution effects as described in
Equation 8.9.
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Figure 8.7: mbℓ distributions without (top) or with (bottom) smearing, after all the
above analysis for the Tevatron.



55

Figure 8.8: The rapidity distribution, after Equation (8.3), of the spectator jet (i.e.,
b̄-jet if b-jet identified) in the W ∗ event for mt=180 GeV (solid) and 140 GeV (dash)
against Figure 8.2 (dots), at the Tevatron.
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of the spectator jet (labeled as q-jet) is asymmetric and less likely to be around zero.
Third, the polarization of the top quark produced from the W ∗ process is not purely
left-hand polarized as in the case of the q′b → qt process. For a 180 (140)GeV top
quark, the ratio of the event rates for producing a left-handed top versus a right-
handed top in the W ∗ event is about 3.5(3.4). In Figure 8.9, we show the production
rate for a left-handed or a right-handed top quark from the W ∗ process and compare
them with that from the W–gluon fusion process as a function of mt. Because the
top quark is not 100% polarized in the W ∗ process, the angular correlation of ℓ
and the spectator jet will not be as strong as that in the W–gluon fusion process. In
Figure 8.10 we show the distribution of cos θℓq in W ∗ events for a 140 and 180 GeV top
quark. (Here, q-jet denotes the spectator jet.) Following through the previous analysis
done for the W–gluon fusion events we found that W ∗ production compliments the
W–gluon fusion process by increasing the single-top production rate by about 10%.2

Therefore, its contribution to our final results of various distributions is small.

In conclusion we found that at the Tevatron (p̄p,
√
S = 2 TeV) the single-top

production rate from the W–gluon fusion process after including the branching ratio
for t → bW+(→ ℓ+ν) is about 0.22(0.44) pb for a 180 (140) GeV top quark, where
ℓ+ = e+ orµ+. The kinematic acceptance after the kinematic cuts (8.3) and (8.4) is
about 55%(40%). Assuming a 30% b-tagging efficiency we concluded that the single-
top event rate from the W–gluon fusion process is about 0.036(0.052) pb. For an

integrated luminosity of 1 fb−1, this yields 36(52) reconstructed single-top events.
(To include top-antiquark production, a factor 2 should be included.) The dominant
background process is the electroweak-QCD process W + bb̄ whose rate is about
80%(60%) of the signal rate in the end of the analysis. The tt̄ events are not as
important to our study. The tt̄ rate for a 180 GeV top quark is only 0.4% and 4% of
the signal rate for its lepton+jet and di-lepton mode, respectively. In both Figs. 8.5
and 8.6 for the distribution ofmt, we have also included another single-top production
process (a single-top produced from W ∗) which increases the single-top rate by about
10%.

Let us make a side remark about the dominant background q′q̄ →W + bb̄ before
we close this section. In the above analysis we did not include the possibility of having
an additional QCD jet from either the radiation or the conversion of the incoming
quark jet ( q′ or q̄). The concern is that this jet may be identified as a forward jet
which would fake the single-top signal event. In this case, b and b̄ in the W + bb̄+ jet
background event have to both fall into a cone of ∆R = 0.7 in order to fake the tagged
b-jet (only one b) in the single-t event (cf. Equation (8.1)). To examine the possibility
for this to happen, we have applied the eikonal approximation [60] to calculate the
rate of W + bb̄+ jet from the square of the W + bb̄ amplitude. (The results are shown
in Appendix E.)

After the basic kinematic cuts:

P jet
T > 15GeV, |ηjet| < 3.5,

P ℓ
T > 15GeV, |ηℓ| < 2,

P b,b̄
T > 15GeV, |ηb,b̄| < 3.5, (8.11)

2 The W ∗ production rate is about one fifth of the W–gluon fusion rate for a 180GeV top quark,
and the kinematic acceptance of the W ∗ event is about half of that of the W–gluon fusion event.
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the rate for W + bb̄+ jet is already about a factor of 5 smaller than that for W + bb̄.
Naively, one might expect a factor of αs(MW ) (∼ 0.1) suppression factor for emitting
an additional QCD jet (quark or gluon) in the hard scattering process. However, as
compared to the large invariant mass (MWbb̄) of the W +bb̄ system a jet PT of 15GeV
may be small enough to generate large logs, such as ln(MWbb̄/PT ), in the amplitudes.
Hence, because αs ln(MWbb̄/PT ) is not negligible, the rate for W + bb̄ + jet is not
suppressed by a factor of 10 relative to the rate of W + bb̄, but only a factor of 5.

To see how often b and b̄ will fall into a cone of ∆R = 0.7 we show in Figs. 8.11
and 8.12 the ∆Rbb̄ and the Mbb̄ distributions in W + bb̄ + jet events after applying
the kinematic cuts listed in (8.11). The same distribution in W + bb̄ events is also
shown for comparison. The ∆Rbb̄ distributions look alike, and the Mbb̄ distribution
falls slowly as Mbb̄ increases. Also, the W +bb̄+ jet event prefers a larger Mbb̄ because
the PT of b and b̄ are larger in this process than that in the W + bb̄ process. We find
that only about 20% of the W + bb̄ + jet events can possibly fake the single-t event
by having b and b̄ inside the same jet-cone and thus fake a tagged b-jet. Hence, the
additional background rate from W+bb̄+ jet events is about a factor of 1

5
×20% = 4%

of the electroweak-QCD background rate. Although our estimate is not precise, we
believe our conclusion for this additional background should hold within a factor of
2. Hence, this additional background is negligible at the Tevatron. However, it can
be important at the LHC. Because the energy of the LHC collider is much higher, it
is more likely to have additional radiation in the event and to boost the bb̄ system to
make them closer and thus fall into the same jet-cone.

8.2 Tevatron with
√
S = 4 TeV

Here we present our results for a possible upgrade of the Tevatron with
√
S = 4 TeV.

After the following kinematic cuts:

P q
T > 15 GeV, |ηq| < 3.5,

P ℓ
T > 15 GeV, |ηℓ| < 2,

P b
T > 30 GeV, |ηb| < 2,

6ET > 15 GeV, ∆Rqb > 0.7 , (8.12)

the signal rate is about 0.28(0.37) pb. (The efficiency of these cuts is 45%(56%).)
In Figure 8.13 the typical rapidity of the spectator jet in the signal event is about
2, and almost all the signal events have |ηq| < 3.5. An asymmetric cut on PT was
used once again to suppress the major background process W + b+ jet. Demanding
P b

T > 15 GeV along with the other cuts in Equation (8.12), the signal-to-background
ratio (S/B) is about 1.1(1.7). We show in Figure 8.14 the PT distribution of the
tagged b from t. Requiring P b

T > 30 GeV excludes about half of the background events
sacrificing about 6%(20%) of the signal. After all the cuts listed in Equation (8.12),
S/B ≃ 2.3(3.0) with the signal rate at 0.28(0.37) pb.

We show in Figure 8.15 the distribution of cos θℓq. After applying the cut (8.4),
the ratio S/B ≃ 2.9(3.8) with the signal rate of 0.22(0.29) pb. In the end of the
analysis there are about 2200(2900) single-t events for an integrated luminosity of 10
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fb−1 at
√
S = 4 TeV (a p̄p collider) with a significance S/

√
B of about 80(105). The

kinematic acceptance of the signal event is about 43%(34%). Note that in all the
above rates we have included the reduction factor from a 30% b-tagging efficiency.
In Figure 8.16, we show the reconstructed invariant mass (mt) of the top quark.
Once again, to incorporate the effects of detector efficiencies, we smear the final state
parton momenta as in (8.9). The mt distribution becomes slightly broader as shown
in Figure 8.17; however, both the signal and the background rates are almost the
same as those obtained with a perfect detector.

8.3 LHC with
√
S = 14 TeV

Here we present our results for the LHC with
√
S = 14TeV. After the following

kinematic cuts

P q
T > 40 GeV, 1 < |ηq| < 4,

P ℓ
T > 40 GeV, |ηℓ| < 2,

P b
T > 40 GeV, |ηb| < 2,

6ET > 40 GeV, ∆Rqb > 0.7 , (8.13)

the signal rate is about 0.44(0.24) pb. (The efficiency of the cuts is 94%(98%). We
still assume a 30% efficiency for the b-tagging at the LHC.) Here we did not impose
a smaller P q

T cut because a lower PT jet will be more difficult to be identified at
the LHC. (A typical QCD event at the supercollider will be engulfed by soft gluon
radiation.) Since the signal event yield is large at the LHC, we decided to purify
our data simply by requiring a large P q

T cut. Notice that the rate for mt = 180 GeV
is larger at the LHC than that for mt = 140 GeV after our cuts, opposite to the
behavior of the rate at 2 TeV and 4 TeV. This is due in part to less sensitivity to mt

at higher energies, but mainly because the b from top decay is much harder for larger
top mass and thus is less sensitive to the cut of P b

T > 40 GeV. The typical P b
T for mt

= 180 (140) GeV is 60(40) GeV. We show in Figure (8.18) the PT distribution of the
tagged b from t.

In Figure 8.19 the typical rapidity of the spectator jet in the signal event is about
3, but a cut on |ηq| < 4 keeps almost all the signal events. Excluding the |ηq| > 1
cut in (8.13) the signal-to-background ratio (S/B) is about 10(7). Requiring |ηq| > 1
excludes about 40% of the background events sacrificing about 15%(20%) of the
signal. After the kinematic cuts in (8.13), the ratio S/B ≃ 25(14).

We show in Figure 8.20 the distribution of cos θℓq at the LHC. After the cos θℓq cut,
S/B ≃ 40(20). In the end of the analysis, there are about 30, 000(15, 000) single-top

events for an integrated luminosity of 100 fb−1 at
√
S = 14 TeV (a pp collider) with

a significance S/
√

B of about 32(16). Hence, about 4%(2%) of the total signal event
rate remains. This is thus the kinematic acceptance for the signal process (8.1). In
Figure 8.21, we show the reconstructed invariant mass (mt) of the top quark for a
perfect detector. Once again, to incorporate the effects of detector efficiencies, we
smear the final state parton momenta as in (8.9) and reconstruct the mt distribution
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for the LHC is shown in Figure 8.22.

Notice that the above analysis for the LHC is less reliable because the energy of
the collider is much higher and therefore it is more likely to have additional soft-
jets accompanying the signal and the background events. As discussed at the end of
section 7.1, it would be more reliable to use a full event generator such as ISAJET
[61], PYTHIA [62] or HERWIG [63] for this study because these generators contain
radiation from either the initial or final states. However, these generators currently do
not have the correct angular correlations in ℓ and jets, as discussed in this analysis. It
would therefore be important in the future to improve these generators to incorporate
the polarization effects of the top quark and the W–boson for studying physics of the
top quark in hadron collisions.
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Figure 8.9: The production rate for a left-handed (long dash) or a right-handed
(short dash) top quark from the W ∗ process. The upper solid line is the total rate
for the W–gluon fusion process, the lower solid line for the W ∗ process.
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Figure 8.10: The distribution of cos θℓq in W ∗ event for mt=180 GeV (solid) and 140
GeV (dash) against Figure 8.4 (dots), at the Tevatron.
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�
Figure 8.11: ∆Rbb̄ distributions in W + bb̄ + jet (solid) and W + bb̄ (dash) events
after applying the cuts listed in (8.11).
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�
Figure 8.12: Mbb̄ distributions in W + bb̄+ jet (solid) and W + bb̄ (dash) events after
applying the cuts listed in (8.11).
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Figure 8.13: The rapidity distribution of the spectator quark q, after cuts in Equa-
tion (8.12), for the signal q′b → qt(→ bW+(→ ℓ+ν)), and of the spectator quark b̄
for the major background q′q̄ → b̄bW+(→ ℓ+ν) (dots), for mt = 180 GeV (solid) and
140GeV (dash), at the Di-TeV.
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Figure 8.14: PT distribution of the b quark, after requiring P b
T > 15 GeV along with

all the other cuts in (8.12), for the signal q′b → qt(→ bW+(→ ℓ+ν)), and the major
background q′q̄ → b̄bW+(→ ℓ+ν), at the Di-TeV.
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Figure 8.15: cos θℓq distribution for the signal q′b → qt(→ bW+(→ ℓ+ν)) and
background q′q̄ → b̄bW+(→ ℓ+ν) at the Di-TeV.
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Figure 8.16: The mt distribution after the cuts Equation (8.12) and Equation (8.4)
for mt = 180 GeV (solid) and 140 GeV (dash) at the Di-TeV, including both the
signal and background events with W± → e± orµ±.
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Figure 8.17: Same as Figure 8.16 but with detector resolution effects as described
in Equation (8.9).
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Figure 8.18: PT distribution of the b quark, after cuts in (8.13), for the signal
q′b → qt(→ bW+(→ ℓ+ν)), and the major background q′q̄ → b̄bW+(→ ℓ+ν), at the
LHC.
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Figure 8.19: The rapidity distribution of the spectator quark q, after cuts in Equa-
tion (8.13), for the signal q′b → qt(→ bW+(→ ℓ+ν)), and of the spectator quark b̄
for the major background q′q̄ → b̄bW+(→ ℓ+ν) (dots), for mt = 180 GeV (solid) and
140GeV (dash), at the LHC.
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Figure 8.20: cos θℓq distribution for the signal q′b → qt(→ bW+(→ ℓ+ν)) and
background q′q → b̄bW+(→ ℓ+ν) at the LHC.
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Figure 8.21: The mt distribution after the cuts Equation (8.13) and Equation (8.4)
for mt = 180GeV (solid) and 140GeV (dash) at the LHC including both the signal
and background events with W± → e± orµ±.
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Figure 8.22: Same as Figure 8.21, but with detector resolution effects as described
in Equation (8.9).



Chapter 9

Discussions and Conclusions

We discussed the physics of top quark production and decay at hadron colliders, such
as the Tevatron, the Di-TeV and the LHC. We showed how to use the invariant mass
distribution of mbℓ to measure the mass and the width of the top quark, produced
from either a single-top or a tt̄ pair process. It has been shown in Reference [41] that
the distribution of mbℓ is not sensitive to radiative corrections from QCD interactions.
Thus it can be reliably used to test the polarization of the W–boson from t decay
(hence, test the polarization of the top quark from the production mechanism) and
to measure the mass of the top quark using the observed value of fLong (the fraction
of longitudinal W ’s from top decays). We also discussed how well the couplings of
t-b-W vertex can be measured to probe new physics, and how well the CP properties
of the top quark can be tested in electron or hadron colliders.

In Reference [24] we showed that an almost perfect efficiency for “kinematic b
tagging” can be achieved due to the characteristic features of W–gluon fusion events.
In addition, the ability of performing b-tagging using a vertex detector increases the
detection efficiency of a heavy top quark produced via the W–gluon fusion process.

A detailed Monte Carlo study on how to identify the characteristic features of the
signal events (i.e., the transverse momentum and the rapidity distributions of the
spectator quark which emitted the virtual W ) and therefore suppress the background

events was performed in Chapter 8.1 For an integrated luminosity of 1 fb−1, there will
be about 75 (105) single-t or single-t̄ events reconstructed in the lepton+jet mode for

mt = 180 (140)GeV at
√
S = 2 TeV. (The branching ratio of W → e, orµ is included,

and the b-quark tagging efficiency is assumed to be 30% for P b
t > 30 GeV with no

misidentifications of a b-jet from other QCD jets.) The dominant background process
is the electroweak-QCD process W + bb̄ whose rate is about 80%(60%) of the signal
rate in the end of the analysis. The tt̄ events are not as important to our study. The

results for
√
S = 4TeV at the Di-TeV and for

√
S = 14TeV at the LHC were also

discussed.

Although the W ∗ → tb̄ rate in the SM is not as large as the W–gluon fusion rate
for producing a heavy top quark, it remains a complementary process for probing

1 The fortran code, ONETOP, used for this study is available by request. In Appendix F we
briefly describe the processes included in this program.
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new physics in the single-top quark event. The W ∗ process is particularly useful for
detecting new physics through some possible high mass resonance in the theory. In
that case, its rate will be highly enhanced by the resonance effects. We however did
not study such a possibility in this work because its rate depends on the details of
the models considered.



Appendix A

Helicity Amplitude Method

In this appendix we would like to display the rules for doing calculations at the ampli-
tude level using the Helicity Amplitude Method. The method breaks down the algebra
of four-dimensional Dirac spinors and matrices into equivalent two-dimensional ones.
This algebra is easy to program and more efficient than computing the Dirac algebra
as it stands. All diagrams are summed and squared numerically.

In what follows we introduce the Weyl representation of Dirac spinors and matri-
ces. We also include several example calculations to illustrate the finer points of the
method. Throughout this paper we use the Bjorken-Drell metric

gµν = diag (1,−1,−1,−1) . (A.1)

The four-momenta have the form in spherical coordinates:

pµ = (E, |~p | sin θ cosφ, |~p | sin θ sinφ, |~p | cos θ) (A.2)

with E2 − |~p |2 = m2. We define the right-hand (R), left-hand (L) and longitudinal
(0) polarization vectors for a spin-1 field as 1

εµ
(R) =

eiφ

√
2
(0, i sin φ− cosφ cos θ,−i cosφ− sinφ cos θ, sin θ)

εµ
(L) =

e−iφ

√
2

(0, i sinφ+ cosφ cos θ,−i cosφ+ sin φ cos θ,−sin θ) (A.3)

εµ
(0) =

1

m
(|~p |, E sin θ cosφ,E sin θ sin φ,E cos θ).

The above equations satisfy the identities εµ
(R) = −εµ∗

(L), ε
µ
(0) = εµ∗

(0), pµε
µ
(h) = 0 and

ε(h)
µ εµ∗

(h′) = −δhh′ , for h, h′ = R,L or 0.

1 For a massless spin-1 field, only the right-handed and the left-handed polarizations are physical.
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In four component form we define the following. In the Weyl basis Dirac spinors
have the form

ψ =
(
ψ+

ψ−

)
(A.4)

where for fermions

ψ± =

{
u

(λ=1)
± = w±χ1/2

u
(λ=−1)
± = w∓χ−1/2

(A.5)

and anti-fermions

ψ± =

{
v

(λ=1)
± = ±w∓χ−1/2

v
(λ=−1)
± = ∓w±χ1/2

(A.6)

with w± =
√
E ± |~p |.

The χλ/2’s are eigenvectors of the helicity operator

h = p̂ · ~σ, p̂ = ~p/|~p | (A.7)

with eigenvalue λ where λ = +1 is for “spin-up” and λ = −1 is for “spin-down”.

χ1/2 =
(

cos θ/2
eiφ sin θ/2

)
, χ−1/2 =

(−e−iφ sin θ/2
cos θ/2

)
. (A.8)

Later it proves useful to represent χλ/2’s using bra-ket notation where

| p̂+〉 ≡ χ1/2, | p̂−〉 ≡ χ−1/2 . (A.9)

Gamma matrices in the Weyl basis have the form

γ0 =
(

0 1
1 0

)
, γj =

(
0 −σj

σj 0

)
, γ5 = γ5 =

(
1 0
0 −1

)
, (A.10)

where σj are the Pauli 2 × 2 spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.11)

The chirality projection operators are defined by

P± =
1

2
(1±γ5) . (A.12)

Notice that P+ (P−) projects out the “right-handed” (“left-handed”) component of
the Weyl spinor effectively reducing the algebra from one involving four component
spinors and matrices to one involving two component spinors and matrices.
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tb

u d

w

Figure A.1: Diagram for the (2 → 2) process u b→ d t.

P−ψ =
(

0 0
0 1

)(
ψ+

ψ−

)
=
(

0
ψ−

)

ψ̄P+ = (ψ†+ ψ
†
−)
(

0 1
1 0

)(
1 0
0 0

)
= (ψ†− 0) (A.13)

In the Weyl basis 6p has the form

6p ≡ pµγ
µ =

(
0 p0 + ~σ · ~p

p0 − ~σ · ~p 0

)
≡
(

0 6p+

6p− 0

)
≡ pµ

(
0 γµ

+

γµ
− 0

)
(A.14)

where
γµ
± = (1,∓~σ) . (A.15)

Products of these γµ
±’s have the following useful property when Lorentz indices are

contracted:
(γµ

+)ij(γµ+)kl = (γµ
−)ij(γµ−)kl = 2[δijδkl − δilδkj] (A.16)

and
(γµ

+)ij(γµ−)kl = (γµ
−)ij(γµ+)kl = 2δilδkj, (A.17)

where the Roman indices are not vector indices in the usual sense, but are labels
identifying bras and kets. For instance, for arbitrary kets |i〉, |j〉, |k〉 and |l〉 we have

(γµ
+)ij(γµ−)kl = 〈i|γµ

+|j〉〈k|γµ−|l〉 = 2 〈 i| l〉〈 k| j〉 = 2δilδkj . (A.18)

Equations (A.16) and (A.17) are simply the two-dimensional version of the well known
Fiertz identities.

A.1 Helicity Amplitudes for ub→ dt

To illustrate the use of helicity amplitudes we calculate the matrix element for the
(2 → 2) process ub → dt which contributes to the total rate for W–gluon fusion.
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Figure A.1 shows the Feynman diagram for this process with the t decay included.
In this example we use the generalized t-b-W coupling

Γµ = (1 + κL
CC) γµP− + κR

CCγµP+ (A.19)

where κL
CC and κR

CC parameterize deviations from the Standard Model in which
κL

CC = 0 and κR
CC = 0. We calculate the matrix element in the ’t Hooft-Feynman

gauge ignoring for simplicity the factors due to vertices and propagators. We obtain

M = [ū(t)Γµu(b)][ū(d)γµP−u(u)] (A.20)

where u, b, d and t are the momenta of the external legs and we retain only the
mass of the top quark. We use the algebraic properties of the projection operators
P 2
± = P±, P±P∓ = 0 and P±γ

µ = γµP∓ to project out the chirality states. In this
example the amplitude contains both the left-handed and right-handed currents. For
pure vector or axial vector currents one must first insert 1 = P+ +P− or γ5 = P+−P−
respectively. Therefore M takes the form

M = (1 + κL
CC)[u†−(t)γ

µ
+u−(b)][u

†
−(d)γµ+u−(u)]

+ κR
CC [u†+(t)γµ

−u+(b)][u†−(d)γµ+u−(u)] (A.21)

According to Equations (A.5) and (A.9) we see that

u−(u) =
√

2Eu | û−〉

u−(d) =
√

2Ed | d̂−〉

u−(b) =
√

2Eb | b̂−〉

u+(b) =
√

2Eb | b̂+〉

u−(t) =





√
Et − |~t | | t̂+〉√
Et + |~t | | t̂−〉

u+(t) =





√
Et + |~t | | t̂+〉√
Et − |~t | | t̂−〉

(A.22)

Therefore,

M(+) = (1 + κL
CC)

√
Et − |~t | 〈 t̂+|γµ

+| b̂−〉〈 d̂−|γµ+| û−〉

+ κR
CC
√
Et + |~t | 〈 t̂+|γµ

−| b̂+〉〈 d̂−|γµ+| û−〉

M(−) = (1 + κL
CC)

√
Et + |~t | 〈 t̂−|γµ

+| b̂−〉〈 d̂−|γµ+| û−〉

+ κR
CC
√
Et − |~t | 〈 t̂−|γµ

−| b̂+〉〈 d̂−|γµ+| û−〉 (A.23)
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where M(±) denotes the amplitude with t helicity λt = ±1 and we ignore for now

the common factor of
√

2Eu

√
2Eb

√
2Ed.

One is now tempted to move on ahead and contract the Lorentz indices as in
Equation (A.16). However, contracting γµ’s with the same chirality introduces extra
terms into the matrix element. It would be more useful with processes containing
many branchings from decay, such as in Supersymmetry, if there were a way to utilize
Equation (A.17) instead. To this end, we digress a moment.

Consider some current of the form

ψ†f±[γµ1∓ · · ·γµn∓]ψi± (A.24)

where n is odd. We note in passing, recalling the properties of the projection op-
erators, consecutive matrices of the same sign would give zero current. Since Equa-
tion (A.24) is just a number, it is identical to taking its transpose as

ψ⊤i±[γ⊤µn∓ · · · γ⊤µ1∓]ψ∗f± . (A.25)

We now utilize the following algebraic properties of the Pauli matrices and in partic-
ular σ2:

σ2σ2 = 1, σ⊤2 = −σ2, σ2γ
⊤
µ∓σ2 = γµ± (A.26)

and define
ψ̃± ≡ iσ2ψ

∗
± . (A.27)

By inserting pairs of σ2 between each pair of objects in Equation (A.25) we therefore
obtain

ψ†f±[γµ1∓ · · · γµn∓]ψi± = ψ̃i±
†
[γµn± · · · γµ1±]ψ̃f± . (A.28)

It is easy to show that (iσ2ψi±)⊤ = ψ̃i±
†
. In addition, for an even number n of gamma

matrices we have

ψ†f±[γµ1∓ · · · γµn±]ψi∓ = ψ̃i∓
†
[γµn∓ · · · γµ1±]ψ̃f± . (A.29)

An important result has occurred, which allows us to take advantage of Equa-
tion (A.17) avoiding the number of terms that would otherwise occur. 2 For a
fermion or anti-fermion with momentum ~p and helicity λ, ψ± is proportional to either
| p̂+〉 or | p̂−〉. It is easy to show that

˜| p̂+〉 = −| p̂−〉,
˜| p̂−〉 = +| p̂+〉,
˜〈 p̂+| = −〈 p̂−|,
˜〈 p̂−| = +〈 p̂+| . (A.30)

2 iσ2 acts as a kind of charge conjugation operator on the chirality states of the Weyl spinors.
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Finally, recalling Equation (A.23) the term

〈 d̂−|γµ+| û−〉 = 〈 û+|γµ−| d̂+〉 (A.31)

giving, via Equation (A.17),

M(+) = 2(1 + κL
CC)

√
Et − |~t | 〈 t̂+| d̂+〉〈 û+| b̂−〉

+ 2κR
CC
√
Et + |~t | 〈 t̂+| û−〉〈 d̂−| b̂+〉

M(−) = 2(1 + κL
CC)

√
Et + |~t | 〈 t̂−| d̂+〉〈 û+| b̂−〉

+ 2κR
CC
√
Et − |~t | 〈 t̂−| û−〉〈 d̂−| b̂+〉. (A.32)

We now have the matrix element in the form we require for our Monte Carlo package
ONETOP3, remembering to include coupling constants, propagators, color factors
and

√
2Eu

√
2Eb

√
2Ed.

A.2 Helicity Amplitudes for ub→ dt in the CMS.

To illustrate our claim that in the SM (i.e. κL
CC = 0 and κR

CC = 0) only the
left-handed top quark is produced from the ub→ dt process in the d-t center of mass
frame (CMS), we evaluate the matrix element in terms of CMS variables. Define the
four-momenta:

uµ = (
√
ŝ/2, 0, 0,−

√
ŝ/2)

bµ = (
√
ŝ/2, 0, 0,

√
ŝ/2)

dµ = (t,−t sin θ, 0,−t cos θ)

tµ = (Et, t sin θ, 0, t cos θ) (A.33)

where Et = (ŝ + m2
t )/2

√
ŝ, t = (ŝ −m2

t )/2
√
ŝ and we have chosen φ = 0 to be the

scattering plane.

Using these, we obtain from Equations (A.5), (A.8) and (A.9)

| û+〉 =
(

0
−1

)

| û−〉 =
(

1
0

)

3 A FORTRAN code.
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| b̂+〉 =
(

1
0

)

| b̂−〉 =
(

0
1

)

| d̂+〉 =
(

sin θ/2
− cos θ/2

)

| d̂−〉 =
(

cos θ/2
sin θ/2

)

| t̂+〉 =
(

cos θ/2
sin θ/2

)

| t̂−〉 =
(− sin θ/2

cos θ/2

)
(A.34)

Therefore,

〈 û+| b̂−〉 = −1

〈 d̂−| b̂+〉 = cos θ/2

〈 t̂+| d̂+〉 = 0

〈 t̂+| û−〉 = cos θ/2

〈 t̂−| d̂+〉 = −1

〈 t̂−| û−〉 = − sin θ/2. (A.35)

Including the common factor

√
2Eu

√
2Eb

√
2Ed =

√√
ŝ(ŝ−m2

t ) (A.36)

and

√
Et + |~t | =

√√
ŝ

√
Et − |~t | =

√√√√m2
t√
ŝ

we see that

M(+) = 2(κR
CC)

√
ŝ (ŝ−m2

t ) cos2 θ/2, (A.37)

M(−) = 2(1 + κL
CC)

√
ŝ(ŝ−m2

t ) − 2(κR
CC)

√
m2

t (ŝ−m2
t ) sin θ/2 cos θ/2 .
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Figure A.2: Diagrams for u g → d t(→ bW+(→ ℓ+ νℓ)) b̄ .

Notice in the SM, the top quark is 100% left-hand polarized in the CMS.

Having outlined the general procedure for calculating amplitudes using the helicity
amplitude method, we list the matrix elements contributing to single top production
and the major background Wbb̄ in the Standard Model. We include the decay of
t→ bW+ and W+ → ℓ+νℓ in the final form.

A.3 Helicity Amplitudes for u g → d t(→ bW+(→
ℓ+ νℓ)) b̄

In this and the following sections, we give the diagrams for the process listed, indi-
cating the momentum flow and particle momentum labels: w’s are for W+ bosons,
b’s for b or b̄ quarks, e for e+, n for νe and u, d, t and g are for u, d, t quarks and
gluon, respectively.

In Figure A.2, we show the diagrams for u g → d t(→ bW+(→ ℓ+ νℓ)) b̄. Mi(hg, λb1)
will represent the ith diagram (i = 1, 2 from left to right in Figure A.2) where hg

represents the two transverse gluon polarizations and λb1 represents the two helicity
states of b̄. The matrix element in the helicity amplitude formalism for this process
is

M1(hg,∓) = 4〈 b̂2 −| n̂+〉〈 ê+| 6 t− | d̂+〉×

±
√
Eb1∓ |~b1 | 〈 û+| 6q− 6ε(hg)+ | b̂1 ±〉 ∓mb

√
Eb1± |~b1 | 〈 û+| 6ε(hg)− | b̂1 ±〉

(q2 −m2
b)

M2(hg,∓) = ±4
√
Eb1∓ |~b1 | 〈 b̂2 −| n̂+〉〈 û+| b̂1 ±〉×

〈 ê+| 6 t− 6ε(hg)+ 6r− | d̂+〉 +m2
t 〈 ê+| 6ε(hg)− | d̂+〉

(r2 −m2
t )

(A.38)

where we have indicated the four different helicity states involved in this process. We
keep the mass of the b̄ parton to avoid the case where the b propagator goes on shell.
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t

b2

e

n

w2

b

u d

1

w
1

Figure A.3: Diagram for u b→ d t(→ bW+(→ ℓ+ νℓ)).

For simplicity we have omitted a common factor of

g2
S

(
gW√

2

)4
√

(2Eu)(2Ed)(2Eb2)(2Ee)(2En)

(t2 −m2
t )(w

2
1 −M2

W )(w2
2 −M2

W )
(A.39)

and color matrices.4 We note that the polarization vectors for spin-1 gauge bosons
may be expressed in terms of spin-1

2
bras and kets. We define

|+〉 =
(

1
0

)
|−〉 =

(
0
1

)
, (A.40)

then for the transverse polarizations

6ε(R)
± = ∓

√
2| ĝ+〉〈 ĝ−|

6ε(L)
± = ±

√
2| ĝ−〉〈 ĝ+| (A.41)

and for massive spin-1 gauge bosons

6ε(0)
+ =

(
|~g |
m

− E

m

)
(|+〉〈+| + |−〉〈−|) + 2

E

m
| ĝ+〉〈 ĝ+|

6ε(0)
− =

(
|~g |
m

− E

m

)
(|+〉〈+| + |−〉〈−|) + 2

E

m
| ĝ−〉〈 ĝ−|. (A.42)

A.4 Helicity Amplitudes for u b → d t(→ bW+(→
ℓ+ νℓ))

In Figure A.3, we show the diagram for u b → d t(→ bW+(→ ℓ+ νℓ)). The matrix
element in the helicity amplitude formalism for this process is

M = 4〈 û+| b̂1 −〉〈 ê+| 6 t− | d̂+〉〈 b̂2 −| n̂+〉 (A.43)
4 The color factor for the amplitude squared is 3 × 4 × 1/3 × 1/8 for this process.
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Figure A.4: Diagram for u d̄→ b̄ t(→ bW+(→ ℓ+ νℓ)).

where we ignore the b parton mass. We have omitted a common factor of

(
gW√

2

)4
√

(2Eu)(2Ed)(2Eb1)(2Eb2)(2Ee)(2En)

(t2 −m2
t )(w

2
1 −M2

W )(w2
2 −M2

W )
(A.44)

and color matrices.5

A.5 Helicity Amplitudes for u d̄ → W ∗ → b̄ t(→
bW+(→ ℓ+ νℓ))

In Figure A.4, we show the diagram for u d̄ → W ∗ → b̄ t(→ bW+(→ ℓ+ νℓ)). Aside
from a possible phase, the matrix element in the helicity amplitude formalism for this
process (W ∗ production) is identical to that of Figure A.3. This is because one process
is the cross diagram of the other and therefore only the momentum assignments are
different. For clarity, it is

M = 4〈 û+| b̂1 −〉〈 ê+| 6 t− | d̂+〉〈 b̂2 −| n̂+〉. (A.45)

Again we ignore the b parton mass and omit the common factor of

(
gW√

2

)4
√

(2Eu)(2Ed)(2Eb1)(2Eb2)(2Ee)(2En)

(t2 −m2
t )(w

2
1 −M2

W )(w2
2 −M2

W )
(A.46)

and color matrices.6

A.6 Helicity Amplitudes for u d̄→ b̄ bW+(→ ℓ+ νℓ)

In Figure A.5 we show the diagrams for u d̄ → b̄ bW+(→ ℓ+ νℓ), the major W + 2
jets background to W–gluon fusion including b-tagging. The matrix element in the

5 The color factor for the amplitude squared is 3 × 3 × 1/3 × 1/3 for this process.
6 The color factor for the amplitude squared is 3 × 3 × 1/3 × 1/3 for this process.



86

u

d

g

w

q

b1

b2

e

n

u

d

g

w

r

b1

b2

e

n

Figure A.5: Diagrams for u d̄→ b̄ bW+(→ ℓ+ νℓ).

helicity amplitude formalism is

M(+,−) = 4〈 d̂−| n̂+〉〈 b̂1 +| û−〉〈 ê+| 6q− | b̂2 +〉/q2

+ 4〈 d̂−| b̂2 +〉〈 ê+| û−〉〈 b̂1 +| 6r− | n̂+〉/r2

M(−,+) = 4〈 d̂−| n̂+〉〈 b̂2 +| û−〉〈 ê+| 6q− | b̂1 +〉/q2

+ 4〈 d̂−| b̂1 +〉〈 ê+| û−〉〈 b̂2 +| 6r− | n̂+〉/r2 (A.47)

where we have indicated the helicity states of b̄ and b as M(λb1, λb2). We have once
again left out the factor of

g2
S

(
gW√

2

)2
√

(2Eu)(2Ed)(2Eb1)(2Eb2)(2Ee)(2En)

(g2)(w2 −M2
W )

(A.48)

and color matrices. 7

7 The color factor for the amplitude squared is 2 × 1/3 × 1/3 for this process.



Appendix B

Event Rate of the (2 → 3) Process
ug → dtb̄

Monte Carlo integration is an indispensable tool in phenomenology. However, when
performing a calculation one often encounters singularities which make it impossible
to obtain meaningful results from a Monte Carlo program. In the case of delta
functions one is forced to integrate by hand. Other singularities may occur when
propagators go on mass–shell. These types of divergences may be regularized by
applying suitable cuts on the external particles in the process. However, when one
is interested in obtaining a total rate, part of the calculation must be performed by
hand if there is any singularity present.

To obtain the total rate for the (2 → 3) process ug → dtb̄ via Monte Carlo
integration, the idea is to integrate out theW+g → tb sub-cross section in Figure (B.1)
by hand. The alternative is to use Monte Carlo for the full 3-body phase space, but
the singularity due to the small mass of the b quark in the right diagram would
require too much computer time even for the powerful technique applied in VEGAS,
a fortran code for calculating multiple dimensional integrations [64]. An added benefit
of performing the sub-cross section integration in the way shown in this appendix is
an understanding of the validity of the effective–W approximation[33].

e n

t

b

k

w

q

e n

t

bk

w

r

Figure B.1: Diagrams for u g → d t b̄ .
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The differential cross section for this process is

σ =
1

2s

∫
d3n

(2π)3(2En)
σsub (B.1)

where

σsub ≡
∫ d3t

(2π)3(2Et)

d3b

(2π)3(2Eb)
|M|2 (2π)4δ4(e+ k − n− t− b). (B.2)

Since σsub is a Lorentz invariant, we choose to evaluate it and the matrix element in
the tb̄ center of mass (CMS) frame. We express the 4-vector components of t, b, e, n
and k explicitly as

t = (Et, p sin θ cosφ, p sin θ sinφ, p cos θ)

b = (Eb,−p sin θ cosφ,−p sin θ sin φ,−p cos θ)

e = Ee(1, sin θe, 0, cos θe)

n = En(1, sin θn, 0, cos θn)

k = Ek(1, 0, 0, 1). (B.3)

In the tb̄ rest frame ŝ ≡ (t+ b)2, so

Et =
ŝ +m2

t −m2
b

2
√
ŝ

Eb =
ŝ−m2

t +m2
b

2
√
ŝ

p =
1

2
√
ŝ

√
[ŝ− (mt +mb)2][ŝ− (mt −mb)2]. (B.4)

It is easy to see in the tb̄ CMS, that ~e, ~k, ~n all lie in the same plane. Momentum

conservation (e + k = n + t + b) and ~t +~b = ~0 imply ~e + ~k = ~n. It only takes two
vectors to describe a plane and any vector which is a linear combination of those two

vectors lies in that plane. Therefore, we choose the vectors ~e, ~k, ~n to define the x–z

plane with the momentum of the gluon (~k) along the z–axis.

For a 3-body final state, there are only 5 (= 3×3−4) independent variables. (The
minus 4 is for energy-momentum conservation.) We shall choose the 5 independent
variables to be θ, φ, En, θn and φn where φn can be trivially integrated as

∫
dφn = 2π.

This is a consequence of the arbitrariness of the choice of scattering planes. Hence,
we should be able to express all vectors in terms of the 4 variables θ, φ, En and θn.

What we have done so far is express all 4-vectors in the tb̄ CMS. It is now a fairly
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trivial exersize to evaluate σsub.
1 We found

σsub =
1

4(2π)2

p√
ŝ

∫
d cos θ dφ |M|2. (B.5)

Having done so, we now have a Lorentz invariant expression for

σsub = σsub(ŝ, En, θn).

To compare our result with the effective–W approximation, we express En and θn in
terms of ek CMS quantities with the aid of some projection operators defined below.

To extract out the information of e, k and n in the tb̄ CMS frame we use the fact

that ~e+~k− ~n = 0 and (e+ k− n)2 = ŝ. We then define the projection operators PE

and P‖ as follows:

PEV ≡ (e+ k − n) · V√
ŝ

(B.6)

P‖V ≡ −k · V + EkEV

Ek
(B.7)

where V = e, n or k. PE and P‖ project out the energy of V and component of V
parallel to k (i.e., the z–axis) respectively. We express the 4-vector components of
e, n and k explicitly as

k =

√
s

2
(1, 0, 0, 1)

e =

√
s

2
(1, 0, 0,−1)

n = E
′

n(1,−sin θ
′

n, 0,−cos θ
′

n) (B.8)

where s = (e + k)2. From now on we will distinguish ek CMS components from tb̄
CMS components by a prime. We assume

E
′

n = E
′

e(1 − x) =

√
s

2
(1 − x)

and use the following results

ŝ = (e+ k − n)2 = xs

W 2 ≡ (e− n)2 = −s
2
(1 − x)(1 − cos θ

′

n). (B.9)

1 This integration is done analytically to avoid bad convergence in the numerical integration
method. All the singular terms are of the nature of ln(m2

b). Because the analytic form for this result
is long, it will not be explicitly given here.
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Using the projection operators it is easy to show

Ek =
1

2
√
xs

(xs−W 2)

Ee =
1

2
√
xs

(s+W 2)

En =
1

2
√
xs
s(1 − x)

k‖ = Ek

e‖ ≡ Eecos θe =
−1

2Ek

(W 2 + s(1 − x)) + En

n‖ ≡ Encos θn =
−s
2Ek

+ Ee (B.10)

and therefore
σsub = σsub(s, x,W

2).

Also, the Lorentz invariant phase space integral in terms of ek CMS components
becomes

∫
d3n

′

(2π)3(2E ′

n)
=

1

(4π)2

∫ 1

0
dx
∫ 0

−s(1−x)
dW 2. (B.11)

Finally, the following cross section

σ =
1

2s(4π)2

∫ 1

0
dx
∫ 0

−s(1−x)
dW 2σsub(s, x,W

2) (B.12)

may be folded in with parton distributions and safely evaluated using a Monte Carlo
program.

We note that
√
W 2 is the virtuality of the W–boson line emitted from the u–quark

line (with momentum e). (1−x) is the fraction of the incoming u–quark energy carried
away by the outgoing d–quark line in the ek CMS. If desired, one can approximate
the above equation as the result of the effective–W approximation. However, we shall
not pursue it further here.



Appendix C

Helicity Amplitudes of t→ W+b
and t̄→ W−b̄

In Equations (6.1) and (6.2) we have listed the most general form factors for the decay
processes t→ W+ + b and t̄→W− + b̄. Here we use those equations to calculate
the helicity amplitudes for an on–shell W–boson. (We take the limit of mb → 0 in
the following for mt ≫ mb.)

For the decay process t→ W+b, the top quark is taken to decay in its rest frame
where the top quark momentum is pt = (mt, 0, 0, 0). Spherical coordinates are used
to describe the outgoing particles; θ is taken from the positive Z–axis and φ is taken
from the positive X–axis in the X − Y plane. The bottom quark and the W–boson
are taken on their mass shells with the four–momenta for the bottom quark (pb) and
the W–boson (pW ) taken as

pb = (Eb,−Eb sin θ cosφ,−Eb sin θ sin φ,−Eb cos θ),

pW = (EW , Eb sin θ cos φ,Eb sin θ sin φ,Eb cos θ), (C.1)

where we have neglected the bottom quark mass, and

Eb =
m2

t −M2
W

2mt
. (C.2)

The angles θ and φ refer to the direction of the W–boson.

Denote the helicity amplitudes as (ht, λW , hb) with λW = −,+, 0 being a left-
handed, right-handed, and longitudinal W–boson. After suppressing the common
factor

−g√
2

√
2Ebmt, (C.3)

there are 8 nonvanishing helicity amplitudes in the rest frame of the top quark for
mb = 0:

91



92

(− 0 −) =
(
mt

MW
fL

1 + fR
2

)
sin

θ

2
,

(−−−) =
√

2
(
fL

1 +
mt

MW
fR

2

)
cos

θ

2
eiφ,

(+ 0 −) =
(
mt

MW
fL

1 + fR
2

)
cos

θ

2
eiφ,

(+ −−) = −
√

2
(
fL

1 +
mt

MW
fR

2

)
sin

θ

2
e2iφ,

(− 0 +) = −
(
mt

MW
fR

1 + fL
2

)
cos

θ

2
e−iφ,

(− + +) = −
√

2
(
fR

1 +
mt

MW

fL
2

)
sin

θ

2
e−2iφ,

(+ 0 +) =
(
mt

MW

fR
1 + fL

2

)
sin

θ

2
,

(+ + +) = −
√

2
(
fR

1 +
mt

MW

fL
2

)
cos

θ

2
e−iφ. (C.4)

To obtain the averaged amplitude squared, a spin factor 1
2

should be included. We
note that there is no right-handed W–boson produced with a massless left-handed
b from a top quark decay. Similarly, from helicity conservation, it is not possible to
have a left-handed W–boson produced with a massless right-handed b from t decay.

For an unpolarized top quark decay, after summing over the helicities of the bot-
tom quark, the amplitudes squared for various W polarizations are, apart from a
common factor (g2Ebmt),

|M(λW = −)|2 =
∣∣∣∣f

L
1 +

mt

MW
fR

2

∣∣∣∣
2

,

|M(λW = +)|2 =
∣∣∣∣f

R
1 +

mt

MW

fL
2

∣∣∣∣
2

,

|M(λW = 0)|2 =
1

2

∣∣∣∣
mt

MW
fL

1 + fR
2

∣∣∣∣
2

+
1

2

∣∣∣∣
mt

MW
fR

1 + fL
2

∣∣∣∣
2

. (C.5)

The fraction (fLong) of longitudinally polarized W -boson produced in the rest frame
of the top quark is defined as the ratio of the number of longitudinally polarized
W–bosons produced with respect to the total number of W–bosons produced in top
quark decays:
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fLong =
Γ(λW = 0)

Γ(λW = 0) + Γ(λW = −) + Γ(λW = +)

=
|M(λW = 0)|2

|M(λW = 0)|2 + |M(λW = −)|2 + |M(λW = +)|2
, (C.6)

where we use Γ(λW ) to refer to the decay rate for a top quark to decay into aW–boson
with polarization λW .

Using a parallel definition for the process t̄ → W−b̄, we obtain the helicity am-
plitudes (ht̄, λW , hb̄), similar to the ones listed in Equation (C.4) for the t → W+b

process, provided we replace fL
1 by fR

1
∗
, fR

1 by fL
1
∗
, fL

2 by fR
2
∗
, and fR

2 by fL
2
∗
. (Here

the superscript ∗ means complex conjugate.)

The helicity amplitudes of the process W+ → e+νe are well known. After sup-
pressing the common factor (gMW ), they are

(λW = −) = −e−iφ∗

e

(
1 − cos θ∗e

2

)
,

(λW = 0) = −sin θ∗e√
2
,

(λW = +) = −eiφ∗

e

(
1 + cos θ∗e

2

)
, (C.7)

where θ∗e and φ∗e refer to e+ in the rest frame of W+.

The helicity amplitudes (λW ) for the decay process W− → e−ν̄e can be obtained
from Equation (C.7) by replacing θ∗e by π− θ∗e and φ∗e by π+ φ∗e. In this case, θ∗e and
φ∗e refer to e− in the rest frame of W−.



Appendix D

The Total Rate for W–gluon Fusion

As discussed in Section 2, the total rate for the W–gluon fusion process is obtained
by

Total = (2 → 2) + (2 → 3) − (splitting piece)

and the rates of

(2 → 2) =
∫
dξ1 dξ2 fq′/A(ξ1, µ) fb/B(ξ2, µ) σ̂(q′b→ qt)

+
∫
dξ1 dξ2 fb/A(ξ1, µ) fq′/B(ξ2, µ) σ̂(bq′ → qt) (D.1)

(2 → 3) =
∫
dξ1 dξ2 fq′/A(ξ1, µ) fg/B(ξ2, µ) σ̂(q′g → qtb̄)

+
∫
dξ1 dξ2 fg/A(ξ1, µ) fq′/B(ξ2, µ) σ̂(gq′ → qtb̄) (D.2)

(splitting piece) =
∫
dξ1 dξ2 fq′/A(ξ1, µ) f̃b/B(ξ2, µ) σ̂(q′b → qt)

+
∫
dξ1 dξ2 f̃b/A(ξ1, µ) fq′/B(ξ2, µ) σ̂(bq′ → qt) (D.3)

where, for instance, fb/A(ξ1, µ) denotes the parton distribution function (PDF) of the
b quark inside hadron A, carrying the fraction ξ1 of the hadron momentum, and µ is
the energy scale at which the PDF is evaluated. The constituent cross section σ̂ is
given by the differential cross section for

p1(m1) + p2(m2) → p′1(m
′
1) + p′2(m

′
2) + · · ·+ p′n(m′n), (D.4)

as shown in Figure D.1. The differential cross section is

dσ̂ =
|M |2 dΦn(p1 + p2; p

′
1, · · · , p′n)

4
√

(p1 · p2)2 −m2
1m

2
2

(D.5)
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with

dΦn(p1 + p2; p
′
1, · · · , p′n) = (2π)4δ4(p1 + p2 −

n∑

i=1

p′i)
n∏

i=1

d3p′i
(2π)3dE ′i

(D.6)

and |M |2 is the square of the amplitude after summing over the final state polariza-
tion and colors and averaging over the initial state polarization and colors. Notice
that the differential cross section for dσ̂(bq′ → qt) can be obtained from dσ̂(q′b→ qt)
by interchanging the 4–momenta p1 and p2 in the scattering amplitudes. In terms of
the polar angle θ∗ and azimuthal angle φ∗ defined in the center-of-mass frame of the
partons, this means replace θ∗ by π − θ∗ and φ∗ by π + φ∗. In Equation (D.3), the
effective parton density

f̃b/A(ξ, µ) =
αS(µ)

2π
ln

(
µ2

m2
b

)∫
dz

z

[
z2 + (1 − z)2

2

]
fg/A

(
ξ

z
, µ

)
(D.7)

in the MS scheme. The coupling constant

αS(µ) =
12π

(33 − 2nf) ln( µ2

Λ2 )
. (D.8)

Here, nf is the number of quarks with mass less than the energy scale µ. The QCD

parameter Λ ≡ Λ
(nf )

MS
is an experimentally determined parameter. Perturbative QCD

is presumed to be applicable for µ ≫ Λ. For CTEQ2L PDF, Λ
(4)

MS
= 190 MeV.

p1;m1
p2;m2 p02;m02p01;m01

p0n;m0n
Figure D.1: n–body scattering



Appendix E

The Eikonal Approximation for
σ(AB(ud̄) → b̄bW+ + jet)

Applying the Eikonal approximation, we can write the cross section of σ(AB(ud̄) →
b̄bW+ + jet) in terms of the amplitude square of the ud̄→ b̄bW+ process as follows.

σ(AB(ud̄) → b̄bW+ + jet) =
∫
dQ2

∫
dy
∫
dq2

T

∫
dΦ3

1

2S

(
αS(Q)

2πq2
T

)
×



fu/A(xA, Q)


∑

j

P
(1)

d̄←j
◦ fj/B + P

(1)

d̄←g
◦ fg/B


(xB, Q) + (E.1)

fu/A(xA, Q) fd̄/A(xB, Q)

[
CF ln

(
Q2

q2
T

)
− 3

2
CF

]}
|M(ud̄→ b̄bW+) |2 +

(A↔ B),

where dΦ3 is the usual 3-dimensional phase space volume as defined in Appendix B.

Q, y and qT are the invariant mass, rapidity and transverse momentum of the

(W + b̄+ b) system. |M(ud̄→ b̄bW+) |2 is the amplitude square of ud̄→ b̄bW+ after
summing over the spin and color factors in the final state and averaging over the spin
and color factors in the initial state. For a given Q, y and qT

xA =
Q√
S
ey, xB =

Q√
S
e−y, (E.2)

where
√
S is the center-of-mass energy of the hadrons A and B.

The splitting functions are

P
(1)
k←j(z) = CF

(
1 + z2

1 − z

)

+

δkj , (E.3)
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P
(2)
k←g(z) =

1

2

(
z2 + (1 − z)2

)

(E.4)

and

(P (1) ◦ f)(x,Q) =
∫ 1

x

dξ

ξ
P (1)

(
x

ξ

)
f(x,Q), (E.5)

(E.6)

where the indices j and k denote the flavor of quark or antiquark, δkj is equal to 1 for

k = j and zero otherwise. In QCD, CF = 4
3

for three colors. The “+” prescription is
defined by

∫ 1

x
dz

(
1 + z2

1 − z

)

+

f(z) =
∫ 1

0
dz

(1 + z2)f(z)θ(z − x) − (1 + z2)f(1)

1 − z
, (E.7)

where

θ(z − x) =

{
1 for z > x
0 otherwise

. (E.8)

The above result holds in the soft-gluon approximation. We have also assumed
that the initial state QCD radiation dominates the soft-gluon radiation from ud̄ →
b̄bW+. This should be a good approximation because the b quark is massive and is
less likely to radiate gluons as compared to the initial state quark or gluon.



Appendix F

The Computer Program ONETOP

Our analysis is based on our Monte Carlo program ONETOP, created by modifying
PAPAGENO (version 3.07), written by Ian Hinchliffe. ONETOP contains code for
parton level analyses of single top-quark production at hadron colliders as well as
the major background. The top quark decays on-shell to bW+ with branching ratio
Br = 1. All final state W ’s decay on-shell to eν with branching ratio Br = 1

9
.

In addition, we implemented QCD tt̄ production with the top quark decaying on-
shell according to the Effective Lagrangian of Equation(6.1), which includes the most
general t-b-W couplings.

Only the CTEQ2 leading order parton distribution is implemented[27]. ONETOP
accepts matrix elements calculated using the helicity amplitude method described in
Appendix A. Squaring of the matrix elements and sums over spin and color are
performed numerically. We include a simple histogramming package which allows the
plotting of one- and two-dimensional differential cross-sections to aid in analyzing
event topologies.

We list below the processes included in ONETOP. The structure of these processes
are fully discussed in Section 7.

• q′b→ q t(→ bW+(→ ℓ+ν)),

• q′g → q t(→ bW+(→ ℓ+ν)) b̄,

• q′q̄ → W ∗ → b̄ t(→ bW+(→ ℓ+ν)),

• q′q̄ → b̄bW+(→ ℓ+ν),

• qq̄, gg → t(→ bW+(→ ℓ+ν)) t̄(→ b̄W−(→ ℓ−ν̄)).
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