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Abstract

Starting from the Schr�odinger functional, we give a non-perturbative de�nition of the

running coupling constant in QCD. The spatial boundary conditions for the quark

�elds are chosen such that the massless Dirac operator in the classical background

�eld has a large smallest eigenvalue. At one-loop order of perturbation theory, we

determine the matching coe�cient to the MS-scheme and discuss the quark mass e�ects

in the �-function. To this order, we also compute the Symanzik improvement coe�cient

necessary to remove the O(a) lattice artefacts originating from the boundaries. For

reasonable lattice resolutions and the standard Wilson action, lattice artefacts are found

to be only weakly dependent on the lattice spacing a, while they vanish quickly with

the improved action of Sheikholeslami and Wohlert.

MPI{PhT/95-69

CERN-TH/95-208

August 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The strong coupling constant �s can be extracted from experimental data, e.g. by com-

paring jet production rates at a collider experiment. On the other hand, several authors

have emphasized that a theoretical determination of the strong coupling constant is pos-

sible by making use of lattice gauge theory [1{5]. This would provide a quantitative

test of QCD which is believed to be the fundamental theory of both, hadronic physics

and jet physics at high energies.

The basic strategy, as proposed by L�uscher, Weisz and Wol� [1] is easily de-

scribed [6]. First, one �xes the free parameters in the QCD action by taking a cor-

responding number of low energy observables as experimental input. Then one has to

�nd a suitable non-perturbative de�nition of a running coupling and trace its evolution

from low to high energies, using Monte Carlo simulations. In the high energy regime,

perturbation theory can be used to convert to other schemes such as the modi�ed min-

imal subtraction scheme (MS) of dimensional regularization.

Since the above strategy applies to any asymptotically free �eld theory, it has �rst

been tested for simpler models, namely the 2-dimensional non-linear O(3) model [1], and

the pure SU(2) and SU(3) gauge theories [2{4]. One uses non-perturbatively de�ned

couplings which run with L, the linear extension of the space-time volume. Then, using

a recursive �nite size scaling technique, the authors of refs. [1{4] were able to avoid

the potential problem of having very di�erent length scales �t on a single lattice. As

a result, the running coupling was obtained deeply in the perturbative region, with all

errors under control. The �nal perturbative matching to the coupling constant of the

MS scheme is done at the one-loop level in SU(3), and in the case of SU(2) even the

two-loop coe�cient is known [7].

Although the choice of the non-perturbative running coupling is not a question

of principle, the practical feasibility of the project very much depends on it. Indeed,

the great success in the pure gauge theories is largely due to a clever de�nition of

the running coupling constant as the system's response to an external color electric

�eld. The theoretical framework for such a de�nition goes under the name Schr�odinger

functional. By this one means the Euclidean path integral on a space-time manifold with

boundaries at Euclidean times x0 = 0 and x0 = L, at which the values of the quantum

�elds are prescribed. The classical \path" then corresponds to a minimal action �eld

con�guration, the background �eld, which interpolates between the boundary values.

Before the Schr�odinger functional can be used in practice, some theoretical con-

siderations have to be made. In particular, the presence of the boundaries may lead

to new singularities, which are not taken into account by the usual renormalizations

of the bare parameters. Moreover, the lack of translation invariance on the space time

manifold prevents the use of the standard proofs of perturbative renormalizability.

In the pure SU(N) gauge theory, these questions have been treated in ref. [8]. For

a detailed account of the Schr�odinger functional in QCD the reader should consult

refs. [9,10]. Here we merely state the main result. Using power counting arguments,

1



one expects [11] that the Schr�odinger functional in QCD is renormalized by the usual

QCD renormalizations of the coupling constant, the quark masses and, in addition, a

multiplicative renormalization of the quark boundary �elds. In particular, if the latter

are taken to vanish, no additional divergence is introduced through the presence of the

boundaries. This naive expectation has been con�rmed at one-loop order of perturbation

theory [10].

In this paper, we adapt the de�nition of the SU(3) running coupling constant to

QCD and establish its perturbative relation to the MS scheme at one-loop order of

perturbation theory. The computation is straightforward in principle, but complicated

through the presence of the quark masses. In particular, the dependence of the conver-

sion coe�cient and the �-function on the quark masses cannot be computed analytically

and has to be extracted numerically from lattice perturbation theory. In view of the

Monte Carlo simulations to be carried out later, we also determined the lattice artefacts

in the observables.

The paper is organized as follows. In section 2, the de�nition of the Schr�odinger

functional is recalled both, in the continuum and on the lattice. The running coupling

and the associated �-function are de�ned. In section 3, the conversion to the MS scheme

is done with and without the Sheikholeslami-Wohlert term in the action. There, we

also discuss the �-function and the threshold e�ects in the perturbative running of the

coupling. Lattice artefacts are discussed in section 4 and we �nally summarize our main

results.

2 The Schr�odinger functional

2.1 Classical continuum action

A rigorous de�nition of the QCD Schr�odinger functional exists on a space-time lattice

and will be presented in section 2.6. On a more formal level, the Schr�odinger functional

can also be de�ned in the continuum [8,10]. It is given as the euclidean path integral

with the action

S[A; � ;  ] = �
1

2g2
0

Z L

0

d4x trfF��F��g+
Z L

0

d4x � (D=+m0) : (2.1)

Here, g0 denotes the bare coupling constant, F�� is the �eld tensor associated with the

SU(3) gauge �eld A�,

F�� = @�A� � @�A� + [A�; A� ]; (2.2)

and D� = @� + A� denotes the covariant derivative on the quark �elds. For simplicity,

we assume nf degenerate quark avors of bare mass m0, the generalization to the non-

degenerate case being trivial. The -matrices are hermitian and satisfy

f�; �g = 2��� ; �; � = 0; : : : ; 3; (2.3)
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and the �fth -matrix is 5 = 0123. Space-time is taken to be a cylinder of linear

extension L. In the time direction, we impose the boundary conditions,

Akjx0=0 = Ck; Akjx0=L = C0k; k = 1; 2; 3 (2.4)

and

P+ jx0=0 = 0; P� jx0=L = 0;

� P�jx0=0 = 0; � P+jx0=L = 0;
(2.5)

with the projectors P� = 1

2
(1 � 0). In the spatial directions, periodic boundary con-

ditions are imposed on the gauge �elds, while the quark �elds are taken to be periodic

up to a phase factor,

 (x+ Lk̂) = ei� (x); � (x+ Lk̂) = e�i� � (x): (2.6)

Here, the spatial index k takes the values 1; 2; 3, and k̂ denotes the unit vector in

direction k. For reasons to be explained in section 2.7, we will later consider the values

0 and �=5 for the parameter �.

2.2 The background �eld

The Schr�odinger functional Z is considered a functional of the boundary gauge �eld C

and C0. In the following we restrict attention to the abelian boundary �elds which have

been introduced in ref. [3],

Ck =
i

L

0
B@
�1 0 0

0 �
2

0

0 0 �
3

1
CA ; C0k =

i

L

0
B@
�01 0 0

0 �0
2

0

0 0 �0
3

1
CA ; k = 1; 2; 3;

(2.7)

with

�1 = � �
�

3
; �01 = ��1 �

4�

3
;

�2 = �(� �
1

2
); �02 = ��3 +

2�

3
; (2.8)

�3 = ��(� +
1

2
) +

�

3
; �03 = ��2 +

2�

3
:

This de�nes a 2-parameter family of boundary gauge �elds. A solution to the �eld

equations with these boundary �elds is given by

B0 = 0; Bk =
�
x0C

0

k + (L� x0)Ck

�
=L; k = 1; 2; 3: (2.9)

Moreover, for given boundary �elds, C and C 0, the �eld B represents the unique absolute

minimum of the action. Any other �eld with the same action and boundary values is

thus gauge equivalent to B, which will be referred to as the background �eld in the

following. The associated �eld tensor G�� has the non-vanishing components

G0k = @0Bk = (C0k � Ck)=L; k = 1; 2; 3; (2.10)

which constitute the color-electric background �eld mentioned in the introduction.
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2.3 The e�ective action

The uniqueness of the induced background �eld allows to unambiguously de�ne the

e�ective action of the Schr�odinger functional as a functional of B, viz

�[B] = � lnZ [C0; C]: (2.11)

In ref. [10], the saddle point expansion of the Schr�odinger functional has been carried

out to one loop-order, using dimensional regularization. At this order one needs the

uctuation operators of the ghost, gluon and quark �elds. For the precise de�nition of

the pure gauge theory operators, �0 and �1, we refer to ref. [8].

Concerning the quark �eld uctuation operator, it has been noted in ref. [9] that

the Dirac operator

D = D=+m0; D� = @� +B�; (2.12)

and its adjoint, Dy, allow for the de�nition of two distinct operators

�2 = DD
y; �0

2 = D
yD: (2.13)

The operator �0

2
is de�ned on spinors  (x) which satisfy the boundary conditions (2.5).

Furthermore, its eigenfunctions satisfy the modi�ed Neumann conditions

(D0 �m0)P� (x)jx0=0 = 0; (D0 +m0)P+ (x)jx0=L = 0: (2.14)

On the other hand, the operator �2 acts on �elds which satisfy the same boundary

conditions as � (2.5) and thus lives on a di�erent space of functions. However, it

follows from the analysis of ref. [9] that both operators, �2 and �0

2, have exactly the

same spectrum. For quantities which only refer to their spectrum we therefore need not

distinguish between the two.

To write down the one-loop e�ective action, we make use of the �-functions, de�ned

through

�(sj�i) = Tr��s
i ; i = 0; 1; 2: (2.15)

They extend to meromorphic functions in the whole complex plane, and one may show

that their derivatives at s = 0 are well-de�ned. One then obtains

�[B] =

�
1

g2
MS

(�)
�

33� 2nf

48�2
ln�2 �

1

16�2

�
�0[B]

�
1

2
�0(0j�1) + �0(0j�0) +

1

2
�0(0j�2) + O(g2

MS
) ;

(2.16)

where g
MS

denotes the renormalized coupling constant in the modi�ed minimal scheme

(MS), and �0 is the classical action of the induced background �eld,

�0[B] = �
1

2

Z L

0

d4x trfG��G��g: (2.17)
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Note that the operators �i have dimension L�2. Therefore, the derivative of the �-

functions contains a logarithmic dependence on L, such that a logarithm of �L is ob-

tained in eq. (2.16). Furthermore it turns out that the �eld dependent part of the

one-loop e�ective action is proportional to �0.

2.4 De�nition of the running coupling

As the e�ective action depends { apart from the quark masses { only on a single scale,

L, eq. (2.16) suggests to de�ne a renormalized coupling constant, �g(L), through [8]

@�

@�

����
�=�=0

=

�
@�0=@�

�
�=0

�g2(L)
;

@�0

@�

����
�=0

= 12�: (2.18)

Note that the derivative with respect to the parameter � eliminates any divergent con-

tributions to the e�ective action which do not depend on the background �eld.

Using the notation

�
MS

(q) =
g2
MS

(q)

4�
; �(q) =

�g2(L)

4�
; q = 1=L (2.19)

we are here interested in the perturbative relation

�
MS

= �+ c1�
2 + O(�3) : (2.20)

The coe�cients in this expansion are functions of the parameter

z = m(L)L; (2.21)

where m is a suitably de�ned running quark mass. The form of these functions depends

on the de�nition of m. However, for the computation of the one-loop coe�cient c1 it

is su�cient to de�ne m at tree level. In the following we adopt the convention that, to

this order, m coincides with the bare quark mass.

We split c1 into its pure gauge theory value, c1;0, and the quark contribution, c1;1,

viz

c1 � c1(nf ; z) = c1;0 + nfc1;1(z); (2.22)

where c1;0 has been computed in ref. [3],

c1;0 = 1:25563(4): (2.23)

A further renormalized quantity is obtained if the parameter � in eq. (2.18) is kept

di�erent from zero, viz

@�

@�

����
�=0

= 12�

�
1

�g2
� ��v

�
: (2.24)
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It is not di�cult to see that �v does not depend on �. Note also that �v vanishes at tree

level, because �0 is independent of �. Its perturbative expansion reads

�v � v1(nf ; z) + O(�); v1(nf ; z) = v1;0 + nfv1;1(z); (2.25)

with the pure gauge theory contribution [3]

v1;0 = 0:0694603(1) : (2.26)

The coe�cients c1 and v1 can be calculated in the continuum through evaluation of

eq. (2.16). One starts from the expression [8]

@

@�
�0(0j�) = lim

�!0

n
(E + ln �)

@

@�
�0(�)�

1X
n=0

e���n
@

@�
ln�n

o
; (2.27)

where � stands for any of the uctuation operators. The Seeley coe�cient �0 is pro-

portional to �0 in all three cases, and �n are the eigenvalues of �, in ascending order.

The calculation of the quark contribution c1;1(z) essentially amounts to the deter-

mination of the eigenvalues of �2 and their derivatives with respect to �, up to a certain

cuto� in the level n. One then evaluates the bracket in eq. (2.27) for a range of �-values

and extrapolates to � = 0, taking into account that the bracket has an asymptotic

expansion in powers of �1=2 [8].

We employed a variational method with a plane wave basis to compute the eigen-

values. As a check on the precision, we also considered the eigenvalue equation for �2,

which has a general solution in terms of hypergeometric functions. The boundary condi-

tions eqs. (2.5),(2.14) then lead to a system of linear equations which can be numerically

solved for the eigenvalues.

For z = 0, we were thus able to compute c1;1 with an estimated numerical precision

of 3{4 signi�cant digits. As z increases, cancellations in the sum over eigenvalues become

stronger, resulting in a loss of precision. Since this computation was mainly intended

to be a check on the more precise lattice methods, we do not quote the results here and

refer the reader to section 3 instead.

2.5 The �-function

The Callan Symanzik �-function is de�ned through

�(�g) = �L
@�g

@L
; (2.28)

where the derivative is taken at �xed bare parameters or, equivalently, keeping the

renormalized parameters, m(L0) and �g(L0), �xed at some normalization scale L0. The

�-function has a perturbation expansion

�(�g)
�g!0
� ��g3

1X
n=0

bn�g
2n ; (2.29)
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with coe�cients that are quark mass dependent,

bn � bn(nf ; z); n = 0; 1; 2; : : : (2.30)

In particular, b0 and b1 coincide with the universal coe�cients only when the quark

mass is set to zero,

b0(nf ; 0) =
1

(4�)2
�
11�

2

3
nf
�
; (2.31)

b1(nf ; 0) =
1

(4�)4
�
102�

38

3
nf
�
: (2.32)

To obtain the mass dependence of the coe�cients bn, one may relate �g perturbatively to

any mass independent renormalized coupling constant. The coupling in the MS scheme

has this property. Writing

b0(nf ; z) � b0;0+ nfb0;1(z); (2.33)

we obtain b0;1(z) from c1;1(z) through

b0;1(z) = �
1

24�2
�

1

8�
zc0

1;1(z); c0
1;1(z) �

d

dz
c1;1(z): (2.34)

The central observable in a non-perturbative computation of the evolution of the

coupling is an integrated version of the �-function, the step scaling function [1]. It is

de�ned as follows. Starting with a value u = �g2(L) for the coupling at length scale L,

the step scaling function, �, is

�(s; u; z)� �g2(sL) : (2.35)

Finally, we note that a similar scaling function can be de�ned for the running quark

mass.

2.6 Lattice formulation

2.6.1 The lattice action

In Wilson's lattice QCD, the path integral representation of the Schr�odinger functional

reads [9],

Z =

Z
D[ ]D[ � ]D[U ] e�S : (2.36)

with the lattice action S = Sg + Sf , given by

Sg[U ] =
1

g2
0

X
p

w(p) trf1� U(p)g; (2.37)

Sf [U; � ;  ] = a4
X
x

� (D +m0) : (2.38)
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The gauge �eld action Sg is a sum over all oriented plaquettes p on the lattice, with the

weight factors w(p), and the parallel transporters U(p) around p. The weights w(p) are

1 for plaquettes in the interior and

w(p) =

8<
:

1

2
cs if p is a spatial plaquette at x0 = 0 or x0 = L;

ct if p is timelike and attached to a boundary plane. (2.39)

The choice cs = ct = 1 corresponds to the standard Wilson plaquette action. How-

ever, these parameters can be tuned in order to reduce the lattice artefacts, as will be

discussed in detail in section 4.

The Dirac operator in the quark action (2.38) is speci�ed by

D =
1

2

3X
�=0

f�(r
�

� +r�)� ar
�

�r�g+ csw
ia

4

3X
�;�=0

���P�� (2.40)

with the forward and backward covariant derivatives

r� (x) =
1

a
[U(x; �) (x+ a�̂)�  (x)]; (2.41)

r�� (x) =
1

a
[ (x)� U(x� a�̂; �)y (x� a�̂)]: (2.42)

The link variable U(x; �) is the usual parallel transporter from point x+ a�̂ to point x,

where �̂ denotes the unit vector in �-direction.

The last term in eq. (2.40) has been introduced by Sheikholeslami and Wohlert [12],

in order to cancel the leading cuto� e�ects of the standard Wilson quark action. It

contains the lattice de�nition P�� of the �eld tensor,

P��(x) =
1

8a2

�
U(x; �)U(x+ a�̂; �)U(x+ a�̂; �)yU(x; �)y

+ U(x; �)U(x+ a�̂ � a�̂; �)yU(x� a�̂; �)yU(x� a�̂; �)

+ U(x� a�̂; �)yU(x� a�̂� a�̂; �)yU(x� a�̂ � a�̂; �)U(x� a�̂; �)

+ U(x� a�̂; �)yU(x� a�̂; �)U(x+ a�̂ � a�̂; �)U(x; �)y
�

� (� ! �);

(2.43)

and our convention for ��� reads

��� =
i

2
[�; �]: (2.44)

The standard Wilson quark action is recovered for csw = 0, and the choice csw = 1 will

be referred to as Sheikholeslami-Wohlert action.
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2.6.2 Boundary conditions and the background �eld

The boundary conditions for the lattice gauge �elds are

U(x; k)jx0=0 = exp(aCk); U(x; k)jx0=L = exp(aC0k); (2.45)

for k = 1; 2; 3, and with the abelian boundary �elds C and C0 as given in eq. (2.7). All

other boundary conditions are as in the continuum (cf. section 2.1).

The boundary conditions (2.45) lead to a unique (up to gauge transformations)

minimal action con�guration V , the lattice background �eld. It can be expressed in

terms of B (2.9),

V (x; �) = exp faB�(x)g ; (2.46)

and its �eld tensor (2.43) evaluates to

P��
��
U=V

=
1

a2
sinh a2G�� ; (2.47)

with G�� given in eq. (2.10).

2.6.3 The e�ective action

The e�ective action � = � lnZ has an asymptotic expansion in the bare coupling

constant,

� = g�2
0
�0 + �1 + O(g20) (2.48)

with the lowest order term �0 =
�
g20Sg[V ]

	
g0=0

. The next order term is, for cs = ct = 1,

given by

�1 =
1

2
lndet�1 � ln det�0 �

1

2
ln det�2 : (2.49)

Here, the operators �i, i = 0; 1; 2; are the lattice approximants of the continuum oper-

ators introduced above. Again, we refer to refs. [8,3] for the de�nition of �0 and �1.

The operators �2 and �0

2 are related to the lattice Dirac operator,

�2 = [(D+m0)5]
2; �0

2 = [5(D+m0)]
2: (2.50)

Since D (2.40) acts on lattice spinors  (x) which satisfy the boundary conditions (2.5),

it follows that the eigenfunctions of 5(D+m0) (and thus of �
0

2
) satisfy a lattice version

of the modi�ed Neumann conditions (2.14). Furthermore, from eq. (2.50) it is obvious

that both lattice operators, �2 and �0

2, have the same eigenvalues.
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2.6.4 De�nition of the running coupling

With these preliminaries, we de�ne the running coupling constant �g(L) and its relative

�v(L) through

@�

@�

����
�=0

= k

�
1

�g2
� ��v

�
; (2.51)

with

k =
@�0

@�

����
�=0

= 12(L=a)2[sin() + sin(2)];  =
1

3
�(a=L)2: (2.52)

Here, the normalization constant k ensures that the renormalized coupling is exactly

equal to g0 at lowest order in the perturbation expansion.

2.7 Spatial boundary conditions and the Dirac operator

It remains to justify the choices 0 and �=5 for the angle � in the spatial boundary con-

ditions for the quark �elds (2.5). Of course, setting � = 0 is a natural and aesthetically

pleasing choice, which corresponds to periodic boundary conditions.

Beyond aesthetical criteria there is an additional, more technical one. Having in

mind numerical simulations of QCD, it is worthwhile to recall that the speed of the

known algorithms depends crucially on the condition number, i.e. the ratio between the

highest and the lowest eigenvalue of the squared fermion matrix �2 (2.50). Thus it is

desirable to have a lowest eigenvalue of �2, which is not too small.

� = 0 � = �=5

n �n nc d n �n nc d

1 2.132449 2 2 1 4.693976 2 2

2 4.804360 2 2 2 4.881719 1 2

3 7.599922 3 2 3 8.384625 2 2

4 9.732686 1 2 4 13.109607 1 2

5 12.132366 3 2 5 13.834839 3 2

6 20.221614 1 2 6 19.717052 3 2

7 22.937850 2 2 7 26.100020 2 2

8 23.755510 2 2 8 26.996453 2 2

9 27.184931 1 6 9 27.826014 1 6

10 28.451394 3 6 10 27.846538 3 6

Table 1: The lowest eigenvalues (in units of L�2) of the continuum operator �c
2
for vanishing mass

and two choices of �. Since �c
2
is diagonal in color space, each eigenvalue is associated with a color

component nc. We also give the degeneracy d for one quark avor.

As a guiding principle, we have investigated the eigenvalues of the corresponding
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continuum operator1 �c
2
(2.13). In ref.[9], it has been emphasized that the boundary

conditions (2.5) introduce a gap, i.e. a non-vanishing lowest eigenvalue which is given

by �2=4L2 = 2:467:::=L2, if the phase �, the quark mass and the background �eld are

taken to vanish.

� = 0

L = 6a L = 12a L = 24a

n csw = 1 csw = 0 csw = 1 csw = 0 csw = 1 csw = 0 nc d

1 2.5338 3.0378 2.3147 2.5504 2.2190 2.3330 2 2

2 5.7261 5.0256 5.2428 4.9024 5.0181 4.8503 2 2

3 9.4614 10.4139 8.4086 8.8526 7.9758 8.1907 3 2

4 12.5904 14.8258 10.9562 11.9796 10.2964 10.7871 1 2

5 14.4516 13.3254 13.1233 12.5815 12.5924 12.3256 3 2

6 23.6179 20.7726 21.4968 20.1181 20.7701 20.0870 1 2

7 25.3644 26.1068 24.3912 25.1434 23.7033 24.0727 2 2

8 27.6740 26.9095 25.9626 25.1982 24.8980 24.5223 2 2

9 32.0603 33.9463 29.1583 29.7601 28.0767 28.2945 1 6

10 33.4272 34.4403 30.7130 31.0696 29.5507 29.6932 3 6

� = �=5

1 5.7398 6.4868 5.1553 5.5042 4.9100 5.0788 2 2

2 6.0947 7.6777 5.4075 6.1333 5.1253 5.4732 1 2

3 9.9756 9.0438 9.0987 8.6484 8.7240 8.5022 2 2

4 15.2653 12.9957 14.0326 12.9231 13.5401 12.9897 1 2

5 17.6812 18.9750 15.4669 16.0670 14.5849 14.8749 3 2

6 23.6820 22.2339 21.2686 20.5772 20.4024 20.0625 3 2

7 29.9843 30.9829 28.0259 28.8318 27.0343 27.4287 2 2

8 32.6882 31.6622 29.8174 28.9978 28.3772 27.9760 2 2

9 31.9457 33.8957 29.7929 30.4575 28.7990 29.0545 1 6

10 33.8957 34.8946 30.2866 30.6210 28.9484 29.0768 3 6

Table 2: The lowest eigenvalues (in units of L�2) of the lattice operator �2, for vanishing bare mass

m0. The eigenvalues are ordered according to their continuum limits (cf. table 1).

This picture remains valid in the presence of the abelian background �eld (2.9).

At � = 0 and for vanishing quark mass, the lowest eigenvalue is slightly decreased and

approximately given by 2:132=L2. Furthermore, it is possible to increase the lowest

eigenvalue substantially by varying the angle �. We observed a maximal gap around

� = �=5, and decided to consider this value besides � = 0. The lowest eigenvalues of �c
2

for these two choices are shown in table 1.

1In this subsection we add a superscript c in order to distinguish the continuum operator from its

counterpart on the lattice.
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On a lattice with �nite spacing a, the gap is somewhat larger. For illustration,

we have collected the lowest eigenvalues of the lattice operator �2 on three lattices

of di�erent size L=a in table 2. We observe that almost all low lying eigenvalues are

approached from above by their lattice approximants, at a rate which is roughly given

by a=L. In this respect, there is no di�erence whether the Sheikholeslami-Wohlert term

is included in the action or not. We notice, however, that the approach to the continuum

eigenvalues seems to be slightly more uniform for the Sheikholeslami-Wohlert action.

It is not clear how relevant these considerations are for a realistic simulation. Fluc-

tuating gauge �elds can lead to small eigenvalues of the lattice operator �2 and �nally

the typical spectrum has to be determined by numerical experiment. However, we be-

lieve that in su�ciently small volume, the dominant contributions to the path integral

come from gauge �eld con�gurations which are close to the classical background �eld.

Thus we suggest to use � = �=5 in practical applications.

3 One loop relations

The one-loop matching between � and �
MS

(2.20) is done in two steps. First, we

calculate the relation of � to a renormalized lattice coupling �lat. Combination with

the known one-loop relation between �lat and �MS
then yields the desired result.

3.1 The basic calculation

Insertion of the asymptotic expansion (2.48) into the de�nition of the running coupling,

eq. (2.51), leads to the relation

�g2 = g20 + p1 g
4

0 + O(g60); (3.1)

with p1 being explicitly given by

p1 = �
1

k

@�1

@�

����
�=�=0

: (3.2)

The coe�cient p1 depends on the number of avors, the bare quark mass in lattice units,

m0a, and the lattice size l � L=a. For later convenience, this dependence is written in

the form

p1 � p1(nf ; z; l) = p1;0(l) + nfp1;1(z; l); (3.3)

where we have set

z = mL; m =
1

a
ln(1 +m0a): (3.4)

To this order, we thus identify m with the so-called pole mass, which is in one-to-one

correspondence with the bare quark mass and coincides with the latter to leading order

in the small a expansion.
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When the lattice spacing becomes small, the �eld dependent part of the one-loop

e�ective action, �1, is expected to diverge logarithmically. As usual, this divergence

is absorbed in the renormalization of the coupling constant. We thus eliminate g0 in

favor of a renormalized coupling glat (at the renormalization scale �), de�ned through

minimal subtraction of logarithms [13], i.e.

g20 = g2lat + z1(nf ; a�)g
4

lat+ O(g6lat); (3.5)

with

z1(nf ; a�) � z1;0(a�) + nfz1;1(a�) = 2b0(nf ; 0) ln(a�): (3.6)

Eq. (3.1) then becomes a relation between renormalized coupling constants,

�g2 = g2lat + (p1 + z1)g
4

lat +O(g6lat); (3.7)

and we expect the coe�cient in the r.h.s. of eq. (3.7) to have a well-de�ned continuum

limit. Indeed, for nf = 0, this has been demonstrated in refs. [8,3].

Therefore, we may restrict attention to the analysis of the quark �eld contribution,

which, for cs = ct = 1, is given by

p1;1(z; l) = (2knf )
�1

@

@�
ln det�2

��
�=�=0

: (3.8)

As we are considering spatially constant abelian background �elds, eq. (2.9), �2 is

diagonal with respect to its color and spatial momentum dependence. Its determinant

factorizes accordingly and the problem is reduced to the evaluation of the determinant

of a 4(l � 1) � 4(l � 1) matrix in each subspace of �xed spatial momentum and color.

In these subspaces, �2 acts as a second order di�erence operator in the Euclidean time,

with coe�cients that are 4�4 matrices in Dirac space. Following appendix C of ref. [8],

the determinant of such an operator can be e�ciently calculated by solving a recursion

relation. Di�erentiation with respect to � then leads to a recursion for the quantity of

interest, i.e. the �{derivative of the determinant.

Alternatively, one may use the fact that �2 is the square of a �rst order opera-

tor (2.50). In the subspaces of �xed momentumand color, the determinant of 5(D+m0)

can be computed by solving a �rst order recursion relation. We include a more detailed

discussion of this method in the appendix.

We did the computation using either method and obtained p1;1(z; l) for lattice sizes

up to l = 64 and in \REAL*16" precision. For �xed value of z = mL, we expect p1;1 to

be given by an asymptotic series of the form [8]

p1;1 �
l!1

r0 + s0 ln l+ (r1 + s1 ln l)=l+O(ln l=l2): (3.9)

The �rst few coe�cients in eq. (3.9) can be extracted e�ciently by �rst cancelling higher

order terms in 1=l through numerical di�erentiation and then checking for stability as
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l is increased [14]. Due to the large range of l and the good numerical precision, this

technique gives very accurate results for �xed values of z. In this way we determined

the coe�cient s0 of the logarithm in eq. (3.9),

s0 = �0:00844344(2): (3.10)

This value has been obtained for z = 0, � = �=5 and csw = 1. Furthermore, within the

numerical accuracy, we found this result to be independent of all three parameters.

Recalling eqs.(3.6) and (3.7), we see that s0 coincides with the expected result

s0 = 2b0;1(0) = �1=(12�
2) = �0:0084434319 : : : . The continuum limit of the quark

contribution to p1 + z1 thus exists and is given by

lim
a!0

�
p1;1(z; L=a) + z1;1(a�)

�
= r0(z) + s0 ln(�L): (3.11)

We will set � = L�1 in the following and assume the exact value s0 = �1=12�
2 in the

numerical analysis of the series (3.9). Since, in this section, we are interested in the

universal relations between renormalized couplings in the continuum, we will concentrate

on the conversion coe�cient r0(z). The higher order terms in eq. (3.9) represent lattice

artefacts and will be discussed separately in section 4.

3.2 Matching coe�cient for massless quarks

The quark contribution to the matching coe�cient between � and �lat � g2lat=4� is

4�r0(z). For massless quarks, r0 can be read o� from table 3. Note that �lat depends

implicitly on the action, i.e. on the coe�cient csw.

� csw r0(0)

�=5 1 �0:034664940(4)

�=5 0 �0:009868186(4)

0 1 �0:03328359(1)

0 0 �0:00848683(1)

Table 3: The �rst term in the asymptotic expansion (3.9) of p1;1.

In order to obtain the one-loop relation between � and �
MS

, we also need the

relation of �lat to �MS
,

�lat = �
MS

+ d1(nf )�
2

MS
+O(�3

MS
): (3.12)

For the case of the Wilson action, the coe�cient d1(nf ) � d1;0 + nfd1;1 is known in

the literature [15,16]. In particular, the quark �eld contribution d1;1 has �rst been

calculated by Weisz [15], who gives the result in terms of the lattice integral P3,

d1;1 = 4�P3; (3.13)
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which was determined numerically with an accuracy of 3-4 signi�cant decimal places.

A more precise value for P3 can be extracted from ref. [16], where a precision of 6

signi�cant digits was achieved. We have re-evaluated P3 and obtained

P3 = 0:0066960(1); (3.14)

which is, within errors, in agreement with the aforementioned values.

Taking r0(0) for csw = 0 and both values of � from table 3, we �nally obtain the

matching coe�cients c1;1 for massless quarks. They are both small and positive,

c1;1(0) = �4�[P3 + r0(0)] =

8<
:
0:039863(2) for � = �=5;

0:022504(2) for � = 0:
(3.15)

As already mentioned in section 2, these values are in agreement with the ones obtained

from the direct expansion of the e�ective action in �
MS

.

3.3 Massive quarks

Let us now turn to the mass dependence of �, which, at one-loop order, is described by

c1;1(z), eq. (2.22). With our numerical methods we can compute c1;1(z) for �xed values

of z, but these methods do not allow for a direct determination of the z-dependence. We

therefore chose to represent the z-dependence of c1;1(z) by a Chebyshev approximation

(Tn(x) = cos[n arccos(x)])

c1;1(z)� c1;1(0) = z

� 11X
n=0

tnTn(z=5� 1) � 10�6
�
; z 2 [0; 10]: (3.16)

The coe�cients tn are listed in table 4. For most purposes, it is su�cient to use a

truncated version of this Chebyshev approximation. For example, the �rst �ve terms

describe c1;1(z)� c1;1(0) with an accuracy of 5 � 10�4z.

For large z, one needs a di�erent approximation to c1;1(z). In order to arrive

at an appropriate form, we note that a heavy fermion is expected to decouple from

any physical prediction in the limit z ! 1 [17]. An example is the relation between

physical (and thus quark mass dependent) couplings. The fermionic contribution to the

perturbative matching coe�cients therefore should vanish for large values of z, up to

power corrections in 1=z. On the other hand, in unphysical de�nitions of the coupling,

such as the MS scheme, heavy quarks do not decouple. Therefore, we expect c1;1(z)

to be logarithmically divergent in the large z limit. Furthermore, the above argument

shows, that not only the logarithm, but also a subleading constant contribution to c1;1
would be the same in the relation between �

MS
and any other physical coupling. In

particular, in the case of the coupling de�ned via the static quark potential, this constant

contribution is absent. We are therefore led to approximate

c1;1(z) = �
1

3�
ln(z) +

3X
n=1

qnz
�n � 5 � 10�5; z�1 � 0:13 ; (3.17)
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n tn wn

� = �=5 � = 0 � = �=5 � = 0

0 �0:05996947 �0:05560781 �0:0066985 �0:0066991

1 0:04146952 0:03840671 0:0057316 0:0084403

2 �0:01440583 �0:01451262 �0:0017853 �0:0045988

3 0:00411117 0:00535508 0:0002527 0:0020945

4 �0:00068390 �0:00187650 0:0001202 �0:0007739

5 �0:00013008 0:00062089 �0:0001110 0:0002192

6 0:00016711 �0:00019288 0:0000473 �0:0000391

7 �0:00007951 0:00005478 �0:0000112 0

8 0:00002347 �0:00001299

9 �0:00000288 0:00000168

10 �0:00000143 0:00000059

11 0:00000107 �0:00000049

Table 4: Chebyshev coe�cients of the �ts eqs. (3.16),(3.20).

with

(q1; q2; q3) =

8<
:
(�0:10822;�0:0013; 0) for � = �=5;

(�0:10718;�0:0334; 0:233) for � = 0:
(3.18)

The coe�cients qi (i = 1; 2; 3), have been obtained by �tting eq. (3.17) to a number of

data points c1;1(zi) with 6 � zi � 25. To assess the quality of the �t, we varied the

number of terms in eq. (3.17), and the number of points zi used for the �t. We conclude

that c1;1(z)� c1;1(0) is represented with a precision of 5 � 10�5 for z�1 � 0:13.

3.4 Result for �v

The quantity �v de�ned in eq. (2.51) is obtained in non-perturbative Monte Carlo sim-

ulations without any extra computational e�ort. Therefore it represents a useful check

of the applicability domain of perturbation theory and the approach to the continuum

limit [3].

In perturbation theory, we determined the contribution of massless quarks to

eq. (2.25),

v1;1(0) =

8<
:
0:0245370(1) for � = �=5;

0:013554(1) for � = 0:
(3.19)

Again the quark mass dependence can be accurately described using a Chebyshev �t,

v1;1(z) =

8<
:
v1;1(0) + z [

P
7

n=0 wnTn(z=5� 1) � 5 � 10�5] for z 2 [0; 10];

0 � 5 � 10�5 for z > 8 (3.20)

with the coe�cients wn as given in table 4.
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3.5 �-parameters

The one-loop coe�cients between di�erent renormalized couplings translate to ratios of

the corresponding �-parameters. More precisely, if the one-loop relation between the

couplings ga and gb reads

g2a = g2b + cabg
4

b +O(g6b ); (3.21)

the ratio between the �-parameters is given by

�a=�b = ecab=2b0 : (3.22)

Here both, b0 and cab refer to the coe�cients for vanishing quark masses. The reason

is that �-parameters refer to the asymptotic high energy regime where all mass e�ects

are negligible.

In the pure SU(3) gauge theory, the ratio between the �-parameters associated

with the Schr�odinger functional and the MS scheme is

�=�
MS

= 0:48811(1): (3.23)

If the quark �elds are included, this value is lowered. For instance, for � = �=5 and

nf = 1 (nf = 3), the approximate value is 0.455 (0.383). Similar values are obtained

with � = 0, and, recalling the relation between the �-parameters of the MS and MS

schemes,

�
MS
=�

MS
= (eE=4�)1=2 = 0:37647475:::; (3.24)

we conclude that � is, for three or four quark avors, almost equal to �MS.

As a byproduct of our computational strategy we also obtain the relation between

the �-parameters �SW and �W , associated with the lattice couplings, glat, of the

Sheikholeslami-Wohlert [12] and the standard Wilson action,

ln(�SW =�W ) = nf
�
r0(0)jcsw=0 � r0(0)jcsw=1

�
=2b0

= 0:024796754(2)nf=2b0: (3.25)

This relation holds for an arbitrary number of colors N with b0 = (11N � 2nf )=48�
2.

This is easy to understand when the matching of the couplings is done using the back-

ground �eld technique adapted to lattice perturbation theory [18,15,19]. Considering

the 2-point function of the background �eld at one-loop order, the only di�erence be-

tween the two schemes are the quark loop diagrams with at least one quark-gluon vertex

stemming from the Sheikholeslami-Wohlert term in eq. (2.40). Since this vertex is pro-

portional to a group generator in the fundamental representation, the contraction of the

group indices yields a N -independent constant.

As a further check of this statement, we performed the same computation using

the abelian SU(2) background �eld of ref. [8] and obtained agreement within the nu-

merical accuracy. Indeed, the number quoted in eq. (3.25) is the one obtained from this

computation.
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3.6 Threshold e�ects in the �-function

According to eq. (2.34), the mass dependence of the one-loop �-function can be obtained

from c1;1(z). The derivative zc0
1;1(z) which appears in b0;1(z) is, for large values of z,

well approximated by taking the derivative of the �t eq. (3.17). On the other hand, for

small values of z we may di�erentiate the Chebychev �t, eq. (3.16). In this way, we

obtained zc0
1;1(z) with an estimated precision of 10�4 in the whole range of z-values.

Figure 1: The contribution of one quark to the one-loop �{function, for � = 0 (dashed line) and

� = �=5.

The resulting function b0;1(z) (2.33) is displayed in �gure 1. One notices that

the transition from an e�ectively massless quark to an approximately decoupled heavy

quark is not very rapid. The reason is the following. b0;1(z)� b0;1(0) starts with a term

proportional to z at small z. At the other end, the decoupling limit, limz!1 b0;1(z) =

0, is approached with a 1=z-correction. These correction terms that are odd in the

quark mass are possible because the boundary conditions eq. (2.5) do not respect chiral

symmetry. This entails a rather broad transition region, in contrast to the case of other
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mass-dependent schemes, such as theMOM -scheme [20] or the coupling de�ned via the

static quark potential.

At �rst sight, the existence of the 1=z-term in the �-function of a heavy quark

seems to pose a problem for the full non-perturbative computation of the �-function

along the lines of ref. [3]. The reason is that quarks that are much heavier than 1=L

contribute lattice artefacts that dominate over their physical e�ect if one is limited to

lattice sizes of, say, L=a < 20. One would therefore like to omit quarks with z > zcut
from the Monte Carlo simulations, with a realistic zcut taking values between, say, 2

and 4.

Our result allows to quantify the error that is made in the one-loop evolution of the

coupling �g, if a quark with z � zcut is omitted in the �-function. We �x the value of �g(L0)

for some value mL0 = z0 � 1 and want to know the coupling when mL = z � 1. (One

may think, e.g. of L0 = (0:5GeV)�1, m = 4:5GeV and L = (20GeV)�1). Omitting a

heavy quark in the one-loop �-function corresponds to setting b0;1(z) = 0 for z > zcut.

The ensuing error is the di�erence in the couplings obtained by running once with the

full and once with the truncated �-functions from scale L0 to L. It is convenient to

look at the corresponding error of �g�2 which is given as the integral over the tail in the

�-function between zcut and z0 (cf. �g. 1),

�(�g�2) =
1

4�

n
c1;1(z0)� c1;1(zcut) +

1

3�
ln(z0=zcut)

o
: (3.26)

Being generous, we enlarge the error by taking the limit of large z0. This corresponds to

taking the integral over the whole tail of b0;1(z), which approximately yields �(�g�2) =

0:003 for zcut = 2 and both � = 0 and � = �=5. In comparison, the present experimental

error for g�2
MS

(MZ) from the LEP-experiments is about 0:05 [21], and the pure gauge

coupling is known with precision �(�g�2) = 0:02 [3] (Note that the error of �g�2 is

preserved under one-loop evolution of the coupling).

If the real error is of the order of magnitude suggested by one-loop perturbation

theory, one may conclude that heavy avors with, say z > 2, can safely be omitted from

a Monte Carlo simulation. On the other hand, perturbation theory suggests that quark

avors with z � 2 do not cause signi�cant cuto� e�ects as we will see in section 4.

Provided this picture is correct also beyond one-loop perturbation theory, the evolution

of �g can be computed through Monte Carlo simulations including the e�ect of a quark

avor of any mass and with all errors under control.

4 Lattice artefacts

The evaluation of �nite lattice spacing e�ects in perturbation theory is important in sev-

eral respects. First, we gain some insight about the cuto� e�ects to be expected in a full

non-perturbative computation. Second, they are needed to determine the (Symanzik-)

improvement coe�cients and third, it has proven to be useful to de�ne perturbatively

improved observables [4], for which the one-loop cuto� e�ects are cancelled completely.
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4.1 Symanzik's local e�ective Lagrangian

Consider a general lattice action for the Schr�odinger functional. We expect that observ-

ables, such as �g, converge to their continuum values with dominant corrections that are

linear in the lattice spacing a (up to logarithmic corrections). This expectation is derived

from the following reasoning. According to Symanzik [22] we can represent the lattice

theory with �nite spacing a by a continuum theory, with a local e�ective Lagrangian

containing the terms in eq. (2.1) plus higher dimensional operators accompanied by

explicit powers of a. As long as these are not forbidden by an exact symmetry of the

lattice action, we have to expect that all composite operators, which can be formed from

the basic �elds, are present in the local e�ective Lagrangian. In QCD with fermionic

�elds, gauge invariant dimension �ve operators exist. Integrated over the volume, they

can contribute O(a) lattice artefacts [12]. In addition, in the Schr�odinger functional,

dimension four operators integrated over the surfaces at x0 = 0 and x0 = L are a source

of O(a) terms.

O(a) perturbative improvement eliminates these leading lattice artefacts order by

order in perturbation theory. This is achieved by adding lattice representatives of the

corresponding operators to the action one starts from. Their coe�cients can then be

tuned to cancel all O(a) e�ects to a given order in the coupling.

In the pure gauge theory, dimension �ve operators do not exist. Gauge invari-

ance and axis permutation symmetry restrict the set of dimension four operators toP
3

j;k=1 trfFjkFjkg and
P

3

k=1 trfF0kF0kg. Our action (section 2.6) contains these oper-

ators with a strength tunable by the coe�cients cs and ct, respectively. For abelian

background �elds, as considered here, the �rst operator vanishes identically at the sur-

faces. Consequently, we do not obtain any information on cs, here. In order to discuss

perturbative improvement, we expand the second coe�cient as

ct = 1+ c
(1)

t (nf)g
2

0 + : : : ; c
(1)

t (nf ) = c
(1;0)
t + nfc

(1;1)
t : (4.1)

Here, the O(1) term is �xed by requiring that the linear term is absent in the small a

expansion of �0 and the pure gauge part,

c
(1;0)
t = �0:08900(5) ; (4.2)

is known from ref. [3].

Once we include the fermion �elds, we have to consider two operators of dimen-

sion �ve [12]. Sheikholeslami and Wohlert have shown that one of these operators is

redundant, when the theory posesses full translational invariance [12]. It is easy to see

that the same is true for the Schr�odinger functional. Consequently we include only the

remaining operator, with its strength determined by csw. Setting csw = 1 corresponds

to tree-level improvement. In the Schr�odinger functional, one also needs to consider

possible dimension four operators { such as @0( �  ) { at the boundaries. While we

postpone a complete analysis of these terms to future work, we conjecture that they are

included in our action with the correct weight for tree-level O(a) improvement. Indeed,

20



this is indicated by the cuto� dependence of the observables �g and �v, as will be seen

below.

4.2 O(a) improvement

Let us step back and discuss eq. (3.9) in more detail. Its structure is dictated by

the aforementioned equivalence of the lattice theory with an e�ective continuum theory

containing local interactions [22]. For example, the operators discussed above contribute

artefacts that are linear in the lattice spacing. At one-loop order, the loop integration

will generally introduce an additional logarithmic dependence on the lattice spacing.

These arguments lead us to expect that the continuum limit is approached in the

form eq. (3.9) with the coe�cients r0 : : : being functions of z. For a tree-level improved

action, s1 should vanish. Indeed, setting csw = 1, we �nd s1 = 0 within our numerical

accuracy of about 10�4 and for both values of �.

We are left with the linear term r1(z)=l, which we determined numerically (for

csw = 1) to be

r1(0) = �2c
(1;1)
t +

8>><
>>:
0:038282(2) for � = �=5;

0:038282(2) for � = 0;

0:0382820(1) in the SU(2)-theory with � = 0 ;

(4.3)

and

r1(z)� r1(0) = 0:012 z � 2 � 10�5 for z � 10 : (4.4)

There are no local operators that could generate terms like z2=l or higher orders in z.

This argument explains the structure of our numerical result (4.4). On the other hand,

the linear term can be rewritten z=l = am0 + O(l�2), corresponding to the operator

m0trfF��F��g in the local e�ective Lagrangian. In order to remove it in the improved

action one just needs to perform a rede�nition of the bare coupling g0. For this reason,

this term does not represent a genuine lattice artefact: its e�ect vanishes as soon as

relations between renormalized quantities are considered. An example is provided by

the step scaling function �. Note that a similar reparametrization applied to the bare

mass is expected to be necessary, when one considers the continuum limit at �xed m0L.

This does not appear in our analysis, since we keep a physical mass �xed, when we take

the continuum limit.

The only remaining linear lattice artefact is cancelled by chosing

c
(1;1)
t = 0:0191410(1) : (4.5)

We conclude that the observable �g�2 is O(a) improved to one-loop order with our

action (section 2.6) and the choices csw = 1 and ct as quoted in eqs. (4.1),(4.2) and

(4.5). Furthermore, a similar analysis for � 6= 0 shows that the same is true for the

obervable �v, eq. (2.51). At present, we do not know, however, whether Sf is the general
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tree-level improved fermion action, since the e�ect of two or more fermionic surface

operators could in principle cancel each other in our observables. The general structure

of the O(a) improved action deserves further investigations.

4.3 Nonlinear lattice artefacts

We now discuss the complete one-loop lattice artefacts of the step scaling function.

Besides the case csw = 1 and c
(1;1)
t = 0:019141, we also consider the situation without

improvement (csw = 0 and c
(1;1)
t = 0). The latter may be of interest in Monte Carlo

calculations because the Sheikholeslami-Wohlert term represents a signi�cant numerical

overhead in any simulation algorithm.

csw = 1 and c
(1;1)
t = 0:019141 csw = 0 and c

(1;1)
t = 0

L=a z = 0 z = 1 z = 2 z = 0 z = 2

4 0:00009 0:00116 0:00197 �0:00273 0:00035

5 �0:00005 0:00069 0:00126 �0:00330 0:00001

6 �0:00010 0:00045 0:00088 �0:00346 �0:00020

7 �0:00010 0:00032 0:00066 �0:00344 �0:00032

8 �0:00008 0:00025 0:00051 �0:00334 �0:00041

9 �0:00007 0:00020 0:00041 �0:00322 �0:00047

10 �0:00006 0:00016 0:00033 �0:00309 �0:00051

11 �0:00005 0:00013 0:00028 �0:00296 �0:00054

12 �0:00004 0:00011 0:00023 �0:00284 �0:00057

13 �0:00003 0:00009 0:00020 �0:00273 �0:00059

14 �0:00003 0:00008 0:00017 �0:00263 �0:00060

15 �0:00003 0:00007 0:00015 �0:00253 �0:00061

16 �0:00002 0:00006 0:00013 �0:00244 �0:00061

Table 5: Lattice artefacts �1;1 in the step scaling function for various L=a.

The lattice version of the step scaling function, de�ned exactly as in the continuum

(cf. section 2.5) but for �nite a=L, is denoted by �(s; u; z; a=L). Its lattice artefacts

have the perturbative expansion

�(2; u; z; a=L)� �(2; u; z)

�(2; u; z)
= �1(nf ; z; a=L)u+ O(u2) ; (4.6)

with the one-loop coe�cient

�1(nf ; z; a=L) = �1;0(a=L) + nf�1;1(z; a=L): (4.7)

For the one-loop O(a) improved action, the lattice artefacts in the pure gauge theory

vary from �1;0(1=6) = �0:004 to �1;0(1=16) = �0:0004 (cf. table 1 in ref. [3]). Table 5
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shows that even several massless avors of quarks induce negligible lattice artefacts on

this scale, when full O(a) perturbative improvement is switched on.

In contrast, each massless avor introduces �1;1(0; a=L) � �0:003 lattice artefacts

when we consider the action without improvement terms. Although the magnitude is

not very large, there is a distinct problem. �1;1 varies little with the lattice spacing in

the accessible range of a=L. Only around L=a = 16 does the linear decay of the lattice

artefacts set in, a behavior which is dominantly caused by the coe�cient s1 6= 0 in

eq. (3.9). Clearly, lattice artefacts of this type are di�cult to detect in a simulation.

�1;1 behaves similarly for values of z up to z = 2. In particular, it decays roughly

proportional to (a=L)2, when improvement is switched on.

Very heavy avors decouple in the continuum step scaling function up to 1=z-

corrections. When one stays at �xed l, however, and increases z, one enters the regime

am0 > 1. It is evident that one needs to avoid this region, where all fermionic e�ects

are accompanied by large cuto� e�ects. One might think, however, that { as in the

continuum { such a fermion decouples and it does not really matter whether one keeps

it in the simulation or not. We want to briey explain that there is a subtlety, here.

It is easy to expand p1;1 for large am0 (keeping l �xed) in order to see qualitatively

what happens in this limit. As long as c
(1;1)
t = 0, the fermion contribution to � starts

with a term / 1=(1 + am0) = exp(�z=l). It decouples faster than in the continuum.

When we switch on O(a)-improvement, however, a term c
(1;1)
t =l remains, since a fermion

with am0 > 1 does not at all contribute the lattice artefact calculated in an expansion

in a. Thus O(a)-improvement is ruined when am0 > 1. Note that this behavior is not

seen in table 5, since we restricted ourselves to am0 < 1=2.

Let us �nally point out that the exact numbers listed in table 5 depend on the

convention that we chose for the renormalized quark mass, eq. (3.4). Nevertheless, we

do not expect the qualitative behavior of �1;1 to be very sensitive to the choice of m. In

particular, the large e�ect of tree-level improvement is caused by the vanishing of s1 in

eq. (3.9) with tree-level improvement. This is the case irrespective of the de�nition of

m.

5 Summary and conclusions

This article presents one step in the e�ort to compute the strong coupling from �rst

principles following the original idea of refs. [1,8]. The challenge is to compute non-

perturbatively the evolution of a renormalized coupling from low to high energies. As

such a computation is to be performed through numerical simulations on �nite systems,

it is non-trivial to cover a large range of scales and take the continuum limit at the same

time. If the coupling is de�ned in �nite volume, running with the linear dimension, L,

of the system, this potential problem can be solved by stepping up the energy ladder

recursively. A suitable de�nition of a coupling has been known for the pure gauge

theory [8,3].

23



Based on recent work on the QCD Schr�odinger functional [9,10], we have extended

the de�nition of the coupling to include quark �elds in the functional integral. In par-

ticular we have made use of the freedom that exists in chosing the spatial boundary

conditions for the quark �elds. Requiring periodicity up to a phase, �, (cf. eq. (2.6)),

this phase can be tuned such that the Dirac operator taken in the background �eld has

a relatively large lowest eigenvalue. This occurs around � = �=5. In a numerical simu-

lation in a su�ciently small volume, the gauge �eld uctuates around the background

�eld. Thus we expect that numerical simulations are eased by the corresponding choice

of � = �=5.

We computed the renormalized coupling at one-loop order using both dimensional

regularization and lattice perturbation theory. Our main result is the fermion contribu-

tion to the matching coe�cient between the coupling in the Schr�odinger functional and

the MS scheme. It is listed in eqs.(3.15{3.18) and table 4. We found that the quarks

generally introduce rather small e�ects.

The Schr�odinger functional provides us automatically with a mass-dependent cou-

pling. When one crosses the threshold around L�1 = m, the �-function changes rather

slowly from its value for massless quarks to the large mass limit corresponding to the

theory with that quark removed. One might be worried that such a slow threshold be-

havior is di�cult to resolve in a Monte Carlo simulation, because quarks of a large mass

introduce signi�cant cuto� e�ects. Investigating this question quantitatively, we found,

however, that possibly resulting uncertainties are small on the level of the statistical

errors of corresponding pure gauge theory results. Thus there is no reason to expect

that the threshold behavior seen at one-loop precision poses a problem in the numerical

simulations.

As the �nal goal is to compute the evolution of the coupling in the continuum limit,

it is important to investigate the size of lattice artefacts. They have been computed

to one-loop accuracy for the step scaling function (2.35). We have considered two

di�erent lattice actions. I) The Wilson action, with the boundary terms taken exactly

as in ref. [9]. II) The Wilson action plus the Sheikholeslami Wohlert improvement term

removing O(a) \volume-e�ects" and the surface term that compensates for the operatorP
3

k=1 trfF0kF0kg in Symanzik's local e�ective Lagrangian. The one-loop contribution to

the coe�cient of the latter is determined through the evaluation of the lattice artefacts

that are linear in a. Its value is given in eq. (4.5).

The results obtained with the two actions are as follows. The overall size of lattice

artefacts introduced by one quark avor into the step scaling function is rather small,

namely they are below the per-cent level for couplings �g2 < 3 and reasonable lattices

(L=a � 4). For the improved action (II) and massless quarks, they are even more than

another order of magnitude smaller. Presumably the latter �nding is rather accidental

for our speci�c observable. A more important di�erence is the a=L-dependence of the

lattice artefact for the Wilson action (I): at zero quark mass, it practically fakes a

constant for all lattice sizes that are accessible to simulations. The slow vanishing of

the lattice artefacts sets in only around L=a = 16.
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Despite the fact that our explicit one-loop computations show that the step scaling

function can be O(a)-improved by including the two operators mentioned above, the

complete structure of the O(a)-improved action of the Schr�odinger functional is not

known, yet. It is possible that additional operators are necessary beyond one loop.

Furthermore, even at the one-loop level we can not exclude that the improvement of

other observables necessitates further operators in the action. This problem is currently

investigated.

A further important question is a non-perturbative de�nition of the renormalized

quark mass that can be well computed in the numerical simulations and shows small

lattice artefacts. Also this problem is presently being addressed.

We would like to thank M. L�uscher, P. Weisz and U. Wol� for helpful discussions

and critical comments at various stages of this work. One of the authors (S.S.) acknowl-

edges �nancial support by CERN, where part of this work has been done.

Appendix A

In this appendix we provide the details of our computation of p1;1(z; l) which makes use

of a �rst order recursion relation for the lattice Dirac operator (cf. section 3). To increase

the readability, we use lattice units (a = 1, and thus L = l) and assume summation

over repeated indices throughout the appendix.

The lattice operator D5 � 5(D +m0) (cf. eq. 2.40) is hermitian with real eigen-

values that come in pairs �
p
�n, with �n, (n = 0; 1; : : : ; nmax) being the eigenvalues of

�2 (cf. table 2 for the numerical values of the �rst few �n). Therefore, the determinant

of D5 is positive, and the quark �eld contribution p1;1(z; l) to the one-loop coe�cient

p1 (3.1) can be written

p1;1(z; l) = (k nf )
�1

@

@�
ln detD5

��
�=�=0

; (A.1)

provided we have set ct = 1. Due to the special properties of the background �eld (cf. sec-

tion 2), the eigenfunctions of the lattice operator D5 are of the form

 (x) = exp(ipkxk) unc f(x0): (A.2)

Here, func , nc = 1; 2; 3g denotes the canonical basis in color space,

u1 =

0
B@
1

0

0

1
CA ; u2 =

0
B@
0

1

0

1
CA ; u3 =

0
B@
0

0

1

1
CA ; (A.3)

and pk are the spatial components of the allowed momenta

pk = (2�nk + �)=L; k = 1; 2; 3; (A.4)
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with integer numbers nk = 1; : : : ; L.

According to the structure of the eigenfunctions, the determinant of D5 factorizes

and eq.(A.1) becomes

p1;1(z; l) =
1

k

3X
nc=1

X
p

@

@�
ln detD5

��
�=�=0

: (A.5)

The reduced operator D5 acts on the functions f(x0) (A.2) which live in the subspace

of �xed spatial momentum p and color nc. Setting x0 � t, we have

(D5f)(t) = �5P�f(t+ 1) + 5h(t)f(t)� 5P+f(t� 1); (A.6)

with the boundary conditions (2.5)

P+f(0) = 0; P�f(L) = 0: (A.7)

To write down the explicit expression for the coe�cient function h(t), we introduce the

notation

qk(t) = !t + rk; ~qk(t) = sin qk(t); q̂k(t) = 2 sin
1

2
qk(t); k = 1; 2; 3;

(A.8)

where ! and rk are related to the color component nc of the boundary �elds (2.9),

! = (�0nc � �nc)=L
2; rk = pk + �nc=L: (A.9)

We then have

h(t) = 1 +m0 +
1

2

3X
k=1

q̂k(t)
2 + i~qk(t)k �

1

2
csw0kp0k; (A.10)

where p0k denotes the color component nc of the lattice �eld tensor (2.47) and further

evaluates to p0k = i sin!, independently of k = 1; 2; 3.

At �rst sight, D5 seems to act like a second order di�erence operator. In fact,

the projectors P� hide the �rst order structure which can be recovered through the

following re-formulation. For 0 < t � L we de�ne a new function F (t),

F (t) = P�f(t) + P+f(t � 1); (A.11)

for which the boundary conditions (A.7) take the form

P+F (1) = 0; P�F (L) = 0: (A.12)

It is then straightforward to show that the eigenvalue equation, (D5 � �)f = 0, is

equivalent to the recursion relation

F (t + 1) = A(t)F (t); (A.13)
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with A(t) being explicitly given by

A(t) = �a(t)�1
�
P�

h
�2 � a(t)2 + �5

�
ck(t)k � bk(t)k + 1

�

+ ck(t)k
�
bj(t)j � 1

�i
(A.14)

+ P+

h
bk(t)k � �5 � 1

i�
:

Here, the coe�cient functions are

a(t) = 1 +m0 +
1

2

3X
k=1

q̂k(t)
2;

bk(t) = i~qk(t)�
1

2
cswp0k; (A.15)

ck(t) = i~qk(t) +
1

2
cswp0k; k = 1; 2; 3:

If we now prescribe a value for F (1), we may calculate F(L) for any L > 1 by solving

the recursion relation (A.13),

F (L) = A(L� 1)A(L� 2) � � �A(2)A(1)F (1): (A.16)

At this point it is convenient to introduce the 2�2 matrixM(�) in the subspace de�ned

by the projector P�, viz

M(�) =
�
B(L� 1) � � �B(1)

�
��
; B(t) = a(t)A(t): (A.17)

The boundary conditions (A.12) for F then correspond to the requirement

M(�)F (1)� = 0; (A.18)

with the non-vanishing 2-vector F (1)�. To have a solution to eq.(A.18) the determinant

of M(�) must vanish. One then notices that detM(�) is a polynomial in � of degree

4(L�1), and, using the same arguments as in appendix C of ref. [8], one concludes that

detM(�) is proportional to the characteristic polynomial of D5. In fact, the correct

normalization has been anticipated in eq. (A.17),

det(D5 � �) = detM(�); (A.19)

so that one �nally obtains

@

@�
ln detD5 = Tr

�
M�1

@

@�
M
�
; M �M(0): (A.20)

Note that the trace in the r.h.s. of this equation is over a 2� 2 matrix. The inversion

of the regular matrixM is trivial and its derivative with respect to � can be calculated

using Leibniz' rule for the product of matrices in eq. (A.17).
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