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Abstract

The neutrino mass problem in SU(4) � SU(2)L � SU(2)R SUSY GUT

obtained from the compacti�cation of E8 � E8 heterotic string is analyzed.

The estimated values of the neutrino masses and mixing angles can explain

the experimental data on solar neutrino 
ux.
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Recent solar neutrino experiments give an evidence for nonzero neutrino

masses. The solar neutrino de�cit can be explained in terms of the neutrino

resonant oscillations if the neutrino mass di�erence is of order: �m2 � (0:3�
1:2) �10�5eV 2 or vacuum oscillations if �m2 � (0:5�1:1) �10�10eV 2 [1, 2, 3].

It is well-known, that in SO(10) GUT small neutrino masses can be

obtained via seesaw mechanism [4]. The neutrino mass matrix for three left

�e, ��, �� and three right �ce, �
c
�, �

c
� neutrinos has the following form:

 
0 MD

MD R

!
(1)

In (1) M is a Dirac type 3 � 3 mass matrix (usually it is equal to mass

matrix of u, c, t, quarks), R- is the right neutrino 3 � 3 mass matrix with

entries much greater than the electroweak symmetry breaking scale. After

the diagonalization of (1) one obtains three heavy Majorana states (their

masses practically coincide with the eigenvalues of matrix R) and three light

Majorana states with the mass matrix:

M� =
M2

D

R
(2)

The scale of matrix R entries can be of order of the SO(10) subgroup G =

SU(4) � SU(2)L � SU(2)R breaking scale, if G is broken by the vacuum

expectation value (v.e.v.) of Higgs �eld in the 126 representation of SO(10).

For the superstring inspired models, however, G can be broken only by the

v.e.v. of Higgs �eld in 16 representation of SO(10). In this case the masses

of right neutrinos can arise only due to the radiative corrections [5]. For

the SUSY GUT, however, this mechanism does not work [6] and the right

neutrinos can obtain masses only due to the nonrenormalizable interactions

which can arise in the superstring models [7].

Our aim is consider the problem of the neutrino masses for the super-

symmetric model G = SU(4) � SU(2)L � SU(2)R, which may (or may not)

be considered as a subgroup of SO(10). The particle content of the model

is the following [8]: the sixteen fermions for each generation (including the

right neutrino) belong to the representations F and F, where

F = (4; 2; 1) = (u; d; �; e)

F = (4; 1; 2) = (uc; dc; �c; ec);
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and the Higgs �elds- to the representations: H = (4;1;2) and �H = (�4;1;2),

h = (1;2;2), D = (6;1;1). The vacuum expectation values (v.e.v.) of the

�elds H and H are connected with the breaking of the group G and the v.e.v.

of the �eld h -with the breaking of the group Gew = SU(2)L � U(1)Y . In

addition, there is a set of the G singlet scalar �elds �m (m=1,2...). For the

supersymmetric models, derived from the E8�E8 heterotic string compacti-

�cation over Calabi-Yau manifolds with SU(3) holonomy, the maximal gauge

group in the four dimension is E8 � E6 (by embedding the spin connection

of the manifold in the gauge group, E8 � E8 can be broken to E8 � E6 )

and chiral super�elds belong to the 27;27;1 representations of E6 [9].In this

case, the minimal set would consist of ng + 1 SO(10) (or G) singlets, where

ng is the number of fermion generations. One of the singlets develops the

v.e.v. at the electroweak scale and generates the masses of the singlet �elds

[8].

Then most general superpotential for the supersymmetric G = SU(4) �
SU(2)L � SU(2)R model has the form [7, 8] :

W = �ij
1
Fi �Fj + �im

2
�FiH�m + �3HHD +

+ �4 �H �HD + �m
5
�mhh+ �mnl

6
�m�n�l + (3)

+ �
ij
7
FiFjD + �

ij
8
�Fi �Fj + �m

9
DD�m

The 9 � 9 mass matrix of the three left, three right neutrinos and three

singlets has the following form0
B@ 0 MD 0

MD R MG

0 MG M�

1
CA ; (4)

where MG is 3� 3 matrix of right neutrino-singlets mixing, M� is 3� 3 mass

matrix of singlets. As a result one obtains that (in the case of absence of

mixing) the light neutrino masses are proportional to m2

qm�=m
2

G, where m
2

q

for q = u; c; t are the masses of u, c, t -quarks, m� is the typical singlet

mass �MW (electroweak breaking scale), mG is of order of G breaking scale

� 1016GeV [7] . This gives the ultralight neutrino masses: m�1 � 10�16eV ,

m�2 � 10�12eV , m�3 � 10�8eV . The similar problems exist in SU(5) -


ipped model. The various possibilities to obtain more acceptable neutrino

masses are considered in [6, 7, 10]. Here we want to consider the problem of

the neutrino masses for the superstring derived models proposed by Witten
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[11]. Witten [11] has shown that it is possible to construct stable, irreducible

and holomorphic SU(4) or SU(5) vector bundles over Calabi-Yau manifolds.

This means that one can obtain an SO(10) or SU(5) supersymmetric gauge

theories in four dimension by the embedding the structure group of the bundle

in E8. For the SU(4) vector bundle, when the maximal gauge group in the

four dimension is SO(10), the content of the chiral super�elds is the following

[11, 12, 13, 14]:

ng16+ �(16+ 16) + �10+ �1; (5)

where ng is the number of generations (ng=3), �, �, � are the integer numbers

�; �; � � 1. As for ordinary case of tangent bundle with the E6 as a maximal

gauge group, in this case also it is possible to obtain models with the gauge

symmetries which are subgroups of SO(10) via Hosotani mechanism [11, 13,

15]. Let us consider the neutrino mass problem in such a model with gauge

symmetry G = SU(4) � SU(2)L � SU(2)R. For the simplest case � = � = 1

and � = 2 one has only two SO(10) singlets. One of these singlets developed

the v.e.v. of order of electroweak symmetry breaking scale. The second

singlet is mixed with the neutrinos. The 7 � 7 mass matrix for three left,

three right neutrinos and this singlet has the following form:

M =

0
B@

ML MD 0

MD R V

0 V T m�

1
CA (6)

where ML, MD , R are 3�3 matrices, V-is a three dimensional column. The

elements of the left neutrino mass matrix ML can arise due to the nonrenor-

malizable interactions which are allowed in the string models [16] :

�
FFHHhh

M3
;

where M is the typical scale connected with nonrenormalizable interactions,

it must be of order of Plank scale or string uni�cation scale, � -some constant.

Then the matrix elements of ML are of order mL � M2

W
m2

G

M3 . The 3x3 matrix

R also arises due to the nonrenormalizable interactions [6, 7]:

�0
�F �FHH

M
;
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The matrix elements of R are of order mR � m2

G

M
. The 3x3 neutrino Dirac

mass matrixMD (which we assume to be equal to the up quark mass matrix),

Vi (i=1,2,3)- the mixing between singlet and right neutrinos and the mass

m� of the singlet arise from the usual interaction terms (3).

To obtain the estimates for the neutrino masses one must determine G

breaking scale mG. We will consider two cases: the symmetry G = SU(4)�
SU(2)L � SU(2)R with and without the left-right discrete symmetry. The

renormalization group equations for one loop gives the following solutions for

the coupling constants �1; �2; �3 [13]:

��1i (MZ) = ��1X � bi

2�
ln
MS

MZ

� b�is
2�

ln
MR

MS

� b̂is

2�
ln
MX

MR

(7)

whereMS is the supersymmetry breaking scale (we assume that it is between

100GeV and 10000GeV), the values of bi; b
�
is; b̂is (i=1,2,3) are given in [13].

The more precise results can be obtained in two loop approximation. The

renormalization group equations analysis in two loop approximation gives

the following results for mG

mG � (1:6 � 1016 � 2:2 � 1017)GeV (8)

for the case of the presence of the discrete left-right symmetry and

mG � (1:5 � 1015 � 2 � 1016)GeV (9)

for the case of absence of such a symmetry. The results of (8) and (9) are

obtained for the initial values of the electroweak coupling constants

�3(MZ) = 0:120 � 0:006

sin2�W = 0:2328 � 0:0007 (10)

��1(MZ) = 128:8 � 0:9

Let as consider now the mass matrix (6). After the diagonalization of the

matrix (6) we obtain 7 Majorana neutrinos (three of which are light). One

can estimate the light neutrino mass values without specifying the exact

form of matrix (6). The only assumption we made, is the following: all

the matrix elements of the matrix ML are of the same order of magnitude

mL � M2

W
m2

G

M3 . The same statement must be valid for the 3 � 3 matrix R
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and three dimensional column V separately: the elements of R are of order

mR � m2

G

M
and the elements of V are of order of mG. Then, it is easy to

estimate the value of the determinant of the matrix (6) and the sums of its

diagonal minors of 6x6, 5x5, 4x4 order:

detM � m2

cm
2

t

M2

Wm4

G

M3

detM6 � m2

cm
2

tm
2

G (11)

detM5 � m2

t

m4

G

M

detM4 � m6

G

M2

Two eigenvalues of the matrix (6) are of order mR and the other two- of

order mG. One can obtain a simple formulae for the masses of three light

neutrinos for the case m�3 � m�2 � m�1 :

m�1 �
detM
detM6

� M2

Wm
2

G

M3

m�2 �
detM6

detM5

� r�1c
m2

cM

m2

G

(12)

m�3 �
detM5

detM4

� r�1t
m2

tM

m2

G

In (11), (12) rc; rt -are the factors connected with the quark mass renormal-

ization from the uni�cation scale to ordinary energies. These factors depend

on the ratio of vacuum expectation values of scalar doublets connected with

the electroweak symmetry breaking (tg�) and the t-quark mass. For the

t-quark mass mt = (175 � 15)GeV and 0:1 < tg� < 10 one obtains:

20 > rc > 3

7 > rt > 1 (13)

In (13) the larger smaller of rc; rt correspond to the larger values of mt .

What about the mixing angles? To obtain the estimates for the mixing

angles between the left �e; ��; �� neutrinos one has to specify the form of Dirac

-type mass matrix MD . Let us consider the case when the mass matrix of
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u, c, t- quarks (which we consider to be equal to MD) has a form, proposed

by Fritzsch [17]:

MD =

0
B@

0 a 0

a 0 b

0 b c

1
CA (14)

where a =
p
mumc; b =

p
mcmt; c = mt. We must made some assumptions

for the matrix R and ML also: let us consider the case when they have a

diagonal form:

R =

0
B@ R1 0 0

0 R2 0

0 0 R3

1
CA ML =

0
B@ m1 0 0

0 m2 0

0 0 m3

1
CA (15)

It is possible to estimate the mixing angles for three light neutrino states

�1; �2; �3 by solving the equation for eigenvectors and eigenvalues of the ma-

trix M for the case m�3 � m�1 ;m�2. Using the following formulae for the

light neutrino masses:

m�3 '
detM5

detM4

m�2m�1 '
detM
detM5

(16)

m�2 +m�1 '
detM6

detM5

and calculating the determinant of matrix M and sums of its main minors

of 6, 5, and 4 order

detM ' �m1m
2

cm
2

tM
2

1
+m1m2m

2

t (R1M
2

2
+R2M

2

1
)

� 2m1

p
mumcmcm

2

tM1M2 � 2m1m2

p
mtmcmtR1M2M3

�m1mumcm
2

tM
2

2
�m2mumcm

2

tM
2

2

detM6 ' �m2

cm
2

tM
2

1
+ (m1 +m2)m

2

t (R1M
2

2
+R2M

2

1
) (17)

� 2
p
mumcmcm

2

tM1M2 � 2(m1 +m2)
p
mtmcmtR1M2M3

detM5 ' m2

t (R1M
2

2
+R2M

2

1
)� 2

p
mcmtmtR1M2M3

detM4 ' M2

1
R2R3 +M2

2
R1R3 +M2

3
R1R2

(whereM1;M2;M3 are the elements inM connected with the mixing of right

neutrinos and singlet: V T = (M1;M2;M3)) one can obtain the estimates for
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the light neutrino masses. In (17) we omit the terms not relevant for our

consideration. We will consider two alternatives for the �1; �2:

m�1 � m�2 (18)

m�1 � m�2 (19)

The conditions (18), (19) are equivalent to the conditions

mG �
s

mc

MW

M (20)

mG �
s

mc

MW

M (21)

For the �rst case (18), (20) one obtains the same formulae for neutrino masses

as previously

m�1 � mL m�2 �
m2

c

rcR
m�3 �

m2

t

rtR
(22)

where we assume that R � R1 � R2 � R3 and m1 � m2 � m3. The three

eigenstates �i, i=1,2,3 of matrix (6) with three lightest masses one can express

via weak eigenstates ��, � = e; �; � by means of unitary transformation:

�i = ai���, where ai� is the unitary matrix. For the mixing angles between

�e and �� (�) and �e and �� (�
0) one obtains:

tan� � a1�

a1e
�
s
mu

mc

tan�0 � a1�

a1e
�
s
mu

mt

(23)

Taking into account the results (8), (9) for the G symmetry breaking scale

one obtains the following estimates for the three light neutrino masses:

m�1 � (10�12 � 2 � 10�10)
�
MP l

M

�3

eV

m�2 � (4 � 10�8 � 10�5)
M

MP l

eV (24)

m�3 � (8 � 10�3 � 0:6)
M

MP l

eV
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for case of the presence of discrete left-right (case (a)) symmetry and

m�1 � (10�14 � 10�12)

�
MP l

M

�3
eV

m�2 � (6 � 10�6 � 2:5 � 10�3) M

MP l

eV (25)

m�3 � (0:3� 150)
M

MP l

eV

for the case of the absence of left-right discrete symmetry (case (b)). In (24),

(25) MP l = 1:2 � 1019GeV is the Plank mass. Of course, all the estimates

(24), (25) are correct with accuracy of order of magnitude.

To explain the solar neutrino de�cit via resonant oscillations the neutrino

mass di�erence and mixing angles must be of order
p
�m2 � (1:7� 3:5)10�3eV

sin22� � (0:6 � 1:4)10�2 or (0:65� 0:85) (26)

Then for the case (a) it is possible to obtain such a mass di�erence between

third and second and �rst neutrinos if the fraction M
MPl

is of order � (1�0:01)
which is reasonable value [13]. The problem arises with mixing angle: the

formula (23) gives small value for sin22� � 10�4.

For the case (b) such a mass di�erence it is possible to obtain between the

second and the �rst neutrinos if the fraction M

MPl

is order of unity. In this case

the condition (20) is valid. The mixing angle is of order sin2� � 1:3 � 10�2
which is a reasonable value. Thus, in this case obtained values for the mixing

angles and neutrino mass di�erence allow one to explain the solar neutrino

de�cit via resonant oscillations in the sun.

To explain the solar neutrino de�cit via longwave vacuum oscillations the

neutrino mass di�erence and the mixing angles must be of order
p
�m2 � (0:5� 1:1)10�5eV

sin22� > 0:75 (27)

It is clear that it is impossible for the considering case as our mixing angles

are too small.

Let as proceed to the case (19), (21). For the case (a) the condition (21)

gives for M:
M

MP l

= (0:018 � 0:22) (28)
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For such a values of M the light neutrino masses are of order

m�1 � m�2 � 4 � (10�8 � 10�5)
M

MP l

eV � (7:1 � 10�10 � 2:2 � 10�6)eV

m�3 � (8 � 10�3 � 0:6)
M

MP l

eV � (1:4 � 10�4 � 0:13)eV (29)

It is clear that the mass di�erence of second and �rst family is too small.

The mass di�erence between third and �rst family can achieve acceptable

value but the mixing angle as in previous case will be small sin22� � �10�4.
Let us consider the case (b). From (21) one obtains for M

M

MP l

= (0:0014 � 0:02) (30)

For such a values of M the light neutrino masses are of order

m�1 � m�2 � (6 � 10�6 � 2:5 � 10�3) M

MP l

eV � (8:4 � 10�9 � 5 � 10�5)eV

m�3 � (0:3� 150)
M

MP l

eV � (4:2 � 10�3 � 3:0)eV (31)

The value (0:5� 1:1)10�5eV which is necessary to explain the solar neutrino

de�cit via longwave vacuum oscillations is achieved for the mass di�erence

of �rst two neutrinos for the following values of M:

M

MP l

= (0:02� 0:002) (32)

What about the mixing angles for the considering case? As the masses of

two lightest neutrinos are close to each other, the mixing angle between them

can be relatively large.

The angle relevant for the neutrino oscillations is given by (if we neglect

the mixing with third light neutrino):

tan � =
a1�

a1e
'
s
mc

mu

m�1 �m1

m�1 �m2

(33)

where

m�1 = m1 +
1

2
m

 
1 +

m1 �m2 +m0

m1 �m2 �m0

!
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m�2 = m2 +m0 +
1

2
m

 
1 � m1 �m2 +m0

m1 �m2 �m0

!

m = �mumcm
2

tM1M2

detM5

(34)

m0 = �m
2

cm
2

tM
2

1
+mumcm

2

tM
2

2
+ 2
p
mumcmcm

2

tM1M2

detM5

To explain the solar neutrino de�cit via vacuum longwave oscillations tan�

must satisfy the condition

0:58 < tan� < 1:75 (35)

(as it follows from (27)). This gives :

(m1 �m2 �m0)2 � mm0 (36)

or, with the same accuracy:

(m�1 �m�2)
2 � mm0 (37)

Thus, it is possible to obtain large (35) mixing angles in this case if the

condition (36) takes place. This means that the masses of �rst two light

neutrinos must be very close to each other: the di�erence of masses must be

� 100 times smaller than the masses.

Thus, our analyze shows that it is possible to explain the solar neutrino

de�cit for the considering theory for the case of a uni�cation group G =

SU(4) � SU(2)L � SU(2)R without the left-right discrete symmetry can be

explained in two ways. 1)Via resonant oscillations in the sun if the value of

which is characteristic scale of nonrenormalizable interactions is of order of

Plank mass MP l = 1:2 � 1019GeV . Generally speaking, it is more natural,

that such a interactions arises in string scale Ms =
gstringMPlp

8�
= 1:7 � 1018GeV

[18, 19] however the di�erence of � 7 can be explained by means of coupling

constants �, �0 in nonrenormalizable terms:

�
FFHHhh

M3
; �0

�F �FHH

M

The mixing angle in this case � 0:06 which is the value we need. 2)Via

longwave vacuum oscillations: in this case the masses of two light neutrinos

are very close to each other and the mixing angle is large as needed.
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