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ABSTRACT

We investigate in detail the e�ects of sampling on our ability to accurately re-

construct the distribution of galaxies from galaxy surveys. We use a simple probability

theory approach, Bayesian classi�er theory and Bayesian transition probabilities. We

�nd the best Bayesian estimator for the case of low sampling rates, and show that even

in the optimal case certain higher order characteristics of the distribution are irretriev-

ably washed out by sparse sampling: we illustrate this by a simple model for cluster

selection. We show that even choosing an optimal threshold, there are nonzero numbers

for both misidenti�ed clusters and true clusters missed. The introduction of sampling

has an e�ect on the distribution function that is similar to convolution. Deconvolution

is possible and given in the paper, although it might become unstable as sampling rates

become low. These �ndings have important consequences on planning and strategies of

future galaxy surveys.
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1. introduction

Statistical analysis of the Large Scale Structure provides valuable information

about both the initial uctuations in the early Universe, and the subsequent physical

processes. The distribution of galaxies can be modeled by a (generalized) Poisson pro-

cess acting on an underlying continuous random �eld (Peebles 1980, Szapudi & Szalay

1993a, hereafter SS). The two-point correlation function describes the gross statistical

properties of the system. It is analogous to the dispersion for probability distributions.

As such, it can only represent the random �eld well, when it is close to Gaussian, other-

wise we need higher order correlation functions for a better description. Recently much

e�ort has been focused on the observational determination of higher order properties

of galaxy distributions (eg. Gazta~naga 1992, Meiksin, Szapudi & Szalay 1992, Szapudi,

Szalay & Bosch�an 1992, Bouchet et al. . 1993, Szapudi et al. 1994, Gazta~naga 1994). As

a result, the validity of the hierarchical assumption (Peebles 1980, Balian & Schae�er

1989) has been established between the higher order correlation functions, implying a

strong non-Gaussianity, which is expected from gravitational clustering with Gaussian

initial conditions. One of the major obstacles in studying the statistics of this random

�eld is the discrete nature of galaxies: Poisson noise can dilute characteristics that would

be immediately visible in a continuum representation. These problems are increasingly

prominent when one tries to concentrate on the higher order statistics. Kaiser (1986)

proposed that for determining the two point correlation function it is most e�cient to

use a sparsely sampled redshift survey. For the CfA survey he �nds 5% sampling to

be optimal for redshifts measured individually, and 10% if the redshifts are obtained

with a multiobject-spectrograph. Saunders et al. (1991) reconstructed the density �eld

of the local Universe from the QDOT redshift survey which consists of `one in six'

randomly sampled IRAS galaxies. They used generating functions to account for the

shot noise from the discreteness of galaxy counts and thereby estimate the moments of
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the underlying density �eld. The connection between the continuum and the discrete

representations was investigated in a more general setting by SS, and the so called facto-

rial moments emerged as the natural counterpart of the continuum moments. Factorial

moments are automatically free from Poisson noise terms, and, as will be shown, they

scale with the sampling rate.

In this paper we investigate the e�ects of di�erent sampling rates in detail, espe-

cially for reconstruction of density �elds, higher order moments and probability distri-

butions. These �ndings can be applied when designing galaxy surveys, and for de�ning

cluster �nding algorithms. In x2 we present the basic mathematical formalism, x3 ex-

presses the results in terms of Bayesian classifers for cluster �nding applications, x4

calculates Bayesian transitional probabilities for density reconstruction, and in x5 we

propose some methods for measuring galaxy count probabilities.

2. counting efficiency

Consider N galaxies in a cell, each galaxy detected with a probability p. Here p is

the product of  , the selection function for the cell, and the sampling rate. The number

of galaxies actually detected, M (we use M for the observed counts throughout) will

follow a binomial distribution:

P (M j N; p) =

�
N

M

�
pM qN�M ; p+ q = 1: (2:1)

If the probability of having N galaxies in the cell is PN , the probability of detecting M

galaxies will be

�PM =
X
N

PN

�
N

M

�
pMqN�M : (2:2)
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Throughout this paper we de�ne the binomial coe�cents
�
N

M

�
= 0 if M > N . We can

calculate the generating function for the observed distribution:

�G(x) =
1X

M=0

�PMx
M =

1X
N=0

PN (q + px)N = G(q + px) (2:3)

where G(x) is the generating function of the underlying distribution PN . Since the

generating function of sampling one of the galaxies is b(x) = q + px, the result can be

interpreted as the convolution of the two generating functions: �G(x) = G� b(x). This is

a special case of a more general result obtained in SS, which states that if the probability

of having N clusters in a cell is PN , and each cluster has the probability distribution

ck, then the generating function of the counts is the convolution of the corresponding

generating functions: G � c(x). Note that, if the generating function is a function of

n(x� 1), switching to �P means n(q + px � 1) = pn(x� 1), i.e. the generating function

may be obtained just by the usual n to pn substitution, as used by Saunders et al.

(1991).

3. bayesian classifiers

The formalism of the previous section can be utilized to describe cluster selection

on a sound mathematical basis. In its simplest form clusters are selected via counts

exceeding a predetermined threshold. With incomplete sampling, however, we can only

set a threshold in the observed counts chosen to minimize the errors, there may be a

large scatter in the true counts. In this section we investigate this problem in detail; in

particular we propose choosing the threshold optimally to minimize the total probability

of missing or misidentifying a cluster: the Bayesian classi�er. It is straightforward to

modify our method, when the errors must be optimized in a di�erent sense: e.g. we

want a clean sample, at the expense of missing a larger fraction of true clusters.
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A threshold in the real counts divides the events in two disjoint classes: N � Nc

(cluster), and N < Nc. The probability distribution of the measured counts �PM can

be uniquely decomposed into two parts: the probability f1(M), that M is coming from

the �rst class and the probability f2(M) that it comes from the second class, thus

�PM = f1(M) + f2(M); (3:1)

with an implicit dependence on the preset threshold Nc and the detection probability

p. The calculation of fi(M) is straightforward from Eq. (2.1)

f1(M) =
X
N�Nc

P (M j N; p)PN (3:2)

f2(M) =
X
N<Nc

P (M j N; p)PN :

If our cluster selection algorithm uses a threshold Mc in the observed counts to decide

what a cluster is, it will make two di�erent kinds of error. It can miss a cluster with

probability

�1 =
X

M<Mc

f1(M); (3:3)

or it can detect a false cluster with probability

�2 =
X

M�Mc

f2(M); (3:4)

For completeness we introduce the �1 the probability that we detect a cluster correctly,

and �2 is that we reject one correctly

�1 =
X

M�Mc

f1(M); (3:5)

�2 =
X

M<Mc

f2(M):

The meaning of these quantities is clear from Fig.1. We select the threshold Mc to

minimize the total error �1 + �2; this is called Bayesian classi�er corresponding to
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f1(Mc) = f2(Mc) (Fukanaga 1990; for explanation see Fig. 1. and the next para-

graph) We can characterize the relative errors in a sample of clusters selected by this

thresholding:

Em =
�1

�1 + �1
; (3:6)

Ef =
�2

�2 + �1
;

where Em is the fraction of true clusters missing, end Ef is the fraction of false clusters

in the detected sample. The Bayes error used here corresponds to the overall min-

imalization of the errors. Note, however, that in certain situations a di�erent error

optimization may be necessary: one could choose a threshold for instance such as to

keep �2 low to obtain a clean sample at the expense of missing a lot of clusters, i.e. �1

larger than optimal. It is obvious how to apply our considerations to this case, or cases

when there are more than two classes.

To illustrate these ideas we applied the formalism to the selection of the Abell

clusters. We used the probability distribution determined from mixed dark matter

N-body simulations by Klypin et al. (1993).

h(x) = 0:086x�2:25 exp(�0:046x);

PN ' h(N=Ncl)=(Ncl
��); (3:7)

where Ncl = hNi��, and �� is the average of the correlation function over of the cell fo

volume V . Szapudi & Szalay (1993b) estimate Abell's sampling rate from a sample

of galaxies brighter than Mv = �18 at p = 0:4, hNi ' 0:035, and �� ' 40, for a

sphere of an Abell radius (1:5 h�1Mpc). There is a one-to-one mapping between Nc

and corresponding optimal Mc at a given sampling rate. The inverse relation can be

applied similarly to �nd the best corresponding Nc to a certain Mc in the sense of

the minimal Bayesian errors. Fig.1. shows the distributions f1 and f2 when Mc ' 50
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(Abell's threshold to select clusters of richness class 1), corresponding to a threshold

of Nc ' 100 in the real counts. This �gure illustrates that the condition for minimal

errors is f1(Mc) = f2(Mc), since if the threshold is moved either left or right from

the intersection of the two curves, the errors will increase, similarly to the Maxwell

construction.

Fig.2. plots the fractional errors for Nc ' 100 (chosen such that it would give

the appropriate Mc ' 50 at 40% sampling) as a function of p, the sampling rate.

As expected, the errors increase with decreasing sampling rate. From Fig.2. we can

determine Ef ' 0:1, Em ' 0:15, at p = 0:4. This can be compared to the results of

Lucey (1983), where he quotes 15 � 25% false detection, and 15� 30% missed clusters

from detailed Monte-Carlo modelling of Abell's selection process. The di�erence from

our results is understandable, since Abell clusters were selected from an angular galaxy

distribution, both errors are subject to projection e�ects, and we only approximated

the true probability distribution with one determined from N-body simulations, and

the sampling rate used is only approximate. The estimated errors are therefore in good

agreement with Lucey's �ndings.

From Fig.2. we can see that the errors start to increase sharply roughly at around

p = 0:3, this represents a minimum sampling rate necessary to �nd clusters e�ciently,

at lower sampling rate the cluster �nding algorithm will break down. We found this

behaviour in the concrete examples we investigated, and conjecture that this is a quite

generic behaviour, i.e. there exist a sampling under which the errors increase steeply.

The exact location of the threshold, however depends on the parameters in a quite

complicated way, and the minimal sampling rate is not uniquely de�ned: it has to be

determined in every situation individually keeping in mind the objectives of the survey.
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4. bayesian transition probabilites, density reconstruction

Often we need to extract statistical information from a sample beyond simply

knowing whether the counts are above or below a threshold. When measuring the

count M the question naturally arises as to how good a constraint this measurement

imposes on the underlying distribution. Using Bayes' theorem we calculate the inverse

probability P (KjM;p), the probability distribution of the real counts, K, given the

measuredM as

P (KjM;p) =
P (M jK; p)PK

�PM
=

�
K

M

�
qKPNP1

S=M

�
M

S

�
qSPS

: (4:1)

Previously we calculated P (M jN; p), the probability that our measurement will yield

M if the real count is N . Now an interesting picture arises: there may be N galaxies

in reality, we measure M and infer K from this information. We can determine the

transition probability between the real counts and our (best possible) inferences:

P (KjN) =
X
M

P (KjM)P (M jN) = PK
X
M

�
N

M

��
N

K

�
pMqN+K�MP

S PS
�
S

M

�
qS

: (4:2)

In the case of full sampling this function is simply a discrete Dirac (or a Kronecker)

delta. As we lower the sampling rate, the Dirac delta broadens into a function that

represents the uncertainty we have when reconstructing the real distribution from the

measured counts, and for a given sampling rate it also depends on the underlying PN .

With this transition probability we can easily calculate using Eq. (4.2) the in-

ferred probability distribution P̂K

P̂K =
X
N

P (KjN)PN = PK : (4:3)

This means, that although our inference might be smeared out, it is unbiased in the

sense of the whole distribution (i.e. we can still accurately reconstruct the probability
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distribution as a whole). This is a non-trivial equation, because the kernel is not a delta

function.

Let us consider the naive estimate, K = M=p, where M is the measured value

at sampling p, and K is the more usual inference arising simply by divison with the

sampling. This corresponds to a P (KjM;p) = �M;Kp, or uniform priors in Bayesian

language. The inferred distribution P̂ f

K is

P̂
f
K =

X
N

�
N

Kp

�
pKpqN�KpPN : (4:4)

This clearly cannot reconstruct the distribution under low sampling rates. Even if

the distribution is a sharp delta, PN = �NN0
, our inference will be smeared out as

P̂ f
K =

�
N0

Kp

�
pKpqN0�Kp. This is demonstrated on Fig. 3. which shows how the response

of this approach to a sharp delta broadens with decreasing sampling rate. Since any

distribution can be decomposed as the sum of delta functions, this argument shows,

that the naive estimate cannot reconstruct a distribution from in�nite measurements.

5. determining the true PN distribution

Section x3 illustrated in conjunction with cluster selection, that the information

irretrievably lost through incomplete sampling cannot be recovered even with Bayesian

approach. The previous sections showed, however, that Bayesian methods reconstruct

the density in a statistical sense (we illustrated this with counts in cells), while the simple

approach of dividing with the sampling does not. For these theoretical calculations we

assumed that the galaxy count probabilities are a priori known from measurements or

theory. Without the aim of completeness this section contains some suggestions and

ideas about how such measurements can be performed using one-point informations

only. This puts the the previous considerations in a more practical framework. Detailed
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evaluation and comparison of these models together with other higher order methods

to be used for density reconstruction is left for subsequent research.

For the case of a catalog with uniform sampling rate, like galaxies on a radial

shell, we can explicitely express the inversion. We calculated �G(x) = G � b(x) before. If

we de�ne b�1(x) such that b � b�1 = id, or explicitely b�1(x) = x=p� q=p, we can invert

the formula for the generating functions, and thus calculate PN from the measurement

of �PM as

PN =

1X
M=N

�
M

N

�
p�M (�q)M�N �PM : (5:1)

This equation is always properly normalized, as can be seen from taking the generating

function at x = 1. The result is a correct mathematical inversion, so as long as the un-

derlying probability distribution is positive de�nite, the reconstruction from a perfect

measurement will yield positive de�nite results. If the measurement is �nite, but a good

approximation, the result will still be a good approximation of the original distribution

and as such positive. In a practical situation, if negative values are encountered, they

simply mean the lack of adequate information to reconstruct the the probability dis-

tribution. The application of this formula (and any similar inversion method for that

matter) is limited by the fact that it is an alternating sum, which is subject to insta-

bilities at low sampling rates, especially in the tail of the distribution, where a small

numbers are determined by subtracting large numbers from each other. The probability

of N > N0, (probability of overdensity) can be inverted similarly. If M galaxies are

measured, the result can be obtained from the sum of Eq. (2.1) for all N � N0

P (N � N0jM) =

P1
N=N0

�
N

M

�
qNPNP1

S=M

�
M

S

�
qSPS

: (5:2)

Unfortunately, in real (astrophysical) situations the selection function might

change from place to place, it might be di�erent for each bin in which we measure

the counts. In that case the former inversion breaks down because in principle there
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are many distributions that could produce the same data. One possibility is to take

a maximum likelihood approach: what distribution is most likely to produce the mea-

surements? If we determine this distribution with enough measurements, it will be a

good approximation to the real underlying distribution. Let us index our bins with

i from 1 to C and assume that at bin i where the probability is pi, we measure M .

According to the previous consideration we can determine �Pi(Mi) which will depend on

all the PN ;N �M and the selection function at that bin. Since our measurements are

independent we can construct the probability �P (M1; : : :MC) which will be the product

of the probabilities for each bin:

�P (M1; : : :MC) =
CY
i=1

1X
Ni=Mi

PNi

�
Ni

Mi

�
pMi

i qNi�Mi

i (5:3)

We can maximize this expression as a function of PN to get the best estimator for the

underlying distribution. When all the selection functions are constant the maximization

can be done analytically, and it gives back the usual estimator for PN : the number of

bins with N galaxies divided by the sum of all bins. The general case can be handled

numerically.

Another possibility is to characterize a distribution by its moments, and use the

scaling properties of the moments for inversion. One might naively expect that the

moments scale with the sampling rate Nk ' pk. A closer look at the problem reveals

that it is not the case. Let us introduce the notation (N)k = N(N � 1) : : : (N � k+ 1),

and de�ne the factorial moments as

h(N)k i =
X
N�0

PN (N)k (5:4)

The de�ned factorial moments scale with p because

h(M)k i =
dk

dxk
jx=1 �G(x) = pk

dk

dxk
jx=1G(x) = pkh(N)ki (5:5)
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This could be anticipated because (according to SS) the factorial moments (and not the

regular moments) of the discrete distribution are equal to the continuum moments of

the underlying �eld, and the continuum moments clearly scale with the sampling. Note

that the factorial moments are equivalent to the conventional method of subtracting

shot noise contribution, however, the results are simpler and scale with the sampling

rate. For the sake of completeness we cite the formula from SS for the connection of

the factorial moments with the ordinary moments:

hNmi =
mX
k=0

S(m;k)Fk; (5:6)

where S(m;k) are the Stirling numbers of the second kind.

These results de�ne an estimator Fk for the true factorial moments of the distri-

bution, provided that the selection probability pi is known for each cell:

Fk =
1

C

X
i

(Ni)k

pki
; (5:7)

where Ni is the count in cell i. This is an unbiased consistent estimator for the factorial

moments. However, the errors of the estimates for the selection probability can introduce

further errors and instabilities, especially at low sampling rates. Once we know the

factorial moments at su�cient accuracy, it is a simple matter to �nd the probability

distribution using that the generating function of the probability distribution G(x) can

be written in terms if the exponential generating function of the factorial moments

F (x) =
P

k Fk
xk

k!
as

G(x) = F (x � 1) (5:8)

(see SS for details). The inversion calculated this way will be by de�nition unbiased

in the sense of factorial moments. The application of the expansion of this equation is

limited by the same restrictions as mentioned after Eq. (5:1).
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Another possibility would be to arti�cially `dilute' the sample by randomly se-

lecting a fraction of galaxies in the more sampled areas, such that the sampling will be

constant in the resulting survey. By doing this several times, it can be ensured each

galaxy will be in one of the resulting catalogs at least once statistically. After calcu-

lating the average probability distribution over this ensemble of catalogs Eq. (5:2) is

dierctly applicable.

6. discussion

We investigated the sampling e�ects on the reconstruction of galaxy counts in

cells. One of our examples addresses the problem of cluster selection using a simple

model: we wish use a galaxy catalog which samples the the galaxies at a constant

(possibly low) rate to select locations of the fully sampled catalog exceeding a preset

threshold Nc. We �nd that there is an optimal threshold in the undersampled catalog

( Mc ' Ncp, where p is the sampling rate, approximately for high sampling rates, but

not exactly) that minimizes the total errors. This minimal error corresponds to the

so called Bayesian classi�er and constitutes one of the main results of the paper. If

the desired theshold Nc is �xed, the only possiblity to lower these errors is to increase

the sampling rate. This shows, that, as expected, information is irretreivably lost about

the actual density map through incomplete sampling. The formalism for calculating the

Bayesian classifer, which minimizes the total error, can also be used when di�erent error

optimization is needed, and can be generalized even for multiple classes of objects, e.g.

clusters of di�erent richness classes. As an example, we applied these considaration to

the selection of Abell clusters, obtaining results for the fractions of missing true clusters,

and misidenti�ed clusters in agreement with previous �ndings.

We studied the reconstruction of the distribution of the count probabilities as well.

We found that under ideal conditions of large number of (independent) meaurements
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and �xed sampling rate, the Bayesian inversion provides an unbiased estimator of the

count probabilities in the sense of the moments of the distribution, while the naive

approach (with uniform priors) smears out the distribution substantially under the

same conditions. If the sampling rate is low: it cannot even recover a sharp (delta

function) distribution from in�nite measurements. The case of variable sampling is

more complicated, and requires an even more sophisticated approach; we proposed

several of these. The distribution, according to the previous �ndings, can only be

recovered in the statistical sense, since part of the information is lost through incomplete

sampling. Finally, note, that in this paper we did not deal with the `cosmic' errors for

the reconstruction of the probability distribution arising from the fact that a real galaxy

catalog contains only a �nite portion of the Universe. This is a related, but nevertheless

di�erent problem, for which a solution will be presented in Szapudi & Colombi (1995).
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Figure Captions

Fig.1.| The distributions f1 and f2 are shown. Mc ' 50 (Abell's threshold to

select clusters of richness class 1), corresponding to a threshold of Nc ' 100 in the real

counts, is at the intersection of the two curves. The di�erent contributions to the error

and detection probabilities are the areas under the curves, denoted by �1, �2, �1, �2 (see

text for details).

Fig.2.| The fractional errors for false detection Ef , and for missed clusters Em

are shown for Nc ' 100 as a function of p, the sampling probability. As expected, the

errors increase with decreasing sampling rate. For Abell's estimated 40% sampling rate

we can determine Ef ' 0:1, Em ' 0:15.

Fig.3.| The response of the `naive' approach to the a sharp (Kronecker-delta)

distribution is displayed with sampling rates p = 0:1; 0:3; 0:5; 0:7; 0:9. The resulting

distributions broaden with decreasing sampling rate; only full sampling would recover

the delta function. Theoretically the Bayesian approachwould recover the delta function

at any sampling rate.
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