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Abstract

The elementary and solitonic supersymmetric p-brane solutions to supergravity theo-

ries form families related by dimensional reduction, each headed by a maximal (`stainless')

member that cannot be isotropically dimensionally oxidized into higher dimensions. We �nd

several new families, headed by stainless solutions in various dimensions D � 9. In some

cases, these occur with dimensions (D; p) that coincide with those of descendants of known

families, but since the new solutions are stainless, they are necessarily distinct. The new

stainless supersymmetric solutions include a 6-brane and a 5-brane in D = 9, a string in

D = 5, and particles in all dimensions 5 � D � 9.
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1 Introduction

Since the discovery of p-brane theories with manifest spacetime supersymmetry [1, 2], it has

become increasingly clear that there is a close relationship between such theories and the set of

soliton-like solutions to supergravity theories [3]. All the known supersymmetric p-brane theo-

ries achieve a matching of the on-shell world-volume bosonic and fermionic degrees of freedom,

by virtue of a local fermionic symmetry known as � symmetry. This symmetry compensates

for the excess of fermionic over bosonic degrees of freedom by gauging away half of the former.

The consistency of � symmetry with spacetime supersymmetry places severe constraints on the

spacetime dimension D and the world volume dimension d = p+ 1 [4]. Four classic families of

super p-branes were found to satisfy the consistency criterion. The members within each family

are related by a process of double dimensional reduction [5], in which both the spacetime and

the world volume are simultaneously compacti�ed on a circle, and the dependence on the extra

direction is dropped in each space. Thus the classic super p-branes may be classi�ed by giving

the maximal-dimensional member of each of the four families. These occur in (D; d) = (11; 3),

(10; 6), (6; 4) and (4; 3). On a plot or `brane scan' of D vs d, the additional p-branes obtained by

double dimensional reduction lie on the North-east/South-west diagonal lines descending from

the maximal cases.

The idea that a super p-brane could be viewed as a long-wavelength description of a topo-

logical defect in a supersymmetric theory originated in the construction of the supermembrane

in D = 4 [1]. This supermembrane occurs as a kink solution of a D = 4 chiral scalar supermul-

tiplet theory with a potential giving a degenerate vacuum. A crucial feature of this solution is

that half the original supersymmetry is left unbroken. This partial breaking of supersymmetry

is also a general feature of all the subsequently-discovered p-brane solitons.

Another feature of super p-branes became clear with the curved-superspace construction

of the D = 11 supermembrane action in [2], and its generalisations to the other classic super

p-branes. This new feature was the occurrence of integrability conditions on the supergravity

background that are required for the existence of the world-volume � symmetry. In the case

of the D = 11 supermembrane, and of the type IIA string, related to it by double dimensional

reduction, these integrability conditions imply the full set of supergravity �eld equations [2, 5].

The association of super p-branes to supergravity is also natural because the supersymmetric

p-branes can be viewed as the natural `matter' sources for the corresponding supergravity

theories. A very speci�c rôle in this association is played by the antisymmetric tensor �eld
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strengths, whose gauge potentials couple directly to the (p + 1)-dimensional world volumes.

In the coupled solutions of super p-branes and their corresponding supergravity backgrounds,

the backgrounds are naturally singular on the p-brane world volumes, which can act like delta-

function sources. These singularities may or may not be clothed by horizons, depending upon

the circumstances. Such singular supergravity solutions are called `elementary,' in distinction

to the non-singular `solitonic' solutions described previously.

The association of p-branes with singular supergravity solutions was made concrete with

the explicit construction of superstring solutions in the case of N = 1, D = 10 supergravity [6].

These solutions preserve half of the original supersymmetry, and consequently they saturate a

Bogomol'ny bound on the energy density. Subsequently, an analogous elementary membrane

solution of D = 11 supergravity was found [7]. Many further solutions of supergravity theories

have also been found, both for elementary p-branes [8] and for solitonic p-branes [9]. (There

are also solitonic solutions in supergravity theories coupled to Yang-Mills, such as that based

upon Yang-Mills instantons, and corresponding to the heterotic string [10].)

The multiplicity of elementary and solitonic p-brane solutions to supergravity theories, cov-

ering manymore values of (D; d) than the classic �-symmetric points on the brane scan, suggests

that the original classi�cation needs to be generalised. Leaving aside for the moment the prob-

lem of formulating more general �-symmetric actions, it is worthwhile to try to �nd the general

pattern of elementary and solitonic p-brane solutions in supergravity theories.

Many supergravity theories in D � 10 dimensions can be obtained from D = 11 super-

gravity by Kaluza-Klein dimensional reduction, in which a consistent truncation of the higher-

dimensional to the lower-dimensional theory is made. Since the truncation is consistent, it fol-

lows that solutions of the lower-dimensional theory are also solutions of the higher-dimensional

one. This lifting of solutions to the higher dimension is known as dimensional oxidation. In

some cases, an elementary or solitonic brane solution in the lower dimension oxidizes to another

elementary or solitonic brane solution in the higher dimension. The ability to view an oxidized

brane solution as itself being a brane solution depends upon whether the isotropicity of the

lower-dimensional solution extends to an isotropicity in the higher-dimensional sense. For the

isotropicity to extend, the extra coordinate of the higher-dimensional spacetime must either

become isotropically grouped with the p-brane coordinates of the lower dimension, making a

(p+1)-brane, or else it must become isotropically grouped with the coordinates of the transverse

space, making a p-brane in the higher dimension. As we shall show later, the latter can never

happen within the framework of Kaluza-Klein dimensional reduction. The former, on the other
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hand, can occur under certain circumstances. This is the direct analogue, at the level of solu-

tions to supergravity theories, of the process of double dimensional reduction of p-brane actions

[5]. Just as for those actions, it is useful in classifying the brane solutions to distinguish between

the ones that can be oxidized to isotropic brane solutions of a higher-dimensional supergrav-

ity theory, and those that cannot be isotropically oxidized. We shall call the former solutions

`rusty,' and the latter solutions `stainless.' Thus when constructing a brane scan of supergravity

solutions, one may omit the rusty solutions, which are simply the Kaluza-Klein descendants of

stainless solutions in some higher dimension. The full solution set is thus characterised by the

stainless solutions.

A frequently-encountered contention in the recent literature is that the only fundamental

brane solutions occur in D = 11 and D = 10 supergravities [11], and that all the others are

simply obtained by dimensional reduction. In this paper, we shall show that this is not the

case, given our requirement of isotropicity in the oxidation process.1 In particular, we shall

�nd new stainless brane solutions to supergravity theories in all 5 � D � 9. (We shall not be

concerned in the present paper with supersymmetric p-brane solutions to super Yang-Mills or

other rigid supersymmetric theories.) Amongst other stainless examples, we shall �nd a 6-brane

and a 5-brane in D = 9, and a string in D = 5, none of which are obtainable from D = 11 or

D = 10 p-brane solutions by dimensional reduction.

2 Solutions and Kaluza-Klein dimensional reduction

2.1 p-brane solutions

We are concerned with elementary and solitonic solutions of supergravity theories that admit

interpretations as p-branes embedded in spacetime. These solutions will in general involve the

metric tensor gMN , a dilaton � and an n-index antisymmetric tensor FM1 ���Mn
in D dimensions.

The Lagrangian for these �elds takes the form

L = eR� 1
2e(@�)

2 � 1

2n!
ee�a�F 2 ; (1)

1An opposite viewpoint has been put forward in [16], in which all oxidations of brane solutions are regarded

as branes in the higher dimension. We prefer not to adopt this viewpoint since, if the isotropicity requirement on

the world volume is dropped, the solutions are not ordinary extended objects, and moreover it would not then

be clear what degree of anisotropicity should be regarded as acceptable.
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where e =
p�g is the determinant of the vielbein. The equations of motion are

� = � a

2n!
e�a�F 2 ;

RMN = 1
2@M� @N� + SMN ; (2)

@M1
(ee�a�FM1 ���Mn) = 0 ;

where SMN is a symmetric tensor given by

SMN =
1

2(n� 1)!
e�a�

�
F 2
MN

� n� 1

n(D� 2)
F 2gMN

�
: (3)

The ansatz for the metric for the D dimensional spacetime is given by [6, 11]

ds2 = e2A dx�dx���� + e2B dymdyn�mn ; (4)

where x� (� = 0; : : : ; d�1) are the coordinates of the (d�1)-brane world volume, and ym are the

coordinates of the (D � d)-dimensional transverse space. The functions A and B depend only

on r =
p
ymym. Note that the form of the metric ansatz is preserved under the replacement

r �! 1=r. The Ricci tensor for the metric (4) is given by

R�� = ����e2(A�B)
�
A00 + dA02 + ~dA0B0 +

~d+ 1

r
A0
�
;

Rmn = ��mn

�
B00 + dA0B0 + ~dB02 +

2 ~d+ 1

r
B0 +

d

r
A0
�

(5)

�y
myn

r2

�
~dB00 + dA00 � 2dA0B0 + dA02 � ~dB02 �

~d

r
B0 � d

r
A0
�
;

where ~d = D � d� 2 and a prime denotes a derivative with respect to r. A convenient choice

of vielbein basis for the metric (4) is e� = eAdx� and em = eBdym, where underlined indices

denote tangent space components. The corresponding spin connection is

!�n = e�B@nAe
� ; !�� = 0 ;

!mn = e�B@nB e
m � e�B@mB en : (6)

For the elementary p-brane solutions, the ansatz for the antisymmetric tensor is given in

terms of its potential, and takes the form [6]

A�1:::�n�1 = ��1:::�n�1e
C ; (7)

and hence

Fm�1:::�n�1 = ��1:::�n�1@me
C ; (8)
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where C is a function of r only. Here and throughout this paper �M ���N and �M ���N are taken to

be the tensor densities of weights �1 and 1 respectively, with purely numerical components �1
or 0. Note in particular that they are not related just by raising and lowering indices using the

metric tensor. The dimension of the world volume is given by d = n � 1 for the elementary

p-brane solutions.

For the solitonic (d� 1)-brane solutions, the ansatz for the antisymmetric tensor is [9]

Fm1���mn = ��m1���mnp
yp

rn+1
; (9)

where � is a constant. The power of r is governed by the requirement that F should satisfy the

Bianchi identity. The dimension of the world volume is given by d = D�n� 1 for the solitonic

p-brane solutions.

For both types of solution, the symmetric tensor SMN takes the form

S�� = �
~d

2(D � 2)
S2 e2(A�B)��� ;

Smn =
d

2(D � 2)
S2 �mn � 1

2 S
2 y

myn

r2
: (10)

The function S is given in the two cases by

elementary : S = e�
1
2a��dA+C C0 d = n � 1 ;

solitonic : S = �e�
1
2a��

~dB r�
~d�1 d = D � n� 1 : (11)

With these ans�atze, the equations of motion for the dilaton and the metric tensor in (2)

become

�00 + dA0�0 + ~dB0�0 +
~d+ 1

r
�0 = 1

2�aS
2 ;

A00 + dA02 + ~dA0B0 +
~d+ 1

r
A0 =

~d

2(D� 2)
S2 ;

B00 + dA0B0 + ~dB02 +
2 ~d+ 1

r
B0 +

d

r
A0 = � d

2(D � 2)
S2 ; (12)

~dB00 + dA00 � 2dA0B0 + dA02 � ~dB02 �
~d

r
B0 � d

r
A0 + 1

2�
02 = 1

2S
2 ;

where � = 1 for the elementary ansatz and � = �1 for the solitonic ansatz. The equation of

motion for the �eld strength F in (2) is automatically satis�ed by the solitonic ansatz (9), whilst

for the elementary ansatz (7) it gives rise to the equation

C00 + C0(C0 + ~dB0 � dA0 � a�0) +
~d+ 1

r
C0 = 0 : (13)
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Solutions to the equations of motion (12) and (13) can be obtained by making the following

ansatz:

A0 =
�

�
S ; �0 =

�(D � 2)a

~d
A0 ; (14)

where � is a constant. By choosing � such that

�2 =
(D � 2)2a2

~d2
+

2d(D� 2)

~d
; (15)

one can eliminate the non-linear terms A02, B02 and A0B0 from a linear combination of the last

three equations in (12).2 Then it is a simple matter to solve the equations; the solution is given

by

B = �d
~d
A ; � =

a(D � 2)

� ~d
A ;

e�cA = 1 +
k

r
~d
; (16)

where k = ���=(2(D� 2)) and c = d+ a2(D� 2)=(2 ~d). In the elementary case, the function C

satis�es the equation

(eC)0 = � e2cA r�
~d�1 : (17)

In presenting these solutions we have chosen simple values for some integration constants where

no loss of generality is involved. The solutions (16) are valid when d ~d > 0. For the cases d = 0 or

~d = 0, the solutions can also be straightforwardly obtained; an example will be given in section

4.2. Note that the forms of the metrics for both elementary and solitonic (d� 1)-branes are the

same, although, as we saw earlier, the solutions are obtained from a (d+1)-form antisymmetric

tensor �eld strength in the former case, and from a (D�d� 1)-form antisymmetric tensor �eld

strength in the latter case.

So far, we have obtained solutions for the bosonic theory described by the Lagrangian (1)

for arbitrary values of the constant a, and with an antisymmetric tensor of arbitrary degree.

In supergravity theories, however, there occur antisymmetric tensors of certain speci�c degrees

only, each with its corresponding speci�c value of the constant a. We may summarise the a

values arising in supergravity theories as follows. Without loss of generality, we may discuss all

theories in versions where all antisymmetric tensor �eld strengths have degrees n � D=2. The

a values are given by

a2 = �� 2d ~d

D � 2
; (18)

2There are more general solutions of the equations (12) than those that follow from the ansatz (14,15).

However, as we shall see later, when one considers supergravity theories the equations implied by requiring that

half the superymmetry be preserved are equivalent to (14,15).
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where

d ~d = (n� 1)(D � n� 1) : (19)

Some examples of values of � that arise in supergravity theories are � = 4 for n 6= 2, and

� = 4 and 2 for n = 2. We shall discuss the set of � values in more detail in section 4.1. Note

that in cases where there is no dilaton, the solution for the A and B functions that appear in

the metric ansatz is precisely given by (16) with the value of a taken to be zero. In this sense

we can assign the value � = 2d ~d=(D � 2), which, by eqn (18), sets a = 0, in a supergravity

theory where there is no dilaton. For example � = 4 for the 4-form �eld strength in D = 11

supergravity, � = 2 for the 3-form �eld strength in D = 6 self-dual supergravity, and � = 4
3

for the 2-form �eld strength in D = 5 simple supergravity.

It follows from eqn (16) that the metrics for the brane solutions are given by

ds2 =
�
1 +

k

r
~d

�� 4~d
(D�2)� dx�dx���� +

�
1 +

k

r
~d

� 4d
(D�2)� dymdym : (20)

This coincides with the results given in ref. [11] for the case of � = 4. Note from (15) and (16)

that in terms of �, the functions A, B and � satisfy

A0 =
� ~d

(D � 2)
p
�
S ; B0 = � �d

(D � 2)
p
�
S ; �0 =

ap
�
S : (21)

As we shall see in detail in the next section, some of the (d�1)-brane solutions that we have

obtained in a D-dimensional supergravity can be isotropically oxidized to d-brane solutions in a

(D+1)-dimensional supergravity. The degree of the antisymmetric tensor involved in a p-brane

solution, and the value of the constant a, play crucial rôles in determining whether the solution

can or cannot be isotropically oxidized in this way.

At this point, a remark about supersymmetry is in order. In order for the solutions that

we have obtained above to acquire an interpretation as super (d � 1)-branes embedded in

D-dimensional spacetime, we shall have to verify that these solutions preserve half of the super-

symmetry of the corresponding supergravity theories. We have veri�ed, case by case, that this

is indeed true, at least as long as the antisymmetric tensor is part of the supergravity multiplet.

In fact, the conditions arising from the requirement of preserving half of the supersymmetries

turn out to be precisely equivalent to those that we imposed in the ansatz (14).

In concluding this subsection, we return to a more detailed discussion of a point to which

we alluded earlier, namely that we may choose, when discussing the solution set of elementary

and solitonic branes in supergravity theories, to restrict our attention to the versions of the
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various supergravity theories in which all antisymmetric tensors Fn have degrees n that do not

exceed D=2. The reason why we may do this without losing generality is that an elementary

or solitonic solution of a version of a supergravity theory in which the antisymmetric tensor

participating in the solution is dualised is precisely the same as the solitonic or elementary

solution, respectively, of the undualised form of the supergravity theory. To see this, consider

the solitonic solution of (2), with Fn given by the ansatz (9). This has

Fn =
1

n!
Fm1���mn dy

m1 ^ � � � ^ dymn = �

n!
e�nB �m1���mnp

yp

rn+1
em1 ^ � � � ^ emn : (22)

Thus the Hodge dual of this n-form is given by

�Fn =
�

(D � n)!
ym

rn+1
e�nB ��1����d e

m ^ e�1 ^ � � � ^ e�d : (23)

In the dual version of the theory, the (D � n)-form eF whose Bianchi identity implies the �eld

equation for Fn given in (2) is eF = e�a� � Fn, which, from (23), has components given by

eFm�1����d =
�ym

rn+1
edA�

~dB�a� ��1����d : (24)

Hence by using (16), with ~d = n � 1, we see that eFm�1����d is precisely of the form of the

elementary ansatz (7) for a (d + 1)-index �eld strength, where the function C satis�es its

equation of motion (17). Thus we see that the solitonic solution of the dualised theory is

precisely the same thing as the elementary solution of the undualised theory, and vice versa,

with the antisymmetric tensor written in di�erent variables. We may therefore, without loss

of generality, consider all supergravity theories in their versions where the degrees of their

antisymmetric tensors Fn satisfy n � D=2. The set of all elementary and solitonic brane

solutions of these theories spans the entire set of inequivalent brane solutions of these theories

together with their dualised versions.

2.2 Kaluza-Klein dimensional reduction

In order to describe the processes of oxidation and reduction, we need to set up the Kaluza-

Klein procedure for dimensional reduction from (D + 1) to D dimensions. Let us denote the

coordinates of a (D + 1)-dimensional spacetime by xM̂ = (xM ; z), where z is the coordinate of

the extra dimension. The (D+1)-dimensional metric dŝ2 is related to the D-dimensional metric

ds2 by

dŝ2 = e2�'ds2 + e2�'(dz + AMdxM)2 ; (25)
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where ' and A are taken to be independent of the extra coordinate z. The constants � and �

will be determined shortly. A convenient choice for the vielbein êÂ
M̂
of the (D+1)-dimensional

spacetime is

êAM = e�' eAM ; êzM = e�'AM ;

êAz = 0 ; êzz = e�' : (26)

Note that M and z denote world indices, whilst A and z denote tangent-space indices.

The spin connection is given by

!̂AB = !AB + �e��'
�
@B' êA � @A' êB

�
� 1

2
FABe(��2�)' êz ;

!̂Az = ��e��' @A' êz � 1
2FA

B e
(��2�)' êB ; (27)

where @A = EA
M@M is the partial derivative with a tangent-space index, and FMN = 2@[MAN ].

Here, EA
M is the inverse vielbein in D dimensions. Choosing � = �(D� 2)', we �nd that the

(D + 1)-dimensional Einstein-Hilbert action ê R̂ reduces to

êR̂ = eR� (D� 1)(D� 2)�2 e(@')2 � 1
4e e

�2(D�1)�'F2 : (28)

The Kaluza-Klein dilaton ' may be given its canonical normalisation by choosing the constant

� such that

�2 =
1

2(D� 1)(D� 2)
: (29)

It is sometimes useful to have expressions for the (D+1)-dimensional Ricci tensor. Its tangent-

space components are given, after setting � = �(D � 2)�, by

R̂AB = e�2�'
�
RAB � (D� 1)(D� 2)�2 @A'@B'� � ' �AB

�
� 1

2e
�2D�'FACFBC ;

R̂Az = 1
2e

(D�3)�'rB

�
e�2(D�1)�'FAB

�
; (30)

R̂zz = (D � 2)�e�2�' '+ 1
4e

�2D�'F2 :

Let us now apply the above formalism to the case of a bosonic Lagrangian of the form (1),

but in (D + 1) rather than D dimensions:

L = êR̂� 1
2 ê(@�̂)

2 � 1

2n!
êe�â�̂ F̂ 2

n ; (31)

where we add a subscript index n to indicate that F is an n-form. The Kaluza-Klein ansatz for

�̂ is simply �̂ = �, where � is independent of the extra coordinate z. For F̂n, which is written

locally in terms of a potential Ân�1 as F̂n = dÂn�1, the ansatz for Ân�1 is

Ân�1 = Bn�1 + Bn�2 ^ dz ; (32)
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where Bn�1 and Bn�2 are potentials for the n-form �eld strength Gn = dBn�1 and the (n� 1)-

form �eld strength Gn�1 = dBn�2 in D dimensions. De�ning

G0
n = Gn � Gn�1 ^ A ; (33)

where A = AMdxM , one �nds

F̂n = G0
n + Gn�1 ^ (dz +A) : (34)

The tangent-space components of F̂n in (D + 1) dimensions are therefore given by F̂A1 ���An =

G0
A1 ���An

e�n�' and F̂A1���An�1z = GA1 ���An�1
e�(n�1)�'��'. Substituting into (31), and using

� = �(D � 2)�, we obtain the reduced D-dimensional Lagrangian

L = eR� 1
2
e(@�)2 � 1

2
e(@')2 � 1

4
ee�2(D�1)�'F2

� e

2n!
e�2(n�1)�'�â�G02

n �
e

2 (n� 1)!
e2(D�n)�'�â�G2

n�1 ; (35)

where � is given by (29). As one sees, di�erent combinations of ' and � appear in the expo-

nential prefactors of G02
n and G2

n�1. Nonetheless, each of these prefactors may easily be seen to

be of the form e�an
~�, where ~� is an SO(2) rotated combination of ' and �. In these prefactors,

the coe�cients an satisfy the formula (18) in D dimensions, with d ~d given by (19), and with

the same value of � as for â in (D + 1) dimensions. (Note that d ~d in (18) is n-dependent, so

one obtains di�erent values for the G02
n and G2

n�1 prefactors.) The 2-form �eld strength F has

an a value given by (18) with � = 4.

Most supergravity theories can be obtained from 11-dimensional supergravity via Kaluza-

Klein dimensional reduction. Any such dimensional reduction can be viewed as a sequence of

reductions by one dimension at a time, of the kind we are discussing here. Any solution of a

lower-dimensional supergravity theory in such a sequence can therefore be reinterpreted as a

solution of any one of the higher theories in the sequence by use of the Kaluza-Klein ansatz

(25). In particular, this implies that any elementary or solitonic p-brane solution is also a

solution in the higher dimensions. However, it is important to realise that the resulting higher

dimensional solution may not necessarily preserve the isotropic form of the p-brane ansatz (4).

In this paper, we are using the term `stainless' to describe the property of a brane solution of

a lower-dimensional supergravity that cannot be oxidized into an isotropic brane solution in

any supergravity in the next higher dimension.3 On the other hand, a (p + 1)-brane solution

3We note that in de�ning a stainless p-brane to be one that cannot be oxidized to an isotropic brane in a
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in (D + 1) dimensions necessarily gives rise under dimensional reduction to an isotropic p-

brane solution in D dimensions. This automatic preservation of isotropicity for solutions under

dimensional reduction corresponds directly to the process of double dimensional reduction [5]

of p-brane actions.

The above ideas can be illustrated in our example of the bosonic Lagrangians (31) and (35).

First, we shall show that the elementary and solitonic solutions in (D + 1) dimensions reduce

respectively to elementary and solitonic solutions in D dimensions. In the case of an elementary

solution, the n-index antisymmetric tensor in (D+ 1) dimensions leads to an elementary brane

with world volume dimension d̂ = n � 1. The elementary ansatz for the (D + 1)-dimensional

�eld strength F̂n in (31) is F̂m�1:::�n�2z = ��1:::�n�2z@me
C . It follows from eqn (34) that the

corresponding D dimensional �elds Gn�1, G
0
n and A become

Gm�1:::�n�2 = ��1:::�n�2@me
C ;

G0
M1:::Mn = 0 ; AM = 0 : (36)

This is nothing but the usual elementary-type ansatz for an (n� 1)-index antisymmetric tensor

in D dimensions, and thus gives rise to an elementary brane solution (16) with world volume

dimension d = n � 2.

The metric ansatz in (D + 1) dimensions is given by dŝ2 = e2Â(dx�dx���� + dz2) +

e2B̂dymdym. In the elementary solution in (D + 1) dimensions, it follows from (16) that

� = â(D � 1)Â= ~d, and B̂ = �(d + 1)Â= ~d. (Note that ~d is the same for both D and (D + 1)

dimensions since, by de�nition, ~d + 2 is the codimension of the world volume of the brane.)

On the other hand in D dimensions, we see from (35) that the combination of scalar �elds

�2(D�n)�'+ â� = a~�, with a2 = â2+4(D�n)2�2, de�nes the SO(2)-rotatedD-dimensional

dilaton ~�, whilst the orthogonal combination 2(D � n)�� + â' is set to zero. Since n = d+ 2,

it then follows from (29) that â and a are related by

â2 = a2 � 2 ~d2

(D � 2)(D� 1)
: (37)

higher dimension, we have not wanted to prejudge what a non-stainless p-brane may oxidize into. A priori, one

could envisage that the extra dimension acquired upon oxidation could either become isotropically included into

the world-brane dimensions, giving a (p+ 1)-brane in (D+ 1) dimensions, or that the extra dimension could be

isotropically included into the transverse dimensions, in which case one would still have a p-brane in the (D+1)

dimensions. The latter possibility, however, can never be realised within the scheme of Kaluza-Klein dimensional

reduction because all �elds are by construction taken to be independent of the extra coordinate, and this would

be inconsistent with our ansatz (4).
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Thus we �nd that ~� = a(D � 2)A= ~d, B = �dA= ~d and ecA = eĉÂ, since, from the Kaluza-Klein

ansatz (25) for the metric, we have Â = A+ �' and B̂ = B + �'. But these expressions for ~�

and B are precisely of the form given in (16) for the elementary (d� 1)-brane in D dimensions.

Thus we conclude that under dimensional reduction, an elementary d-brane in (D+ 1) reduces

to an elementary (d� 1)-brane in D dimensions.

In the case of solitonic solutions, the analysis is parallel. The ansatz for the n-index antisym-

metric tensor, which leads to a solitonic brane solution with world volume dimension d = D�n
in (D + 1) dimensions, takes the form F̂m1:::mn = ��m1:::mnp y

p r�n�1. It follows from eqn (34)

that the corresponding D dimensional �elds G0
n, Gn�1 and A become

G0
m1:::mn = ��m1:::mnp y

p r�n�1 ;

GM1:::Mn�1 = 0 ; AM = 0 : (38)

This is indeed just the �eld con�guration for a solitonic (d � 1)-brane in D dimensions. The

analysis of the relation between the metrics in (D+1) and D dimensions is very similar to that

in the elementary case.

It is of interest to note that in the reduction of a d-brane in (D+1) dimensions to a (d� 1)

brane in D dimensions, the degree of the antisymmetric tensor involved in the solution reduces

by one in the elementary case, but remains unchanged in the solitonic case. Note also that the

relation between â and a in eqn (37) is always satis�ed in the dimensional reduction of a brane

solution in (D+1) to one in D dimensions. This implies, conversely, that eqn (37) is a necessary

condition for the reverse procedure to be possible. It is easy to verify that the relation (37) is

uniquely satis�ed with â and a given by eqn (18), provided that � is the same for both â and

a.

We have seen that brane solutions in higher dimensions can be reduced to those in lower

dimensions via the Kaluza-Klein procedure; however, the inverse procedure is not necessarily

possible. For example the D-dimensional bosonic Lagrangian (35) that is derived from the

(D + 1)-dimensional Lagrangian (31) admits six brane solutions, namely an elementary and a

solitonic solution for each of the three antisymmetric tensors Gn, Gn�1 and F . Two of these

solutions are isotropically oxidizable to brane solutions in (D+ 1) dimensions, by reversing the

procedure discussed above. The remaining four solutions are stainless because they cannot be

oxidized to isotropic brane solutions of the (D + 1) dimensional theory de�ned by eqn (31).

To illustrate this, consider the elementary solution that uses the antisymmetric tensor Gn in

the D-dimensional Lagrangian (35). The solution for the metric in D dimensions is given by

12



(4) with A and B given in eqn (16). This solution can be oxidized into a solution in (D + 1)

dimensions, whose metric is given by

dŝ2 = e2Âdx�dx���� + e2B̂(dymdym + dz2) ; (39)

where

Â =
(D � 2)( ~d+ 1)

(D � 1) ~d
A ; B̂ = �(D � 2)d

(D � 1) ~d
A : (40)

From the form of this (D+1)-dimensionalmetric, we can see that it does not describe an isotropic

d-brane, since the di�erent r-dependent prefactor for dz2 prevents z from being grouped together

with the coordinates x�. Note also that, although dz2 does have the same prefactor as dymdym,

this metric is still not isotropic in the transverse directions because the prefactors e2Â and e2B̂

are functions of r =
p
ymym and not of

p
ymym + z2.

To summarise, we have seen that an elementary or solitonic (p+1)-brane solution in (D+1)

dimensions can always be reduced respectively to an elementary or solitonic p-brane solution in

D dimensions. On the other hand, the inverse process of dimensional oxidation to an isotropic

brane solution is not always possible. Thus in a brane scan of elementary and solitonic solutions,

we may factor out the rusty solutions and characterise the full solution set by the stainless p-

branes only.

There are three cases in which a p-brane solution can turn out to be stainless. The �rst case

is when a brane solution arises in a supergravity theory that cannot be obtained by dimensional

reduction, such as D = 11 supergravity or type IIB supergravity in D = 10. In the remaining

two cases, the supergravity theory itself can be obtained by dimensional reduction, but oxidation

to an isotropic brane solution is nonetheless not possible. In the second case, no (D + 1)-

dimensional supergravity theory has the necessary antisymmetric tensor for an isotropic brane

solution. Speci�cally, if theD-dimensional solution is elementary, the (D+1)-dimensional theory

would need an antisymmetric tensor of degree one higher than that in the D-dimensional theory.

If it is instead a solitonic solution, the (D+1)-dimensional theory would need an antisymmetric

tensor of the same degree as in the D-dimensional theory. In the third case, an antisymmetric

tensor of the required degree exists in the (D + 1)-dimensional theory, but the exponential

dilaton prefactor has a coe�cient â that does not satisfy eqn (37). We shall meet examples of

all three cases in the subsequent sections.
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3 D � 10 supergravity

D = 11 is the highest dimension for any supergravity theory, and hence all the D = 11 p-brane

solutions are necessarily stainless. Since there is only one antisymmetric tensor �eld strength

in the theory, namely a 4-index �eld, there is just one elementary membrane solution [7] and

one solitonic 5-brane solution [12].

Dimensional reduction of D = 11 supergravity to D = 10 yields type IIA supergravity. The

type IIA theory contains: a 2-form �eld strength giving rise to a particle and a 6-brane; a 3-form

giving rise to a string and a 5-brane; and a 4-form giving rise to a membrane and a 4-brane.

In each case we have listed �rst the elementary and then the solitonic solution. All of these

solutions break half of the D = 10, N = 2 supersymmetry. Of the six solutions two, namely the

elementary string and the solitonic 4-brane, can be oxidized to the corresponding elementary

membrane and solitonic 5-brane in D = 11. The remaining four solutions are stainless since

D = 11 supergravity lacks the necessary antisymmetric tensors. Note that the 11 �! 10

situation corresponds precisely to the bosonic example we discussed in section 2.2.

In addition, in D = 10, there is the type IIB supergravity, which cannot be obtained by

dimensional reduction fromD = 11. This theory contains a complex 3-form �eld strength giving

rise to an elementary string and a solitonic 5-brane solution; and a self-dual 5-form �eld strength

giving rise to a self-dual 3-brane [13]. The string and 5-brane are in fact also solutions ofD = 10,

N = 1 supergravity, and are hence identical to the string and 5-brane solutions of the type IIA

theory. Thus, although the type IIB theory cannot itself be obtained by dimensional reduction

from D = 11, these particular solutions of the IIB theory do have an oxidation pathway up

to isotropic solutions in D = 11. In such situations, we do not consider brane solutions to

be stainless. The remaining solution, the self-dual 3-brane, is the only solution that belongs

exclusively to the IIB theory. It is stainless and breaks half of the N = 2 supersymmetry.

4 D = 9 supergravity

4.1 N = 1, D = 9 supergravity

N = 1 supergravity in D = 9 [14] contains a 2-form �eld strength giving rise to an elementary

particle and a solitonic 5-brane; and a 3-form �eld strength giving rise to an elementary string

and a solitonic 4-brane. The solitonic 4-brane solution can be isotropically oxidized to the

solitonic 5-brane of N = 1, D = 10 supergravity. The situation is somewhat more complicated
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for the oxidation of the elementary string solution. Obviously, this solution cannot be oxidized

isotropically to an elementary membrane solution of N = 1, D = 10 supergravity because this

theory lacks the necessary 4-form �eld strength, and thus no elementary membrane exists in

the N = 1, D = 10 theory. Nonetheless, the D = 9 string solution is not stainless because

there is a di�erent oxidation pathway available to it. The D = 9 string can also be viewed as a

solution of N = 2, D = 9 supergravity. In this guise, it can oxidize isotropically to a solution

of type IIA D = 10 supergravity, which does have a 4-form �eld strength.

The elementary particle and solitonic 5-brane solution that arise from the 2-form �eld

strength are stainless. Na��vely, one might expect these solutions could oxidize up to the el-

ementary string and solitonic 6-brane solutions of type IIA D = 10 supergravity. However, as

we showed in section 2.2, even when the necessary forms are present in the higher-dimensional

theory an isotropic oxidation is possible only when the coe�cient a appearing in the dilaton

prefactor e�a� satis�es the relation (37). In the case of N = 1, D = 9 supergravity, the coe�-

cient a is given by eqn (18) with � = 2. On the other hand, the coe�cient a in the type IIA,

D = 10 theory is given by eqn (18) with � = 4. Since the � value has to be preserved under

dimensional reduction, it follows that the particle and 5-brane solutions in D = 9 are stainless.

There are elementary particle and solitonic 5-brane descendants in D = 9, nonetheless.

These are obtained by dimensional reduction from the type IIA D = 10 elementary membrane

and solitonic 6-brane. From the D = 9 point of view, these are obtained as solutions to N = 2

supergravity using a 2-form �eld strength whose dilaton prefactor indeed has an a coe�cient

given by (18) with the necessary � = 4. The di�erence in � values establishes the distinctness of

the stainless particle and 5-brane discussed above from those obtained by dimensional reduction.

The metrics for the stainless elementary particle and solitonic 5-brane are given by

elementary : ds2 = �
�
1 +

k

r6

��12=7
dt2 +

�
1 +

k

r6

�2=7
dymdym ;

solitonic : ds2 =
�
1 +

k

r

��2=7
dx�dx���� +

�
1 +

k

r

�12=7
dymdym : (41)

By contrast, the metrics for the elementary particle and solitonic 5-brane that can oxidize to

an elementary string and a solitonic 6-brane in D = 10 are given by

elementary : ds2 = �
�
1 +

k

r6

��6=7
dt2 +

�
1 +

k

r6

�1=7
dymdym ;

solitonic : ds2 =
�
1 +

k

r

��1=7
dx�dx���� +

�
1 +

k

r

�6=7
dymdym : (42)

Let us now examine in detail the new stainless D = 9 solutions. In particular, we need to

verify that they preserve half of the supersymmetry. Since these solutions cannot be obtained
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from isotropic solutions in D = 10, we do not have an automatic guarantee that half of the

supersymmetry will be preserved. To investigate this, we �rst give the bosonic sector of the

Lagrangian and the supersymmetry transformations. The bosonic sector of the Lagrangian is

L = eR� 1
2e(@�)

2 � 1
12ee

�
p

8

7
�GMNPG

MNP � 1
4ee

�
p

2

7
� FMNF

MN ; (43)

where FMN = 2@[MAN] and GMNP = 3@[MBNP ] +
3
2
A[MFNP ] [14]. By comparison with eqn (18)

it is easy to verify that the � value for the 3-form G is 4, but the value for the 2-form F is 2.

The supersymmetry transformation rules for the bosonic �elds are:

�eAM = �i �"�A M ; �� = i
p
2 �"� ;

�AM = � 2p
14
e

p
1

14
� �"�M�+

p
2 e
p

1

14
� �" M ; (44)

�BMN = �2i e
p

2

7
� �"�[M N] +

2ip
7
e

p
2

7
� �"�MN� +A[M�AN] :

For the fermionic �elds, the supersymmetry transformations are:

�� = � 1
2
p
2
�M" @M�+

1

12
p
7
e�
p

2

7
�GMNP�

MNP"� i

4
p
14
e�
p

1

14
� FMN�

MN" ;

� M = DM"+
1
84e

�
p

2

7
�GNPQ

�
�M

NPQ � 15
2 �

N

M
�PQ

�
"

� i

28
p
2
e�
p

1

14
� FNP

�
�M

NP � 12�N
M
�P
�
" : (45)

The elementary particle and solitonic 5-brane in D = 9 dimensions are obtained from the

ans�atze for the 2-index antisymmetric tensor �eld strength FMN given in (7) and (9) respectively.

The solutions are given by (16). We shall �rst verify that the solitonic 5-brane solution preserves

half of the supersymmetry. We begin by making a 6 + 3 split of the gamma matrices:

�� = � 
 1l ; �m = 7 
 m ; (46)

where 7 = 01 : : :5 on the world volume and 123 = i in the transverse space. Here, and

throughout the paper, we adopt the convention that � and m are purely numerical matrices,

with at indices. The transformation rules for the fermionic �elds in (45) become

�� = � 1

2
p
2
e�B @m� 7 
 m"+

�

2
p
14
e�2B�

p
1

14
� y

m

r3
1l
 m" ;

� � =
1

2
@mAe

A�B �7 
 m" +
�

14
p
2
eA�2B�

p
1

14
� y

m

r3
� 
 m" ; (47)

� m = @m"+
i

2
@nB"mnp1
 p + �

14
p
2
e�B�

p
1

14
� y

m

r3
7 
 1l "

� 3i�

7
p
2
e�B�

p
1

14
� "mnp

yn

r3
7 
 p " :
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Substituting the solitonic solution (16) and noting that �0 and A0 satisfy (14) and (15), we �nd

that these variations all vanish provided that

" = e
1
2A "0 ; 7 
 1l "0 = "0 ; (48)

where "0 is a constant spinor. Thus our solitonic 5-brane solution preserves half of the super-

symmetry.

We shall now verify that the elementary particle solution also preserves half the supersym-

metry. We make a 1 + 8 split of the gamma matrices:

�0 = i9 ; �m = m ; (49)

where 9 = 12 � � �8. The transformation rules (45) for the fermionic �elds become

�� = � 1

2
p
2
e�B@m� m"+

1

2
p
14
e�A�B+C�

p
1

14
� @mC m9" ;

� 0 = i
2e

A�B @mAm9"� 3i
7
p
2
e�B+C�

p
1

14
� @mC m" ; (50)

� m = @m"+
i
2@nB mn"+

1
14
p
2
e�A+C�

p
1

14
� @mC mn9"

� 3
7
p
2
e�A+C�

p
1

14
� @mC 9" :

Analogously to the solitonic case, the elementary particle solution also preserves half of the

supersymmetry provided that

" = e
1
2A "0 ; 9 "0 = "0 ; (51)

So far we have obtained a stainless elementary particle and stainless solitonic 5-brane. Both

solutions break half of the supersymmetry. The reason why these two solutions cannot be

isotropically oxidized into D = 10 dimensions is that both are obtained from the 2-index

antisymmetric tensor �eld strength with the dilaton prefactor e�a� where the a coe�cient is

given by (18) with � = 2, instead of the value � = 4 that characterises the prefactors of

antisymmetric tensor �eld strengths in D = 10. At �rst sight the occurrence of this new value

of � may seem paradoxical since, Kaluza-Klein dimensional reduction preserves the value of �,

as we discussed for the scalar �eld ~� de�ned below eqn (35). Since N = 1, D = 9 supergravity

can be obtained by dimensional reduction of N = 1, D = 10 supergravity, which has a single

3-form �eld strength, with a � = 4 prefactor, it follows that all the antisymmetric tensors in

D = 9 will have � = 4 prefactors.

The resolution of this apparent paradox involves details of the truncation of dimensionally

reduced N = 1, D = 10 supergravity to the pure N = 1 supergravity multiplet in D = 9. The
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truncation removes a single D = 9 Maxwell multiplet. The Lagrangian of the bosonic sector of

N = 1, D = 10 supergravity is

L = êR̂� 1
2
e(@�)2 � 1

12
êe�� F̂MNP F̂

MNP : (52)

Following the Kaluza-Klein dimensional reduction scheme discussed in section 2.2, this leads to

the D = 9 Lagrangian

L = eR� 1
2
e(@�)2 � 1

2
e(@')2 � 1

12
ee���

p
1

7
'G02

3

�1
4
ee

� 4p
7
'F2 � 1

4
ee

��+ 3p
7
'
G2

2 : (53)

As it stands, one cannot consistently truncate out either of the 2-form �eld strengths or either

of the two scalars. Nonetheless, it is possible to make a consistent truncation to the bosonic

sector of pure N = 1, D = 9 supergravity.4 In order to do this, we must �rst rotate the basis

for the scalar �elds:

� =
q

7
8�1 �

q
1
8�2 ; ' =

q
1
8�1 +

q
7
8�2 : (54)

In terms of this rotated basis, the Lagrangian (53) becomes

L = eR� 1
2e(@�1)

2 � 1
2e(@�2)

2 � 1
12ee

�
p

8

7
�1 G02

3

�1
4ee

�
p

2

7
�1�

p
2�2 F2 � 1

4ee
�
p

2

7
�1+

p
2�2 G2

2 : (55)

Now we can see that it is consistent with the equation of motion for �2 to set �2 = 0 provided

that at the same time we set F equal to G2. De�ning then F =
p
2F =

p
2G2, we obtain the

Lagrangian for the bosonic sector of pure N = 1, D = 9 supergravity:

L = eR� 1
2e(@�1)

2 � 1
12ee

�
p

8

7
�1G02

3 � 1
4ee

�
p

2

7
�1F 2 ; (56)

where dG0
3 +

1
2F ^ F = 0. This result coincides with the Lagrangian given in ref. [14], which

appears in eqn (43). Thus although the value of � for the combinations�
q

2
7�1�

p
2�2 occuring

in the 2-form �eld strength prefactors before truncation is � = 4, the value after the truncation

in which �2 is set equal to zero is � = 2.5

4The possibility of making a consistent truncation to the N = 1, D = 9 supermultiplet may be shown using

arguments similar to those in ref. [15]
5Another point of view for resolving the apparent paradox is to regard the stainless particle and 5-brane as

solutions of the full dimensionally reduced N = 1, D = 10 supergravity, i.e. N = 1, D = 9 supergravity plus the

Maxwell multiplet. From this point of view, these solutions fall outside out p-brane ans�atze (7) and (9) because

more than one antisymmetric tensor �eld strength takes a non-vanishing value. The solutions arising from this

new ansatz are equivalent to those in the truncated N = 1 theory with � = 2.

18



Having studied this example in detail, we are now in a position to be more precise about

the possible values of � that can arise in supergravity theories. We have seen that we may

treat D = 11 supergravity, which has no dilaton, as having the value � = 4 for its 4-form

�eld strength, since this value corresponds, by virtue of eqn (18), to a = 0. We have also seen

that pure Kaluza-Klein dimensional reduction, where one performs no truncation on the lower-

dimensional theory, preserves the values of � from the higher dimension. Thus in the absence

of any truncation, all supergravity theories that are obtained by dimensional reduction from

D = 11 will have � = 4 for all dilaton couplings. However, as we demonstrated in the case of

N = 1, D = 9 supergravity above, if a supergravity theory in a lower dimension is obtained by

a process of truncation as well as dimensional reduction, then the values of � for the coupling

of the particular combinations of dilaton �elds that survive the truncation to the antisymmetric

tensor combinations that survive the truncation can di�er from 4. For example, one can have

� = 2 for 2-form �eld strengths in D � 9 supergravities.

Before ending this section, it is of interest to investigate the warped metrics that one does

obtain in D = 10 if one oxidizes the stainless elementary particle and solitonic 5-brane from

D = 9, so as to compare them with the isotropic metrics of the elementary string and and

solitonic 6-brane occurring in D = 10. The metrics obtained by oxidizing the stainless D = 9

solutions are given by

elementary : dŝ2 =
�
1 +

k

r6

��7=4
dx�dx���� +

�
1 +

k

r6

�1=4�
dymdym + (dz +A)2

�
;

solitonic : dŝ2 =
�
1 +

k

r

��1=4�
dx�dx���� + (dz +A)2

�
+
�
1 +

k

r

�7=4
dymdym : (57)

Here we see that we have pushed oxidation too far: neither of these two metrics describes

isotropic brane solutions in D = 10. In both cases there is a non-vanishing gauge potential A,
which describes a topologically non-trivial �eld con�guration, implying that z is a coordinate

on a non-trivial U(1) �bre bundle, and thus the metric is `twisted.' Furthermore, in order for

this coordinate to be well de�ned, it must be taken to be periodic with period �z =
R F (orR F divided by any integer). In the elementary case, as we also saw in the general example

given in eqn (39), the metric would not be isotropic even if A were equal to zero, for the reasons

we discussed. By contrast, the metrics for the isotropic elementary string and solitonic 6-brane

are given by (20) with D = 10 and � = 4, by taking d = 2 and d = 7 respectively.
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4.2 N = 2, D = 9 supergravity

N = 2 supergravity in D = 9 contains three 2-form, two 3-form and one 4-form �eld strengths.

In addition there are three scalar �elds. Two of these behave like dilatons and appear undi�er-

entiated in exponential prefactors multiplying the kinetic terms for the antisymmetric tensors.

The third scalar does not appear in exponential prefactors in the Lagrangian; furthermore, its

kinetic term itself has a dilaton prefactor. Thus we may view this scalar �eld as the 0-form

potential for a 1-form �eld strength. We can use this �eld strength to obtain a solitonic 6-brane

in D = 9.

N = 2, D = 9 supergravity has not yet been constructed; however, it could be easily

obtained by dimensional reduction of type IIA supergravity in D = 10. We expect that the

elementary and solitonic brane solutions that are obtained from the 2-form, 3-form and 4-form

�eld strengths are either obtainable by dimensional reduction from those in D = 10 or are

equivalent to the stainless solutions we constructed in N = 1, D = 9 supergravity. However,

the solitonic 6-brane that is associated with the 1-form �eld strength is necessarily stainless,

since the 1-form �eld strength appears �rst in D = 9 supergravity in the descent from eleven

dimensions. We shall �rst obtain the solution and then shall verify that it preserves half of the

supersymmetry.

The Lagrangian of the relevant part of the bosonic sector of N = 2, D = 9 supergravity

can be obtained by Kaluza-Klein dimensional reduction of the metric, dilaton and 2-form �eld

strength in type IIA supergravity in D = 10, whose Lagrangian is given by eqn (31) with n = 2

and â = 3=2. The reduced 9-dimensional Lagrangian is given by (35), again with n = 2 and

â = 3=2. In order to obtain a solitonic 6-brane solution, we can consistently set F = 0, G0
2 = 0

and furthermore truncate out one of the two scalar �eld degrees of freedom by setting

3
2�� 14�' = 2~� ; 14��+ 3

2' = 0 : (58)

Thus the Lagrangian for the relevant bosonic �elds in D = 9 is

L = eR� 1
2e(@

~�)2 � 1
2ee

�2~�G2
1 : (59)

This construction, which precisely parallels the previous discussions for general values of n,

emphasises that GM = @Mb should properly be thought of as the �eld strength for the 0-form

gauge potential b = Âz , since it has its origin in the gauge �eld F̂2 in D = 10. Thus it is

legitimate for G1 to take the necessary topologically non-trivial form in the solitonic 6-brane

solution in D = 9, in which its 0-form potential is well-de�ned only in patches.
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Using the ansatz for G1 given by eqn (9), we can obtain the 6-brane solution. However in

this case ~d = 0, and hence the general solution given by eqn (16) no longer applies. Nonetheless

the equations (12) are easy to solve; the metric of the solitonic 6-brane in D = 9 is given by

ds2 = dx�dx���� + (1 + k log r) dymdym ; (60)

and the dilaton �eld ~� is given by e
~� = 1 + k log r. It satis�es ~�0 = S, where S is given in eqn

(11).

If N = 2, D = 9 supergravity had been constructed, it would have been a simple matter to

check whether the above solution preserved half of the supersymmetry. In lieu of this, we may

exploit the fact that Kaluza-Klein dimensional reduction preserves unbroken supersymmetry,

and carry out the computation for the corresponding oxidized brane solution in D = 10. Of

course, since the 6-brane in D = 9 is stainless, the resulting oxidized metric will not be an

isotropic 7-brane. In fact it takes the form

dŝ2 = e�
1

8

~� dx�dx���� + e
7

8

~�
�
dymdym + dz2

�
: (61)

The relevant terms in the fermionic transformation rules of type IIA, D = 10 supergravity,

involving the non-vanishing 2-form �eld strength F̂2, are:

�� =
p
2
4 @M̂� �̂

M̂ �̂11"� 3

16
p
2
e�

3

4
� F̂

M̂N̂
�̂M̂N̂" ;

� 
M̂

= D̂
M̂
"� 1

64e
� 3

4
� F̂

N̂P̂

�
�̂
M̂

N̂P̂ � 14�N̂
M̂
�̂P̂
�
�̂11" : (62)

It follows from (34) that the 2-form �eld strength is given by F̂mz = Gm = �"mn y
n=r2. The

functions A and B appearing in the D = 9 solitonic 6-brane metric, the Kaluza-Klein scalar ',

and the D = 10 dilaton � are given in terms of ~� by A = 0, B = 1
2
~�, �' = � 1

16
~�, � = 3

4
~�. The

Kaluza-Klein vector potential AM is equal to zero. With these, and the expressions (27) for the

D = 10 spin connection appearing in D̂
M̂

in terms of the D = 9 spin connection and ', it is

now straightforward to substitute the oxidized solution into the fermionic transformation rules

given in eqn (62). We �nd that half the supersymmetry is preserved if " satis�es the conditions

" = e�
1
32

~� "0 ; �̂mn "0 = ��mn �̂z �̂
11 "0 ; (63)

where "0 is a constant spinor. Having demonstrated in D = 10 that the non-isotropic oxidation

(61) of the 6-brane preserves half of the type IIA, D = 10 supersymmetry, it follows that the

6-brane solution itself in D = 9 also preserves half of the N = 2, D = 9 supersymmetry.
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5 D � 8 supergravity

As one descends through the dimensions, starting at D = 11, one encounters various stainless

brane solutions. First of all, they occur if the supergravity theory in a given dimension cannot

be obtained from dimensional reduction. This happens in D = 11, and D = 10 for type IIB

supergravity. A second reason for the occurrence of stainless brane solutions is if no supergravity

theory in the next higher dimension has the necessary antisymmetric tensor �eld strength. The

above two reasons account for all the stainless brane solutions in D = 11 and D = 10, and the

stainless solitonic 6-brane in D = 9. By the time one has reached D = 9, all possible degrees

n � D=2 for antisymmetric tensor �eld strengths have occurred. Because of this, any further

stainless brane solutions in D � 8 will arise only for the third of the reasons we discussed in

section 2.2, namely, that the � values for the exponential dilaton prefactors of the relevant

antisymmetric tensors in the higher and lower dimensions di�er. This phenomenon already

occurred for the 2-form �eld strength in D = 9, giving rise to the stainless elementary particle

and solitonic 5-brane, as we discussed in the previous section.

In view of the above considerations, it is not surprising that further stainless brane solutions

in D � 8 are relatively sparse. In fact in D = 8 and D = 7, the only stainless solutions are

elementary particles in each case. These solutions arise using the 2-form �eld strength with

� = 2. They are stainless since all the 3-form �eld strengths in one dimension higher have

� = 4.

In D = 6, analogously to the cases of D = 8 and D = 7, there is also a stainless elementary

particle obtained from the 2-form �eld strength with � = 2, which is part of the supergravity

multiplet in N = 2, D = 6 supergravity. In N = 1, D = 6 supergravity, on the other hand,

there exists a self-dual 3-form �eld strength, and there is no dilaton. As we discussed in section

2.2, brane solutions are still given by eqn (16), with a set to zero, even in the absence of the

dilaton. Thus this self-dual string solution is equivalent to the case where � = 2, with the

metric given by (20). Since there is no supergravity theory in D = 7 that contains a 3-form or

4-form �eld strength with � = 2, the self-dual string in D = 6 is stainless.

The existence of a 3-form with � = 2 in D = 6 implies that there is no further stainless

elementary particle in D � 5 that arises from the 2-form �eld strength with � = 2. However,

in N = 1, D = 5 supergravity, a new value of � for the 2-form �eld strength arises, namely

� = 4=3. This reects the fact that there is no dilaton in the theory. This 2-form �eld strength

accordingly gives rise to a stainless elementary particle and a stainless solitonic string, with
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metrics given by eqn (20). To see how this works, we can carry out the Kaluza-Klein dimensional

reduction of N = 1, D = 6 supergravity. Its bosonic sector comprises just the metric tensor

and the self-dual 3-form �eld strength mentioned above. Since there is no covariant action for

this theory, we must instead implement the dimensional reduction on the equations of motion

themselves. The bosonic equations of motion are given by

R̂
M̂N̂

= 1
4 F̂M̂P̂ Q̂F̂N̂

P̂ Q̂ ; F
M̂N̂P̂

= �F
M̂N̂P̂

: (64)

The Kaluza-Klein ansatz for the metric and the antisymmetric tensor are given by (25) and

(34) as usual, but now, the self-duality condition F̂ = �F̂ implies that the lower-dimensional

2-form and 3-form �eld strengths G2 and G
0
3 are related:

G0
ABC = 1

2e
4�' �ABCDE G

DE ; (65)

where �, given by (29), takes the value � = 1=(2
p
6). Substituting these ans�atze into the

6-dimensional equations of motion (64), and making use of the expressions (30) for the Ricci-

tensor components, we obtain the 5-dimensional equations of motion

RAB = 1
2@A'@B'+ 1

2e
�8�' (F2

AB
� 1

6F2�AB) + e4�' (G2
AB
� 1

6G
2�AB) ;

rB

�
e�8�'FAB

�
= 1

4e
3�'�ABCDEG

BCGDE ; (66)

' = 2�e4�'G2 � 2�e�8�'F2 :

We see that we may consistently truncate these �elds to those of minimalD = 5 supergravity,

whose bosonic sector comprises just the metric and a 2-form �eld stength, by setting ' = 0 and

FAB = GAB. De�ning FAB �
p
3FAB =

p
3GAB, we �nd that the equations of motion for the

remaining �elds can be derived from the Lagrangian

L = eR� 1
4eF

2 � 1
12
p
3
�MNPQR FMNFPQAR ; (67)

where FMN = 2@[MAN]. This Lagrangian describes the bosonic sector of minimal D = 5

supergravity. We see that a 2-form �eld strength with a new value of � has emerged in the

descent to �ve dimensions, namely � = 4
3 and hence a = 0. It follows that brane solutions in

minimal D = 5 supergravity, which make use of this 2-form �eld strength, cannot be oxidized

to give isotropic brane solutions in any higher dimension. In this way, we obtain the stainless

elementary particle and solitonic string solutions referred to above. Their metrics are given by

(20), with d = 1, ~d = 2 and d = 2, ~d = 1 respectively, where � = 4
3 .
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To check the unbroken supersymmetry of these solutions, we need the gravitino transfor-

mation rule in D = 5 simple supergravity, which reads

� M = DM"� i
8
p
3
FNP

�
�M

NP � 4�N
M
�P
�
" : (68)

For the solitonic string, we decompose the D = 5 gammamatrices in the 2+3 split �� = �
1l,

�m = 3 
 m, where 01 = 3 on the brane volume, and 123 = i in the transverse space.

Thus we have

� � =
1

2
@mAe

A�B �3 
 m"+
�

4
p
3
eA�2B

ym

r3
� 
 m" ;

� m = @m"+
i

2
@nB �mnp1l
 p"+

�

4
p
3
e�B

ym

r3
3 
 1l "� i�

2
p
3
e�B

yn

r3
3 
 p " : (69)

Substituting the solitonic string solution, which, from (21) in the limit a = 0 has A0 = �1
2
B0 =

��=(2p3)e�Br�2, we �nd that half of the supersymmetry is preserved provided that

" = e
1
2A "0 ; 3 
 1l "0 = "0 ; (70)

where "0 is a constant spinor.

For the elementary particle, we decompose the D = 5 gamma matrices in the 1 + 4 split

�0 = i5, �
m = m, where 5 = 1234. The supersymmetry transformation rule (68)

becomes

� 0 = i
2e

A�B @mAm5"� i

2
p
3
eC�B @mC m" ;

� m = @m"+
1
2@nB mn" +

1

4
p
3
eC�A @nC mn5" � 1

2
p
3
eC�A @mC 5" : (71)

Substituting the elementary particle solution, which, from (21) in the limit a = 0 has A0 =

�2B0 = (1=
p
3)eC�A C0, we �nd that half of the supersymmetry is preserved provided that

" = e
1
2A " ; 5 "0 = "0 ; (72)

where "0 is a constant spinor.

It is interesting to note that there are in total three inequivalent solitonic string solutions in

D = 5, namely the stainless example we have just derived, a rusty string that oxidizes to our

stainless 5-brane in D = 9, and another rusty string that oxidizes to the stainless 6-brane in

D = 10. Their metrics inD = 5 are given by (20) with d = 2 and ~d = 1, by taking � = 4
3 , � = 2

and � = 4 respectively. Upon dimensional reduction to D = 4, they give rise to elementary

particles with a = 1=
p
3, 1 and

p
3 respectively. These correspond to the black hole solutions

of D = 4 string theory (see, for example, [11]).6

6We are grateful to J. Rahmfeld for drawing our attention to the black hole solutions in the D = 4 string.
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6 Zero modes

In the previous sections, we described stainless p-brane solutions in various dimensions. The

complete set of brane solutions is thus given by those solutions together with their descen-

dants via Kaluza-Klein double dimensional reduction. All of these solutions break half of the

supersymmetry.

Each broken supersymmetry transformation in a p-brane solution gives rise to a correspond-

ing fermionic Goldstone zero mode. There will also be bosonic zero modes associated with the

breaking of local bosonic gauge symmetries by the non-vanishing p-brane background solution.

These will certainly include the translational zero modes corresponding to the broken constant

general coordinate transformations �ym = cm in the space transverse to the p-brane world vol-

ume. Thus there will be D�d = ~d+2 such bosonic zero modes. Since supersymmetry remains

partially unbroken by the solution, it follows that the fermionic and bosonic zero modes must

form supermultiplets under the remaining unbroken supersymmetry. In particular, there must

be equal numbers of fermionic and bosonic zero-mode degrees of freedom.

The matching of the zero modes for the bosonic and fermionic �elds is straightforward in the

case of the elementary membrane in D = 11 and the solitonic 5-brane in D = 10, and also for all

their descendants via dimensional reduction. In all of these cases, the number of translational

zero modes is precisely the same as that of the fermionic zero modes, i.e. the number of on-

shell fermionic zero-mode degrees of freedom. Thus for the supermembrane in D = 11, there

are 8 = 32=2=2 fermionic zero modes, where the original 32 components of the supersymmetry

parameter in D = 11 are halved once to arrive at the number of on-shell degrees of freedom, and

halved again because half of the supersymmetries are broken. The membrane solution breaks

translational invariance in the ym directions, giving rise to 8 = 11� 3 bosonic zero modes. The

same counting of 8 + 8 degrees of freedom holds for the dimensional reduction to the string

in D = 10. For the solitonic 5-brane in N = 1, D = 10 supergravity, there are 4 = 16=2=2

fermionic zero modes, and 4 = 10� 6 bosonic translational zero modes. This matching of 4+ 4

degrees of freedom holds for the various stages of dimensional reduction all the way down to

the string in D = 6 and the superparticle in D = 5.

In all the other brane solutions, the number of translational zero modes is less than the

number of fermionic zero modes. Since we know that the remaining unbroken symmetry guar-

antees a matching of the bose and fermi zero modes, it follows that the there must be further

bosonic zero modes associated with these solutions. They arise from the breaking of antisym-
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metric tensor gauge symmetries. The simplest way to �nd these additional bosonic zero modes

is �rst to construct the fermionic zero modes, and then to obtain their bosonic partners by

transforming them under the remaining unbroken supersymmetries.

We shall carry out this procedure �rst for the stainless solitonic 5-brane in N = 1, D = 9

supergravity, which we constructed in section 4.1. This solution has four fermionic zero modes;

however, it has only 9 � 6 = 3 translational zero modes. As we shall see, there is one further

bosonic zero mode associated with the breaking of the gauge invariance of the 2-form �eld

strength that takes a non-zero value in the background solution.

The fermionic supersymmetry transformations in the background of the solitonic 5-brane are

given by eqn (47). As we discussed in section 4.1, these variations vanish for spinors " satisfying

(48), which includes a chirality condition. They correspond to the unbroken supersymmetry

generators. The broken generators, on the other hand, correspond to supersymmetry parameters

� that have the opposite chirality under the 7 matrix on the world volume. Speci�cally, we

shall consider spinors � given by

� = e�
1
2A �0 ; 7 
 1l �0 = ��0 ; (73)

where �0 is constant. This choice is motivated by the simpli�cations to the fermionic zero-mode

structure that result. Note that any other asymptotically constant spinors with the same 7

eigenvalue could equally well have been chosen. These would lead to zero-modes di�ering from

ours by pure gauge transformations whose parameters die o� at in�nity. With our choice, it

follows from (47) that the purely bosonic 5-brane soliton background varies into the following

fermionic con�guration:

� = 1p
2
e�

1
2A�B @m� 1l
 m �0 ;

 � = �@mAe
1
2A�B � 
 m �0 ; (74)

 m = @nB e
�
1
2A 1l
 mn�0 :

These, then, describe the four fermionic zero modes, parametrised by the eight independent

spinors �0 that satisfy the chirality condition given in (73). (Recall that for d � 3, the count of

on-shell fermionic degrees of freedom is half that of the o�-shell spinor �elds.) We can substitute

these spinors into the bosonic transformation rules (44), taking the supersymmetry parameter

" to be one of the eight unbroken generators given by (48), in order to obtain the bosonic

superpartners of the fermionic zero modes.
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Carrying out this procedure, we �nd the following non-vanishing results for the bosonic zero

modes:

�� = �Di� �

�e�� = �Di� e
�
� + 
�

� e
�
� ;

�emn = �Di� e
m
n + 
m

p e
p
n ; (75)

�Am = �Di� Am + @m e� ;

�Bmn = �Di� Bmn � 1
2
e�Fmn + @[m

e�n] ;

where �Di� denotes a di�eomorphism transformation, �Di� Vm = cn@nVm + @mc
n Vn, etc., and

cm � ie�B"01l
 m�0 ;
� �

p
2e�A "0�0 ;

�m � �7
4e

�2A cm ; (76)

e� � �� cmAm ; e�m � �m � �Am + 2cpBmp


�
� � i�"0

�
� 
 m�0 e�B @mA ;


m
p � @mc

p � @pcm � �mpq �"0�0 e
�B @qB :

The quantities e� and e�m are gauge transformation parameters for the potentials Am and Bmn

respectively; e� appears also in the Bmn transformation because its �eld strength is given by

G = dB+ 1
2A^F . As one chooses di�erent constant spinors "0 and �0, satsifying their respective

�1 chirality conditions under 7, the di�eomorphism parameter cm and gauge transformation

parameter �m jointly �ll out a 3-dimensional space of gauge transformations that are con-

stant and non-vanishing as r tends to in�nity. Likewise, � describes a further independent

asymptotically constant non-vanishing gauge transformation. Taken together, we have the four

independent bosonic zero modes of the solitonic 5-brane in D = 9 dimensions. Note that 
�
�

and 
m
p are parameters of Lorentz transformations, which die o� at in�nity and thus do not

contribute to the true zero modes, which correspond to the broken generators of the global

asymptotic symmetry group.7

7Another way to view the zero modes is through consideration of the D = 9 local supersymmetry algebra.

For example,

[�2; �1]e
A
M = �irM(�"1�

A
"2)�

i
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The zero-modes of the 5-brane in D = 9 are thus properly balanced between the bose

and fermi sectors. With respect to the unbroken N = 1, D = 6 supersymmetry, they form a

hypermultiplet, in the form where the four scalars occur as an SU(2) triplet plus a singlet. The

spinor zero-modes form an SU(2)-Majorana doublet. Note that while the zero-modes form a

supermultiplet under the unbroken supersymmetry in d = 6, as they must, not all of the scalars

correspond to translational zero-modes. In the reduction from 9 to 6 dimensions, only three

translational modes occur, leaving one more to arise from a di�erent broken gauge symmetry.

In the present case, this extra scalar mode arises from the broken gauge symmetry of the AM

potential, i.e. the � zero mode in (76).8

The other p-brane solutions discussed in this paper all leave half the original D-dimensional

supersymmetry unbroken, and form appropriate supermultiplets of the unbroken supersymme-

try. As another example, consider the string solution in N = 1, D = 5 supergravity that we

discussed in section 5. Of the original 8 real components of the supersymmetry transformation,

4 are unbroken by the solution and 4 are broken, giving rise to 4 fermionic zero-mode �elds.

Of the bosonic zero-modes, one obviously has 3 corresponding to the broken translations. One

more scalar zero-mode arises from the broken gauge symmetry of the 2-form �eld strength. In

order to organise these into a supermultiplet of the unbroken d = 2 supersymmetry, one needs to

recall one of the characteristic features of d = 2 supersymmetry. As one may see from eqn (70),

the surviving d = 2 supersymmetry is holomorphic; it is in fact a (4,0) supersymmetry. This

supersymmetry relates the 4 fermionic zero-mode �elds to 4 holomorphic bosonic modes. The

usual style of counting zero-modes in d � 3, in which the count of fermionic zero-modes is taken

to be half of the number of fermionic �elds, is not particularly convenient in d = 2. In d = 2,

the bosons also need to be split into holomorphic and antiholomorphic parts. Although our

solitonic string solution clearly will have both holomorphic and antiholomorphic components of

the bosonic zero-modes propagating according to the worldsheet equations of motion, only one

The covariant derivative rMcA, where cA = i �"1�
A"2, gives the expected di�eomorphism. At in�nity in the

transverse ym directions, this reduces to the translational part of the asymptotic symmetry. All the other terms

in this commutator represent Lorentz gauge transformations whose �eld-dependent parameters fall o� su�ciently

fast at transverse in�nity so as not to be included into the asymptotic symmetry group. The zero-modes of our

solution are obtained by substituting the solution into this general commutator. Upon making this substitution,

one reobtains precisely the vielbein parts of the zero-modes given in (75). The Lorentz gauge transformations in

(75) arise from the terms involving FMN in the commutator.
8Note also that giving an expectation value to an Abelian �eld strength can cause symmetry breaking in the

present context, unlike in an ordinary Yang-Mills context, because of the structure of the linked gauge symmetry

involving AM and BMN .
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of these sectors becomes paired with the fermionic zero modes in the (4,0) supermultiplet. The

other sector remains unpaired as a set of supersymmetric singlets.

7 Discussion

In this paper, we have searched for supersymmetric p-brane solutions of supergravity theories

in diverse dimensions. As these solutions occur in families related by dimensional reduction,

we have concentrated on the maximal, or stainless, solution in each family. In addition to the

previously-known examples, we have found a number of new solutions in 5 � D � 9 dimensions.

(The lower dimensional bound arises here because we have restricted our attention to solutions of

supergravity theories, and have not considered p-branes in theories with rigid supersymmetry.)

Our new stainless solutions cannot oxidize isotropically to brane solutions in higher dimensions.

Put another way, this means that these new solutions cannot simply be viewed as dimensional

reductions of previously-known brane solutions in D = 11 or D = 10 dimensions.

A question that we have not addressed so far concerns the world brane actions that should

describe the zero-mode uctuations around the static, isotropic solutions considered here. From

supersymmetry, one has detailed knowledge of the supermultiplet structure of the zero modes

that would appear in a gauge-�xed world brane action. In general, one expects that such gauge-

�xed actions should be extendable to spacetime supersymmetric and Lorentz invariant actions

by adding the appropriate additional unphysical degrees of freedom and their associated local

world volume gauge symmetries. For the four classic sequences of super p-branes, these actions

are generalisations of the D = 10 superstring [17, 1] or D = 11 supermembrane [2] actions.

Very little is known about the structure of the covariant world volume actions for any of the

other p-brane cases; this subject remains an important open problem.

In the absence of detailed knowledge of the world volume action, some information can

be extracted if one assumes that the bosonic sector of the action takes the general form of a

Nambu-Goto action coupled to the spacetime metric, dilaton, and a d-form gauge potential,

with the non-polynomiality removed by the introduction of a world-volume metric ij as an

auxiliary �eld [18]:

Ibrane =

Z
dd�

�
� 1

2

p�ij @iXM@jX
N gMN e

b� +
d� 2

2

p�

� 1

d!
�i1���id @i1X

M1 � � �@idXMd AM1���Md

�
: (77)

The exponent b of the dilaton coupling in the �rst term is a priori unknown. One way of
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selecting a value for it in a number of cases is by resorting to an argument based on a scaling

symmetry of the pure supergravity theory [11]. Under the constant rescalings

e� �! �� e� ; gMN �! �2� gMN ; AM1���Md �! � AM1���Md ; (78)

the action given by (1) scales by an overall factor ��(D�2), provided that we choose  = �d+a�.

Requiring that Ibrane scale in the same way, one �nds that the parameters must be related by

� =
d ~d

a(D � 2)
; � =

d

D � 2
 = d ; b =

a

d
: (79)

Substituting the ans�atze (4) and (7) into (77), one �nds that the branewave equation following

from (77) implies [11]

(eC)0 = (edA+a�=2)0 : (80)

Comparing with the solution given by (16) and (17), one �nds that a must satisfy

a2 = 4� 2d ~d

D � 2
: (81)

Thus requiring that the elementary brane solution should also satisfy the branewave equation,

with the parameter b in (77) determined by requiring the above scaling symmetry, the value of

a appearing in (1) is in all cases given by (18) with � = 4.

All of the antisymmetric tensors in D = 11 and D = 10 supergravities have � = 4, as

we have seen. Thus the elementary p-brane solutions associated to these antisymmetric tensors

accord with the above discussion. However, as we have seen, there are other values of � that also

occur in lower dimensional supergravity theories. Elementary p-brane solutions in such cases

cannot have zero modes that are described by the action (77) with the choice of parameter b

dictated by the scaling symmetry. An example is provided by the self-dual string in D = 6,

for which the self-dual 3-form has � = 2. In this case, since there is no action for N = 1,

D = 6 supergravity, one has to implement the scaling argument at the level of the equations of

motion. The supergravity equations of motion themselves (64) are invariant under the scaling

gMN �! �2�gMN and GMNP �! �2�GMNP , for arbitrary �. However, the energy-momentum

tensor TMN(x) = � R d2�p�ij@iXP@jX
Q gMPgNQ�

6(x � X)=
p�g scales with a factor ��2�.

Thus the coupled supergravity-string equations break the scaling symmetry. In fact all of the

new stainless elementary p-branes, which have � = 2 or � = 4
3 , exhibit a similar breaking of

the scaling symmetry in their couplings.

The ultimate signi�cance of the scaling symmetry used in the above arguments remains

unclear to us. Are elementary p-brane solutions that respect the scaling symmetry in their cou-

plings more fundamental than others? We do not have an answer to this question at present.
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We would remark, however, that couplings that break scaling symmetries present in pure un-

coupled gravity and supergravity theories are not at all uncommon. Take, for example, a

massless charged particle coupled to Einstein-Maxwell theory in D = 4. The Einstein-Maxwell

action I =
R
d4x(eR� 1

4
eF 2) in the absence of the particle coupling scales as I �! �2I under

g�� �! �2g�� , A� �! �A�. But once the particle is coupled in, via the standard worldline-

reparametrisation invariant action
R
d�(e�1 _X� _X�g�� +A�

_X�), the scaling symmetry is broken

by the electromagnetic coupling A�
_X�.

Another reason why the status of the scaling symmetries remains in doubt comes from quan-

tisation. The supergravity theories arising as low-energy e�ective �eld theories of superstring

theories have �eld equations determined via the beta functions from the requirement that the

string's conformal invariance be preserved. The leading terms of these e�ective �eld equations

reproduce standard supergravity �eld equations, but there are also an in�nite series of quantum

corrections, all of which break the scaling symmetries.

Nonetheless, it is intriguing that a purely bosonic discussion based upon the coupling of

Nambu-Goto-type actions and preservation of scaling symmetries �xes dilaton couplings to

antisymmetric tensor gauge �elds in a way that agrees with many of the couplings actually

found in supergravity theories (i.e. the � = 4 couplings).

In concluding, we shall summarise the results that we have obtained in this paper in a revised

brane-scan, in which we plot only the stainless members of each p-brane family. In accordance

with our discussion at the end of section 2.1, we may, without loss of generality, consider

only the versions of the various supergravity theories where all the antisymmetric tensors have

degrees n � D=2, since no further inequivalent elementary or solitonic brane solutions arise from

dualised versions of the theories. Accordingly, in the stainless brane-scan, we denote solutions

of the n � D=2 theories that are elementary by open circles, solutions that are solitonic by solid

circles, and self-dual solutions by cross-hatched circles. The dashed lines extending diagonally

downwards from the various points on the brane scan indicate that each stainless solution gives

rise to its own set of dimensionally-reduced descendants.

31



Brane Scan of Stainless Supergravity Solutions

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7

particle string membrane 3-brane 4-brane 5-brane 6-brane

d

D

elementary

solitonic

self-dual

(For supergravity theories in their n � D=2 versions)

32



Acknowledgements

H.L., C.N.P. and K.S.S. thank SISSA, Trieste, and E.S. thanks ICTP, Trieste, for hospitality

during the course of this work.

References

[1] J. Hughes, J. Liu and J. Polchinski, Phys. Lett. B180 (1986) 370.

[2] E. Bergshoe�, E. Sezgin and P.K. Townsend, Phys. Lett. B189 (1987) 75.

[3] P.K. Townsend, Phys. Lett. B202 (1988) 53.

[4] A. Achucarro, J. Evans, P.K. Townsend and D. Wiltshire, Phys. Lett. B198 (1987) 441.

[5] M.J. Du�, P.S. Howe, T. Inami and K.S. Stelle, Phys. Lett. B191 (1987) 70.

[6] A. Dabholkar, G. W. Gibbons, J. A. Harvey and F. Ruiz Ruiz, Nucl. Phys. B340 (1990)

33.

[7] M.J. Du� and K.S. Stelle, Phys. Lett. B253 (1991) 113.

[8] C.G. Callan and R.R. Khuri, Phys. Lett. B261 (1991) 363; R.R. Khuri, Phys. Lett. 307

(1993) 302; R.R. Khuri, Nucl. Phys. B403 (1993) 335; M.J. Du� and J.X. Lu, Nucl. Phys.

B354 (1991) 141.

[9] C.G. Callan, J.A. Harvey and A. Strominger, Nucl. Phys. B359 (1991) 611; Nucl. Phys.

B367 (1991) 60; Supersymmetric String Solitons, Lectures given at the Trieste Summer

School, Trieste, Italy, 1991; M.J. Du�, R.R. Khuri and J.X. Lu, Nucl. Phys. B377 (1992)

281.

[10] A. Strominger, Nucl. Phys. B343 (1990) 167; M.J. Du� and J.X. Lu, Phys. Rev. Lett. 66

(1991) 1402.

[11] M.J. Du�, R.R. Khuri and J.X. Lu, String solitons, hep-th/9412184.

[12] R. G�uven, Phys. Lett. B276 (1992) 49; Phys. Lett. B212 (1988) 277.

[13] M.J. Du� and J.X. Lu, Phys. Lett. B273 (1991) 409.

[14] S.J. Gates, H. Nishino and E. Sezgin, Class. Quantum Grav. 3 (1986) 21.

33



[15] C.N. Pope and K.S. Stelle, Phys. Lett. B198 (1987) 151.

[16] P.K. Townsend, The eleven-dimensional supermembrane revisited, hep-th/9501068.

[17] M.B. Green and J.H. Schwarz, Phys. Lett. B136 (1984) 367.

[18] L. Brink, P.S. Howe and P. Di Vecchia, Phys. Lett. B65 (1976) 471.

[19] M.J. Du� and J.X. Lu, Nucl. Phys. B416 (1994) 301.

34


