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1. Introduction

Recently there has been considerable interest in the use of massive linear sigma

models to construct string vacua in the infrared limit of the renormalization group

ow. In an interesting paper [1] Witten discusses a class of massive linear sigma

models possessing (0,4) supersymmetry which ow in the infrared to conformally

invariant theories describing ADHM instantons. Previous work on the ADHM

sigma model has focused on classical aspects of the (0; 4) supersymmetry multiplet

used and in particular the construction of o�-shell super�eld formalisms [2,3,4].

Here we will study the models quantum properties and its rich interplay between

geometry and �eld theory in detail. The general (p; q) supersymmetric massive

sigma model has been constructed before [5] and their quantization is discussed

to two loop order in [6]. We will show here that the ADHM sigma Model is ultra

violet �nite to all orders of perturbation theory and integrate out the massive

�elds to obtain the low energy e�ective theory. Due to anomalies this theory has

interesting non trivial properties and we obtain the quantum corrections to order

�02 by requiring that the anomalies are appropriately canceled. We conclude by

making some comments about the case where the instanton size vanishes.

2. The ADHM Sigma Model

In [1] Witten constructs an on-shell (0,4) supersymmetric linear sigma model

which parallels the ADHM construction of instantons [7]. The model consists of

4k bosons XAY , A = 1; 2; Y = 1; 2:::; 2k with right handed superpartners  A
0Y

�
,

A0 = 1; 2. There is also a similar multiplet of �elds �A
0Y 0

; �AY
0

� Y 0 = 1; 2:::; 2k0.

In addition there are n left handed fermions �a+, a = 1; 2:::; n. The A;B::: and

A0; B0::: indices are raised (lowered) by the two by two antisymmetric tensor �AB

(�AB), �
A0B0

(�A0B0). The Y;Z::: and Y 0; Z 0::: indices are raised (lowered) by the

invariant tensor of Sp(k), Sp(k0) respectively which are also denoted by �Y Z (�Y Z),

�Y
0Z 0

(�Y 0Z 0)
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The interactions are provided for by a tensor Ca
AA0(X;�) in a manner similar

to the construction of o�-shell models [5]. The action for the theory is given by

S =

Z
d2x

n
�AB�Y Z@=X

AY @6=X
BZ + i�A0B0�Y Z 

A0Y
� @6= 

B0Z
�

+�A0B0�Y 0Z 0@=�
A0Y 0

@6=�
B0Z 0

+ i�AB�Y 0Z 0�AY
0

� @6=�
BZ 0

�

+i�a+@=�
a
+ �

im

2
�a+

�
�BD

@Ca
BB0

@XDY
 B

0Y
� + �B

0D0 @Ca
BB0

@�D
0Y 0
�BY

0

�

�

�m
2

8
�AB�A

0B0

Ca
AA0Ca

BB0

�
;

(2:1)

where m is an arbitrary mass parameter. Note the twisted form of the Yukawa

interactions in (2.1) in comparison to the models of [5].

Provided that Ca
AA0 takes the simple form

Ca
AA0 =Ma

AA0+�ABN
a
A0YX

BY +�A0B0Da
AY 0�

B0Y 0

+�AB�A0B0Ea
Y Y 0X

BY �B
0Y 0

; (2:2)

subject to the constraint

Ca
AA0C

a
BB0 + Ca

BA0C
a
AB0 = 0 ; (2:3)

then the action (2.1) has the on-shell (0,4) supersymmetry

�XAY = i�A0B0�AA
0

+  B
0Y

�

� A
0Y

�
= �AB�

AA0

+ @=X
BY

��A
0Y 0

= i�AB�
AA0

+ �BY
0

�

��AY
0

�
= �A0B0�AA

0

+ @=�
B0Y 0

��a+ = �AA
0

+ Ca
AA0 ;

(2:4)

where �AA
0

+ is an in�nitesimal spinor parameter. As is discussed by Witten [1],

the above construction of models with (0,4) supersymmetry can be interpreted as

a string theory analogue of the ADHM construction of instantons with instanton

number k0 in a spacetime dimension of 4k.
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The general form of massive (p; q) supersymmetric sigma models has been

discussed in terms of (0; 1) super�elds in [5] and we now provide such a formulation

of the ADHM model. To this end we introduce a tensor IAA0 satisfying

�ABI
A
A0IBB0 = �A0B0 (2:5)

which can be interpreted as a complex structure in the sense that IAB
0

IAC 0 = ��B0

C 0 ,

IBA
0

ICA0 = ��BC . The 'twisted' super�elds are

XAY = XAY + ��IAA0 A
0Y

�

�A0Y 0

= �A
0Y 0

+ ��I A0

A �AY
0

�

�a
+ = �a+ + ��F a ;

(2:6)

where �� is the (0,1) superspace coordinate with the superspace covariant deriva-

tive

D� =
@

@��
+ i��@=

and F a an auxiliary �eld. After removing F a by its equation of motion and using

the constraint (2.3), the action (2.1) can be seen to have the superspace form

Seffective = �i
Z
d2xd��

n
�AB�Y ZD�XAY @6=XBZ + �A0B0�Y 0Z 0D��

A0Y 0

@6=�
B0Z 0

�i�ab�a
+D��

b
+ �mCa�

a
+

o
;

(2:7)

where Ca = IAA
0

Ca
AA0. The inclusion of the auxiliary �eld allows one to close a

(0; 1) part of the supersymmetry algebra o�-shell. As with the component �eld

formulation (2.1) the full (0; 4) supersymmetry is only on-shell. A manifestly o�-

shell form requires harmonic super�elds with an in�nite number of auxiliary �elds

[3].

Lastly we outline the k = k0 = 1; n = 8 case (ie. a single instanton in R
4)

analyzed by Witten which will be of primary interest here. The right handed
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fermions are taken to be �a+ = (�AY
0

+ ; �Y Y
0

+ ) and the tensor Ca
AA0 takes the form

CY Y 0

BB0 = �BC�B0C 0XCY �C
0Y 0

CAY 0

BB0 =
�p
2
�B0C 0�AB�

C 0Y 0

;

where � is an arbitrary constant interpreted as the instanton size. The bosonic

potential for this theory is easily worked out as

V =
m2

8
(�2 +X2)�2 ; (2:8)

where X2 = �AB�Y ZX
AYXBZ and similarly for �2. Thus, for � 6= 0, the vacuum

states of the theory are de�ned by �A
0Y 0

= 0, and parameterize R4. The XAY and

 A
0Y

� are massless �elds while �A
0Y 0

and �AY
0

� are massive. This yields exactly 4

of the �a+ massive and 4 massless.

3. Quantization

3.0.1 Renormalization

It is not hard to see that the model described above is superrenormalizable in

two dimensions as the interaction vertices do not carry any momentum factors. In

fact a little inspection reveals that the only possible divergence of the theory are

the one loop graphs contributing to the potential. Using dimensional regularization

in D = 2 + � dimensions the bosonic graphs are readily calculated to be

�Div(bosons) = �
m2

8��

�
�AB�CD�C

0D0

�Y Z
@Ca

CC 0

@XAY

@Ca
DD0

@XBZ

+�A
0B0

�C
0D0

�CD�Y
0Z 0 @Ca

CC 0

@�A
0Y 0

@Ca
DD0

@�B
0Z 0

�
;

(3:1)

while the fermionic graphs are

�Div(fermions) =
m2

8��

�
1

2
�AC�BD�C

0D0

�Y Z
@Ca

CC 0

@XAY

@Ca
DD0

@XBZ

+
1

2
�A

0C 0

�B
0D0

�CD�Y
0Z 0 @Ca

CC 0

@�A
0Y 0

@Ca
DD0

@�B
0Z 0

�
:

(3:2)
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One can see that the epsilon tensor terms in (3.1) and (3.2) are di�erent as a result

of the twisted form of the Yukawa interactions. It is not immediately obvious then

that the bosonic and fermionic divergences cancel. However using (2.2) it is not

much trouble to see that they do and hence �Div = 0. Thus Witten's ADHM

model is ultraviolet �nite to all orders of perturbation theory. Therefore there is

no renormalization group ow in these models. This result may be expected, but is

not guaranteed by supersymmetry, as there is a general argument for �niteness only

for o�-shell (0; 4) sigma models, with some modi�cations required due to anomalies

[8].

3.0.2 Integrating the Massive Modes

In this section we will integrate out the massive modes. We shall postpone the

problem of anomalies in chiral supersymmetric models until the next section. We

assume for simplicity here that Ma
AA0 = Na

AY = 0, Da
A0Y 0 6= 0 so that the XAY and

 A
0Y

�
�elds are massless, the �A

0Y 0

and �AY
0

�
�elds massive and the vacuum is at

�A
0Y 0

= 0. The theory is then only quadratic in the massive �elds and integrating

over them is therefore exact at the one loop level. This assumption also ensures

that the interacting theory breaks the SU(2)�Sp(k)�SU(2)�Sp(k0) symmetry

of the free theory down to SU(2) � Sp(k0) [1]. We may therefore write

Ca
AA0 = �A0B0Da

AY 0�
B0Y 0

+ �AB�A0B0Ea
Y Y 0X

BY �B
0Y 0

� �A0B0Ba
AY 0(X)�B

0Y 0

:

At this point it is necessary to split up the left handed fermions into there massive

and massless parts. If we introduce the zero modes vai (X), i = 1; 2:::; n � 4k0 of

the fermion mass matrix, de�ned such that

vaiB
a
AY 0 = 0; vai v

a
j = �ij

and a similar set of massive modes uaI (X), I = 1; 2:::; 2k0 satisfying

uaIu
a
J = �IJ ; uaIv

a
j = 0
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then we may separate the �a+ as

�a+ = vai �
i
+ + uaI�

I
+ : (3:3)

so that the � i+ are massless and the �I+ massive. We now rewrite the action (2.1)

in terms of the massless and massive �elds

S = Smassless + Smassive (3:4)

where Smassless is the part of (2.1) which only contains the massless �elds. Explic-

itly

Smassless =

Z
d2x

n
�AB�Y Z@=X

AY @6=X
BZ + i�A0B0�Y Z 

A0Y
� @6= 

B0Z
�

+i� i+(�ij@=�
j
+ +AijAY @=X

AY �
j
+)
o
;

(3:5)

where

AijAY = vai
@vaj

@XAY
(3:6)

is the induced SO(n� 4k0) connection and

Smassive =

Z
d2x

n
�A0B0�Y 0Z 0@=�

A0Y 0

@6=�
B0Z 0

+ i�AB�Y 0Z 0�AY
0

� @6=�
BZ 0

�

+i�IJ�
I
+@=�

J
+ + iAIJAY @=X

AY �I+�
J
+ + 2iAiJAY @=X

AY � i+�
J
+

�im�B0C 0vai E
a
Y Y 0�

i
+�

C 0Y 0

 B
0Y

� � im�B0C 0uaIE
a
Y Y 0�

I
+�

C 0Y 0

 B
0Y

�

�imuaIBa
BY 0�I+�

BY 0

� � m2

8
�AB�C 0D0Ba

AY 0Ba
BZ 0�C

0Y 0

�D
0Z 0

�
;

(3:7)

where AIJAY = uaI@u
a
J=@X

AY and AiJAY = vai @u
a
J=@X

AY .

The classical low energy e�ective action is simply obtained by considering the

most general action possible which is compatible with all of the symmetries of

the theory. To calculate the e�ective action quantum mechanically we will inte-

grate over the massive �elds and discard higher derivative terms. First we notice
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that because of the nontrivial de�nition of the massless left handed fermions (3.3),

Smassless is not (0,4) supersymmetric by itself as it is missing a four fermion in-

teraction term. The problem is recti�ed by noting that there is a tree graph, with

a single internal �A
0Y 0

�eld propagating, which contributes to the low energy ef-

fective action. In order to avoid the singular behaviour of the propagator at zero

momentum, when calculating this graph it is helpful to use the massive propagator

for �A
0Y 0

, obtained from the last term in (3.7) .

At this point it is useful to write, using (2.3) ,

Ba
AY 0Ba

BZ 0 = �AB�Y 0Z 0


where


(X) =
1

4k0
�AB�Y

0Z 0

Ba
AY 0B

a
BZ 0 : (3:8)

The last term in (3.7) becomes

�m
2

4
�A0B0�Y 0Z 0
�A

0Y 0

�B
0Z 0

;

and hence 
 can be interpreted as the XAY dependent mass for �A
0Y 0

. The tree

graph can then be seen to contribute the four fermion term

�1
2
� i+�

j
+F

ij
A0Y B0Z 

A0Y
�  B

0Z
�

where

F
ij
A0Y B0Z = 4�A0B0�Y

0Z 0


�1vai E
a
(Y jY 0v

b
jE

b
jZ)Z 0 ; (3:9)

which we will later relate to the �eld strength tensor.

We may now discard all vertices with only one massive �eld in (3.7) and exam-

ine the one loop contributions to the e�ective action. Inspection of the quadratic

terms in Smassive shows there are no contributions to the gauge connection in (3.5).
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Furthermore, of all the other possible contributions, only those corresponding to

the e�ective potential do not involve higher derivatives. To calculate this we sim-

ply set @=X
AY = @6=X

AY =  A
0Y

� = 0. Thus only the last two terms in (3.7)

need be considered (we no longer use a massive propagator for �A
0Y 0

). The calcu-

lation of the e�ective potential then receives the standard bosonic and fermionic

contributions (in Euclidean momentum space)

Veff (bosons) =
�0

4�

1X
n=1

1

n

Z
d2p Tr

�
�C 0D0�ABBa

AY 0Ba
BZ 0

4p2=m2

�n
(3:10)

and

Veff (fermions) = � �
0

4�

1X
n=1

1

n

Z
d2p Tr

"
uaIu

bIBa
CY 0B

b
DZ 0

2p2=m2

#n
: (3:11)

Now the de�nition (3.8) yields the following expressions

�C 0D0�ABBa
AY 0Ba

BZ 0 = 2�C 0D0�Y 0Z 0


and

uaIu
bIBa

CY 0B
b
DZ 0 = �CD�Y 0Z 0
 :

Therefore (3.10) is completely canceled by (3.11) and there is no contribution to

the e�ective potential. This is in accord with the full one loop e�ective potential

calculation performed in [6]. There it was found that the bosonic and fermionic

contributions cancel when the tensor Ca
AA0 is linear in the �elds, as it is here for

the massive �elds.

From the above analysis we conclude that the e�ective quantum action of the

massless �elds is

Seffective =

Z
d2x

n
�AB�Y Z@=X

AY @6=X
BZ + i�A0B0�Y Z 

A0Y
� @6= 

B0Z
�

+i� i+(�ij@=�
j
+ +AijAY @=X

AY �
j
+)�

1

2
� i+�

j
+F

ij
A0Y B0Z 

A0Y
�  B

0Z
�

�
:

(3:12)

This is simply the action of the general (0,4) supersymmetric nonlinear sigma
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model [5], although the right handed superpartners of XAY are 'twisted'. As with

the original theory (2.1), the low energy e�ective theory (3.12) admits a (0; 1)

super�eld form. Introducing the super�eld �i
+ = � i+ + ��F i then allows us (after

removing F i by its equation of motion) to express (3.12) as

Seffective = �i
Z
d2xd��

n
�AB�Y ZD�XAY @6=XBZ

�i�i
+(�ijD��

j
+ +AijAYD�XAY�

j
+)
o
;

(3:13)

provided that F
ij
A0Y B0Z satis�es

F
ij
A0Y B0Z = IAA0IBB0F

ij
AY BZ (3:14)

where F
ij
AY BZ is the curvature of the connection (3.6),

F
ij
AY BZ = @AYAijBZ � @BZAijAY +AikAYAkjBZ �AikBZAkjAY :

This is just the familiar constraint on (0,4) models that the �eld strength be com-

patible with the complex structure [5]. Furthermore it is not hard to check that

Seffective does indeed possess the full on-shell (0,4) supersymmetry (the super-

space formulation (3.13) only ensures (0,1) supersymmetry) precisely when (3.14)

is satis�ed.

For the k = k0 = 1; n = 8 model above it is straightforward to determine the

non zero components of vai and uaI as

vY Y
0

ZZ 0 =
�p

�2 +X2
�YZ �

Y 0

Z 0 vAY
0

ZZ 0 = �
p
2p

�2 +X2
XA

Z�
Y 0

Z 0

uY Y
0

BZ 0 =

p
2p

�2 +X2
X Y
B �Y

0

Z 0 uAY
0

BZ 0 =
�p

�2 +X2
�AB�

Y 0

Z 0 ;

(3:15)

and hence the mass term (3.8) is


 = (X2 + �2) :

The gauge �eld AijAY obtained from (3.15) is simply that of a single instanton on
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the manifold R4

AY Y 0ZZ 0

AX = ��Y
0Z 0 (�ZXX

Y
A + �YXX

Z
A )

(�2 +X2)
; (3:16)

and the four fermion vertex (3.9) is

F TT 0UU 0

A0Y B0Z =
4�2

(X2 + �2)2
�A0B0�T

0U 0

�T(Y �
U
Z) ; (3:17)

which is precisely the �eld strength of an instanton, justifying our presumptuous

notation, and can be easily seen to satisfy (3.14).

3.0.3 Anomalies

So far we have ignored the possibility of anomalies in the quantum theory.

While the original theory (2.1) is simply a linear sigma model and therefore pos-

sesses no anomalies, this is not the case for the e�ective theory (3.12). It is well

known that o�-shell (0; 4) supersymmetric sigma models su�er from chiral anoma-

lies which break spacetime gauge and coordinate invariance, unless the gauge �eld

can be embedded in the spin connection of the target space. In addition, work-

ing in (0; 1) superspace only ensures that (0; 1) supersymmetry is preserved and

there are also extended supersymmetry anomalies where the (0; 4) supersymmetry

is not preserved. We therefore expect that we will have to add �nite local counter

terms to (3.12) at all orders of perturbation theory so as to cancel these anomalies.

This requires that the spacetime metric and antisymmetric tensor �elds become

non trivial at higher orders of �0, while on the other hand the gauge connection is

una�ected [9].

An alternative way of viewing this is to note that although the action (3.12)

is classically conformally invariant, when quantized it may not be ultraviolet �-

nite and hence break scale invariance. There is a power counting argument which

asserts that o�-shell (0; 4) supersymmetric models are ultraviolet �nite [8]. This

argument is further complicated by sigma model anomalies and it has been stated
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that only the non chiral models are ultraviolet �nite. Indeed while the (0; 4) the-

ory is one loop �nite there is a two loop contribution of the form Tr(R2 � F 2)

[6] which certainly does not vanish for the model (3.13). In general this leads to

non vanishing �-functions and a renormalization group ow which we must then

take into account when determining the conformal �xed point. However, in mod-

els with (0; 4) supersymmetry the non vanishing �-functions can be canceled by

rede�ning the spacetime �elds at each order of �0, in such a way as to ensure that

supersymmetry is preserved in perturbation theory [9]. This has been well studied

and veri�ed up to three loops. Thus the ultraviolet divergences which arise in the

quantization of o�-shell (0; 4) models are really an artifact of the use of a renor-

malization scheme which does not preserve the supersymmetry. The o�-shell (0; 4)

models are ultraviolet �nite in an appropriate renormalization scheme.

However the model here has only on-shell (0; 4) supersymmetry and these ar-

guments do not immediately apply. At least in the k = k0 = 0 case however the

gauge group SO(4) �= SU(2)�SU(2) contains the subgroup Sp(1) �= SU(2) which

admits three complex structures obeying the algebra of the quaternions. This en-

dows the target space of the left handed fermions with a hyper Kahler structure

and facilitates an o�-shell formulation using constrained super�elds [10]. We may

therefore expect that it is ultraviolet �nite in the same manner as the o�-shell

models described above.

In [9] the necessary �eld rede�nitions were derived to order �02 for (0; 4) super-

symmetric sigma models. Both the target space metric and antisymmetric tensor

�eld strength receive corrections to all orders in �0. Howe and Papadopoulos found

that in order to maintain (0; 4) supersymmetry in perturbation theory the target

space metric (which is at here at the classical level) must receive corrections in

the form of a conformal factor

�AB�Y Z !
�
1 � 3

2
�0f � 3

16
�024f + :::

�
�AB�Y Z : (3:18)

They also showed, up to three loop order, that these rede�nitions cancel the ultravi-

olet divergences which arise when one renormalizes (3.12) using standard (0; 1) su-
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perspace methods, which do not ensure (0,4) supersymmetry is preserved perturba-

tively. In addition, the antisymmetric �eld strength tensor becomes H = �3
4
�0 �df

so as to cancel the gauge anomaly dH = �3�0

4
TrF ^ F . Furthermore there will be

no corrections to the instanton gauge �eld.

For the instanton number one model considered here, Howe and Papadopoulos

give the function f as

f = �4ln(X2 + �2) :

It is a simple matter to calculate the conformal factor (3.18) and hence the Target

space metric as

gABY Z =

�
1 + 6�0

X2 + 2�2

(X2 + �2)2
� 18�02

�4

(X2 + �2)4
+ :::

�
�AB�Y Z : (3:19)

To order �0 this is the solution of Callan, Harvey and Strominger [11] obtained by

solving the �rst order equations of motion of the 10 dimensional heterotic string

(although with n = 6 rather than n = 8 in their notation). Thus the target space

has been curved around the instanton by stringy e�ects but remains non singular

so long as � 6= 0. The case � = 0 is of great interest as it may provide a string

theoretic compacti�cation of instanton moduli space. We will briey discuss this

in the next section.

4. Concluding Remarks

In the above we found the order �02 corrections to the low energy e�ective

action of the ADHM sigma model. Such solutions have been discussed before

[11] and we agree with their solution to �rst order. In our calculations we have

expanded in the parameter

�0
�1 =
�0

X2 + �2

and hence our approximations are valid for all X if �2 � �0 and for large X even

if � is small. An interesting question raised is what are the stringy corrections to
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the classical instanton in the extreme case that its size vanishes? One can see from

(3.19) that the order �0 corrections persist when � = 0 so the e�ective theory is

non trivial. It has been conjectured that there should be a (4; 4) supersymmetric

sigma model for instantons of zero size [3,4] which could be constructed from a

massive linear (4; 4) supersymmetric model. In [4] the conditions for the ADHM

model to possess full (4,4) supersymmetry in the infrared limit were derived. There

it was found that the metric must be conformally at, with the metric satisfying

Laplace's equation. This is in agreement with what we have found here in the

� = 0 case above (see (3.18) and (3.19)) and lends some additional support to the

conjecture.

If we start with the linear sigma model (2.1) with � = 0 the �AY+ �elds are

massless and decouple from the theory. The vacuum states are de�ned byXAY = 0

or �A
0Y 0

= 0 and there is a symmetry between XAY and �A
0Y 0

. Let us assume we

choose the �A
0Y 0

= 0 vacuum. Then as before the �elds XAY and  AY
0

� are massless

and the �A
0Y 0

, �AY
0

� and �Y Y
0

+ �elds all have masses m
p
X2. Upon integrating

out the massive �elds we would simply obtain a free �eld theory, which trivially

possesses (4; 4) supersymmetry. At the degenerate vacuum XAY = 0 however, all

�elds are massless and there is a single interaction term m�+Y Y 0� Y 0

A0  A
0Y

� . Thus

the moduli space of vacua does not have a manifold structure. For XAY 6= 0 the

vacuum states are simply R4 but at the point XAY = 0 lies another entire copy of

R
4 (parameterized by the �A

0Y 0

). This odd state of a�airs is smoothly resolved if

we �rst construct the e�ective theory and then take the limit of vanishing instanton

size.

Let us now take the limit �! 0 of the e�ective action (3.12). It should be noted

that the Yang-Mills instanton has shrunk to zero size but it has not disappeared

in the sense that the topological charge remains equal to one. Unfortunately our

expressions are not a priori valid near X = 0. Nevertheless we will try to shed some

some light about what the complete string theory solution could be in that region.

When � vanishes both the �eld strength (3.9) and the O(�0) sigma model anomaly

vanish. We are however, still left with a non trivial metric and anti symmetric
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tensor. It is reasonable to assume then that all the anomalies are canceled by

these. The metric then has the exact conformal factor

g�� =

�
1� 3�0

2
f

�
��� ; (4:1)

and antisymmetric �eld

H = �3�
0

4
�����@

�f ; (4:2)

where f = �4=X2 and we have switched to a more convenient notation. This

geometry is similar to the one discussed by Callan, Harvey and Strominger [11],

although the anti symmetric �eld is not the same and leads to a di�erent interpre-

tation in the limit X2 ! 0 as we will shortly see. the target space is non singular,

asymptotically at and has a semi-in�nite tube with asymptotic radius
p
6�0, cen-

tered around the instanton. That is to say the apparent singularity at X = 0

in (3.19) is pushed o� to an "internal in�nity" down the in�nite tube. Thus the

problematic XAY = 0 vacua are pushed an in�nite distance away and the manifold

structure is preserved. The resolution of this description with the non manifold

picture described above has been discussed by Witten [12].

In the limit X2 � �0 the modi�ed spin connection with torsion becomes, where

�; � are vierbein indices,

!
(�)��
� � !��� +H ��

�

= �(������ � ��� ��� + � ��
�� )

X�

X2

; (4:3)

which is a at connection! That is to say far down the in�nite tube the torsion

parallelizes the manifold (which is asymptotically S3). The gauge connection is

also at (for XAY 6= 0) and can therefore be embedded into the generalized spin

connection (4.3). The low energy e�ective theory therefore possesses (4; 4) super-

symmetry in the region X2 ! 0. This supports our assumption that the anomalies

are canceled and the expressions (4.1) and (4.2) are exact, at least in this region.
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For the region X2 � �0 our perturbative expansion is valid and the the theory only

possesses (0; 4) supersymmetry since the gauge connection can not be embedded

into the spin connection. Although in a similar spirit in the limit X2 ! 1 the

curvatures vanish and the theory is free and again has (4; 4) supersymmetry. In a

sense then the � = 0 ADHM instanton can be viewed as a soliton in the space of

string vacua interpolating between two (4; 4) supersymmetric sigma models, just

as the target space can be viewed as interpolating between two supersymmetric

ground states of supergravity [13].

I would like to thank G. Papadopoulos and P.K. Townsend for their advice and

Trinity College Cambridge for �nancial support.
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