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Abstract

We examine a superpotential for an SO(10) GUT and show that if the parameters
of the superpotential are in a certain region, the SO(10) GUT has an intermediate
symmetry SU(2); ® SU(2), ® SU(3), ® U(1) 5_; which breaks down to the group
of the Standard Model at an intermediate scale 10!°~!2 GeV. In the model by the
breakdown of the symmetry right-handed neutrinos acquire mass of the intermediate
scale through a renormalizable Yukawa coupling.

*e-mail address: joe@gauge.scphys.kyoto-u.ac.jp


https://core.ac.uk/display/25183073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

When we construct a Grand Unified Theory(GUT) based on SO(10) [1], in general, we
have singlet fermions under the Standard Model(SM) -what we call right-handed neutrino.
Under the SM right-handed neutrinos can have Majorana masses because they are singlet.
Then the scale of the right-handed neutrinos(= M,,,,) is expected to be a scale below which
the SM is realized.

It is well known that in the Minimal Supersymmetric Standard Model (MSSM) the
present experimental values of gauge couplings are successfully unified at a unification
scale My ~ 10'°GeV [2]. This fact implies that if we would like to consider the gauge
unification, it is favorable that the symmetry of the GUT breaks down to that of the
SM at the unification scale. In this case the scale of the right-handed neutrinos M, is
expected to be the unification scale M;;. This means also there is no intermediate scale
between the Supersymmetry(SUSY) breaking scale and the unification scale.

On the other hand it is said that M, ~ 10'°'2GeV|[3]. The experimental data on the
deficit of the solar neutrino can be explained by the Mikheyev-Smirnov-Wolfenstein(MSW)
solution [4]. According to one of the MSW solutions, the mass of the muon neutrino seems
to be m,,, ~ 107% eV. Such a small mass can be led by the seesaw mechanism [5]: A muon
neutrino can acquire a mass of O(1073) eV if the Majorana mass of the right-handed
muon neutrino is about 10'2 GeV.

Then how can the right-handed neutrinos acquire mass of about 10'? GeV? It was our
question in our previous paper [6], because if we take the prediction of the MSSM serious,
M,,, is expected to be My ~ 10'® GeV. Our point of view was that it is more natural
to consider that one energy scale corresponds to a dynamical phenomenon, for instance a
symmetry breaking. Mass is given by a renormalizable coupling is also the crucial point
of our view. This idea is consistent with the survival hypothesis. Thus we were led to a
possibility that a certain group breaks down to the SM group at the intermediate scale
at which right-handed neutrinos gain mass through a renormalizable coupling.

In the previous work we have searched possibilities to construct such a SUSY SO(10)
GUT with an intermediate symmetry. We have a possibility to construct a SUSY SO(10)
GUT with an intermediate symmetry SU(2); ® SU(2), @ U(1)5_; ® SU3), (= Gaa31) !
which breaks down to the SM group at an intermediate scale M, ~ 10'°7'2GeV where a
right-handed neutrino gains mass.

In such a scenario, as we showed in the previous work, to make the model consistent
with the gauge unification we have to introduce several multiplets at the intermediate
region between the GUT scale and the intermediate scale, in addition to ordinary matters,
three generations of quarks and leptons and a pair of so-called Higgs doublets.

Although we showed a possibility to construct a SUSY SO(10) GUT with an interme-
diate symmetry Gagg; it is not trivial whether it is actually possible to construct such a
GUT since there are many extra fields in the intermediate region. We did not show the
superpotential for the theory explicitly which can realize such a scenario that we have
suggested in ref.[6].

'We use a notation Gy, . to represent SU(1) ® SU(m) ® SU(n)....If [ = 1, it means U(1).



The purpose of this paper is to show an explicit form of a superpotential for a SUSY
SO(10) GUT to construct a SUSY SO(10) GUT whose symmetry breaks down to Gaas;
at a GUT scale My and (9931 breaks down to the SM symmetry at the intermediate scale
M,,..

We give the scenario and the model briefly in sect. 2 where we give a candidate for
the matter content in the intermediate region (the spectrum (1)). Then in sect. 3 we
show the most general form of the superpotential and a symmetry breaking condition
as preparation for our analysis. In sect. 4 first we calculate parameters of the theory,
namely parameters appearing in the superpotential, which produce the spectrum (1) at
the intermediate region. Then we show the exact parameters which realize the MSSM

below M,,,. Finally (in sect. 5) we give a summary and discussion.

2 Scenario and Model

2.1 Scenario

We construct a SUSY SO(10) GUT whose symmetry breaks down to Gaogs; at a GUT scale
My and Gag31 breaks down to the SM symmetry at the intermediate scale M,,,. When
(G231 breaks down to the SM symmetry the right-handed neutrinos gain mass through a
renormalizable Yukawa coupling.

Let us first recapitulate the content of the previous work[6]. To achieve the gauge
unification in the scenario we have to introduce a certain combination of multiplets.
Because in our model right-handed neutrinos acquire mass of O(M,,,,) via a renormalizable
Yukawa coupling by the symmetry breaking, we have to introduce at least a pair of
(1,3,1,6) + h.c multiplet under Gass;. We adopt the normalization for U(1)g_, T}° =
diag(—1, —1,—1,3). When we introduce only (1,3,1,6) + h.c multiplet in addition to the
ordinary matter, gauge couplings do not unify. Then we have to introduce certain matter
content under Gaas;.

We found very many candidates for matter content in the intermediate region between
the GUT scale and the intermediate scale which lead the gauge unification. Among them
we showed two candidates for the matter content as the simplest example. In this article
we use another candidate which was not showed in the previous paper. In the examples
appearing in it a (1,3,1,0) multiplet under Gaa3; was not included. In constructing a GUT
following the idea, however, we have to introduce a (1,3,1,0) multiplet in the intermediate
region. The reason why we have to introduce a (1,3,1,0) multiplet is stated in the appendix
A. Thus we have to use another candidate for matter content.

The matter content other than quarks and leptons (including right-handed neutrinos),
which we assume survive until Gag3; breaks down to the SM group at the intermediate
scale, are given below.



(1,3,1,6) 1 responsible forvgmass
ordinary Higgs doublets

1
2
1 (2,1,3,1) 1
1 (2,1,1,-3) 1 (1)
1
1

In this list, for example, (1,3,1,-6) 1 stands for that the representation of the matter
under Gz is (1,3,1,-6) and its number is one. When we have the particle content listed
here in the intermediate region the unified coupling oy (M) is about 1/18 if we take the
intermediate scale to be 10'? GeV. As a candidate which contains (1,3,1,0), this candidate
leads the smallest unified coupling.

In our scenario, at the GUT scale My where SO(10) breaks down to Gae31 almost of
all particles have mass of O(My) while the particles listed in (1) as well as quarks and
leptons are left massless. Then at the intermediate scale where (Goo31 breaks down to Gazp
the SM group all extra multiplets in (1) besides a pair of Higgs doublets and right-handed
neutrinos have mass of O(M,,,), that is, they decouple from the spectrum. Thus below
M,,, the MSSM is realized.

2.2 Model
2.2.1 Matter content

To have multiplets (1) and quarks/leptons at the intermediate region we introduce fol-
lowing multiplets of SO(10).

SO(10) Gaoz

Jig 10 (2,2,1,0), ...

A - 45 (1,3,1,0),(1,1,8,0), ...

o 126 (1,3,1,-6),(2,2,1,0), )
T . 126 (1,3,1,6),(2,2,1,0), ...

A 210 (1,3,1,0),(1,1,8,0), ...

Wi 16 (2,1,3,-1),(2,1,1,3), quarks/leptons
T 6 (2,1,3,1),(2,1,1,-3), ...

In this list numbers in the column of SO(10) means SO(10) representation. In the last
column we show what representation in (1) is contained in the corresponding SO(10)
multiplet.

By the requirement that the right-handed neutrinos get mass through a renormalizable
coupling, we introduce 126 and 126. As a candidate of ordinary Higgs doublets 10 is
introduced. There are other candidates for ordinary Higgs doublets in 126 and 126. Then
the ordinary Higgs doublets will be a mixture of these three. To break SO(10) to the SM
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group via Gao31, namely to have the intermediate symmetry Gagsi, we use 45 and 2102
These also contain (1,3,1,0) and (1,1,8,0). 4 16’s and 1 16 represent 4 generation + 1
anti-generation. The reason why we introduce a pair of 16 and 16 is that they contain
(2,1,3,-1) + h.c and (2,1,1,3) + h.c .
At this stage the matter content (2) is just a candidate which may realize our scenario.
As we will see, we can write down the superpotential with these matter which realize
our idea.

2.2.2 Singlets under the SM group

In the SO(10) multiplets (2) there are many singlets under the SM symmetry (see appendix
B for the meaning of subscripts 1,...,0):

Field : Component Little Group
A © 012434456 = & Gaomn
argo0 = 3 Gon
? ?1721',3741‘,5761',7781‘,9701' = ? SU(5)
¢ : ¢1+2i,3+4¢,5+6i,7+8¢,9+0i =0 SU(5) (3)
A © 07890 = @ Gao
51234+3456+5612 =0 Gaomn
6(12+34+56)(78+90) =cC Gz
gz’:1~4 : @=1~4 SU(5)
V7 Co SU(5)

where a,b,... stand for vacuum expectation values (VEV) of the corresponding fields.
Little group means a remaining symmetry when only a corresponding component has a
VEV. For example, when only a gets a VEV SO(10) breaks down to Gaoy.

Among them a,b and «a are Gag3; singlets and hence their order of magnitudes is
expected to be the GUT scale My ~ 10'6 GeV. By assumption that SO(10) breaks down
to Giagz1 at the GUT scale, b or a must be of order M. Others must be of order at most
M,,, = Mye by assumption because they are not Gags; singlets. Also ¢ is required to be
of order M,,,,

¢ ~ M,,(= Mye) (4)
because it gives masses to the right-handed neutrinos. Of course, as we will see, there
are constraints among VEVs in addition to the well known constraints - F-flat and D-flat
condition because we require certain multiplets must have mass of O(M,,,).

2Using only 210 it is impossible to break SO(10) to Ga31 through Gaaz; [7]. We can break SO(10) to
the SM group via Gagg1 using 45 + 54. In this case if there is no multiplet which contains (1,3,1,0) other
than 45 (3,1,1,0) is also massless. The reason is that mass terms for (1,3,1,0) and (3,1,1,0) come from
the mass term of 45 and the vacuum expectation value of 54 through the coupling 45254 and because of
D parity[8] they are same as each other’s. Thus we can get rid of the possibility of using 45+54.



3 Preparation

3.1 Superpotential

With the multiplets (2) the most general form of the superpotential W is written as
W = Wmass + Wint + W‘Il (5)

Winass consists of the most general bilinear terms:

1 - 1 1 _

Winass = 5MHH2 + Myp®® + 5MAN 1 iMAAQ + My W, (6)
We define only ¥, has a mass term with W, because by a redefinition of W, | namely

by a rotation among W,;_;_4, it is possible that only the new ¥, has a mass term with W.
We require all mass parameters are O(M) because My is the natural order for them.
Wine has the most general interaction terms without 16 and 16:

_ 1 _ _
Wine = YaaaHPA + Y 5 A HOA + §YAA3 + YoaPAD + Yy , AP

1 1
+ §YAA2A2A + §YA2AAA2. (7)

We require all Yukawa couplings are at most O(1). More exactly, as an expansion pa-
rameter for the perturbation we require they are at most O(1). As a expansion parameter
for the perturbation they appear with multiplied by a certain overall factor. The overall
factors for each couplings are given in appendix B.3.

Finally, Wy represents the most general interaction terms with 16 and 16.

4 4
i=3 =2 ij (8)
+ S 5,0V H + §UUH.

ij

By the same reason that only ¥, has a mass term with ¥, only ¥3, have couplings
with A and only ¥q 34 have couplings with A.

To see in which direction the gauge group SO(10) can break down we examine the
D-term and the F-term conditions.

3.2 D-flat condition
To keep the SUSY all D-terms must be zero up to SUSY braking scale:

OITED + BT + S UITew, + U T2T + AITEA + ATTA = 0.
Since the D-term for real representations automatically vanishes [9, 10],

b}



2(|¢l* - [9I°) Z [il* = [91%) (9)

must be satisfied. The factor 2 reflects the difference of U(1) charge which corresponds
to a broken generator.
Later we put v;’s and v zero. In this case

[6]* — [¢]* = 0. (10)

3.3 F-flat condition

First we examine the F-flat condition for 16 and 16 with a mass term for (1,2,1,—3)+h.c
component because the singlet components of 16 and 16 are contained in it and therefore
there is a relation between the mass term and the F-flat condition. By such an examination
we see that 1); and 1) should be zero though it is not a strict reason for it.

The F-flat condition for 16 and 16 are as follows: (See appendix B to know how to
calculate Clebsch-Gordan (CG) coefficient)

oW 4
awl 2;%]% (11)
4
gW 23" yoit0;6 — Yuar(V6ia + 2i3) = 0, (12)
¢2 j=1
4
o _ 2 Y300 — Yous(V6ia + 2iB))
a¢3 j=1
Yyas(2V6a + 6v/2b + 12¢)¢ (13)
= 0,
4
AL > yatid — Yuas(V6ia + 2iB)¢
aqu)él j=1
Yoas(2V6a + 6720 + 12¢)0 + My (14)
= 0,
4
%—%/ = 2yd+ > —Yyu(V6ia + 2iB)¢;
=2

4
j=3
0.



By the way in the intermediate region where (G937 is realized, f = ¢ = 0 and the mass
term for (1,2,1,-3)+h.c is given by

0
W _ —V6iYy 1202 (16)
;O —V/6iYy 4300 — 2¢/6Yyaz(a + /3b)

—V6iYyas0e — 2¢/6Yyau(a + V/3b) + My

If ¢, 0,1, % ~ O(e), using F-flat conditions (12) - (14), all of elements of the mass term
for (1,2,1,-3)+h.c, (16), are calculated to be of order M,,.. This, however, contradicts with
the mass spectrum (1). Though we may be able to make the some elements of the mass
term O(My), for example, by making ¢ O(e?) (with an appropriate value of 1;, ¢ ~ O(e)),
we put 1; and 1 zero since what we try to do is to show a possibility of SUSY SO(10)
GUT with an intermediate scale and to take ¢ = 1 = 0 as the solution of the F-flat
conditions for 16 and 16 is the easiest way of it.

Then other F-term conditions are as follows:

ow . Yaa2 82 Yac? Yon ¢
= 242iYpr4 b — + + Maa+ =0, 17
da A 2v6 | 12v6 0T T 106 (7
ow X YAA2042 YAb2
— = 2472, — +
ab NIRRT IVE
. Ya 2 VI
+ 24V2iYar B+~ + Mab+ 18
AAﬁ 18\/5 A 10\/§ ( )
= 0,
ow Yasz a3 , YA ac
— = —7—1—24\/52}/2 bs+
de \/6 AZA B 6\/6
. Yabe VI
16 V61Y, M 19
+ V6iYazsac+ W + Mac+ —5 (19)
= 0,
ow . \/iYAA20[b YAA2ﬁC
— = 2421 YA2 b— —
aO[ \/_7/ AzZA A 3 \/6
6Y: &
+ 8\/62’YA2A02—|—MA@—|—\/_+;4¢¢ (20)
= 0,
Y, Y, Y: b
W _ YawalB Yawac o miv, bet M, 54 2492 4 (21)

B Ve V6 5



e

ow V6« 16} a b c B
<Y¢A <?+g> + Yon <10\/6+ 10\/§+1—0> +M¢> ¢ =0. (22)

4 Analysis

The purpose of this paper is to give the input parameters appearing in the superpotential
(5). Though VEVs listed in (3) are functions of the input parameters we will express
them in the term of the VEVs since we know the desirable values of the VEVs.

4.1 First Step

First we check whether it is possible to break SO(10) down to Gag3; consistently with the
requirement that the spectrum (1) remains massless up to O(e) ~ O(M,,,./My).

4.1.1 Multiplets under Gss3;
First we show what multiplets exist in the SO(10) multiplets (2).



Multiplet under Gigo3;  underSO(10), containedin  NG1 NG2

(2,2,1,0) 10,126,126

(1,1,3,2) + h.c 10,126,126

(3,1,1,0) 45,210

(1,3,1,0) 45,210 z
(1,1,3,—4) + h.c 45,210 x T
(1,1,8,0) 45,210

(2,2,3,2) + h.c 45,210 Y J
(3,1,1,6) + h.c 126 + 126

(3,1,3,2) + h.c 126 + 126

(3,1,6,—2) + h.c 126 + 126

(1,3,1,—6) + h.c 126 + 126 z
(1,3,3,—-2) + h.c 126 + 126 T (23)
(1,3,6,2) + h.c 126 + 126

(2,2,3,—4) + h.c 126,126 J
(2,2,8,0) +h.c 126,126

(3,1,3,—4) + h.c 210

(1,3,3,—4) + h.c 210 T
(3,1,8,0) + h.c 210

(1,3,8,0) + h.c 210

(2,2,1,6) + h.c 210

(2,1,3,—1) + h.c 16 + 16 7
(1,2,3,1) + h.c 16 + 16 T
(2,1,1,3) + h.c 16 + 16

(1,2,1,-3) + h.c 16 + 16 z

In this table NG1 means a Nambu-Goldstone (NG) mode associated with the break-
down of SO(10) to Gag31. An NG mode associated with the SO(10) breaking down to the
SM group Ga3; is contained in a multiplet with z,y and Z in the column NG2. Under
Go31, certain components of the multiplets with Z (7, Z) have same quantum number and
mix with each other. One of combinations of Z (7, Z) is massless which is swallowed by a
gauge boson.

There are also singlets of G923; which we denote a, b and «.

4.1.2 F-flat condition

In the intermediate region ¢, 3,¢ = 0. And hence the F-term conditions (17) - (22) are
reduced to

oW
%:wﬂnmamma:o, (24)



8W . YAA2Oé2 YAbQ

—— =24iV2aYarsa — + + Mab =0, 25

e S5 BRI TRV, Rl (25)
oW 2Yauz b
a—:24i\/§YAzAab—\/_A+a+MAa:O. (26)
«

4.1.3 Tuning of parameters

From now on as we stated at the top of this section, we express the input parameters in
the term of the VEVs.
Using the F-flat conditions (24) and (26), Ma and M, are expressed as follows:

—24/21Y, b
Mp = Ma(Ya2a,a,b,0) = V2i¥aua ; (27)
a
—T72vV21YA24ab 2YA a2 b
My = My(Yaza, Yanz,a,b,a) = V2T A§@+ V2¥aro ' (28)

There is an additional constraint which is obtained by eliminating M from equations

(24) and (25):

, 9 Yaazaa?  Ypal? , 9
24 V2 Ypzaa® o + 35 18\/§+24\/52YA2Aab =0. (29)
We can interpret that this constraint with (27) and (28) is equivalent with that de-
terminant of the mass matrix for (1,1,3,-4) (= M(1,1,3,—4) an explicit form is given
at appendix C) vanishes because (1,1,3,-4) is an NG mode and hence when we substi-
tute VEVs into the mass matrix for it there must be one massless mode which mean the
determinant vanishes.

det M(1,1,3,—4)
YAMab  Yas2 Mab
— M Ma+ AMAb  Yap2 Ma
182 3v2 (30)

Y3 2062 YAYAA2b2
1152 YRz 4 a® 4+ 164 Yau2 Va2 B
+ . 5 A24 Q + 61 AA A2A4 AU 18 108

Now we required that one (1,1,8,0) mode be massless and therefore determinant of the
mass matrix for it (= M(1,1,8,0)) should vanish.

10



det M(1,1,8,0)
YaMab  Yaaz Mab

— My Ma — 4
A 18+/2 3v2 (31)
b o1152Y %, a2 + 160 Yas Y, Yipd YaYanb®
; Aza A 1 YAA2 YA24 QOX 18 103

Combining (30) and (31) with substituting (27) and (28), we find

—81 YAY,
_ZYAYA2AQ2+AA7W

3 57 + 160 Yase Yaeaa? =0 (32)

(((30) = (31)) aa/v?)

and

YAQAQ ac?  YaYasrab?

9 54
—2304YRs 4 ab® — 320 Yaue Yarqab® =0 (33)
(((30) + (31)) * a).

2304 Y3240 + 320 Yaue Yazpa o —

Solving a simultaneous equation (32) and (33) we get forms of YA and Ya4z as a
function of Ya24,a,b, . Then by substituting these expressions into (27) and (28) we
find the following three sets of solutions for Ma , M4 ,YA and Yau2 as a function of
Yaza,a,0,

Ma
My B
YA -
YA 42
solution 1::
—24 \/il YAQA ab
a
24 \/QZ YAQA ab
34
8647 Yaesa (34)
1447 Yoo aa
Q@

11



solution 2::

—24/2iYa2q b

a
—24iYp24b )
— 2 (—a? + 3% — Vat — 10a2b? + 9b*

ﬂaa ( )

—432iYaeq o (—30% + 307 — VaT — 100202 + 9 bY) (35)
(—a3+3ab2 —avat — 10a2b2+9b4)

—36i Yz
oot iAcA (~30%+ 307 — Va® — 1042 + 901
ax
solution 3::
—24/2iYaza b
YO

—a® + 3% + Va* — 10a2b? + 9b*

Tan )

4320 Yar (—3a2+3b2 1+ VaE —10a2 b2 +9b4)
—a3+3ab2+avat—10a20?2 4+ 9V?

363,
TR (362 4 38 + Val — 1062 + Ob)
ac

In other words, once Ma, M4, YA and Y 42 are set to be one of these solutions, the VEVs
of a,b and « can be chosen at our will and one of (1,1,8,0) mode becomes massless.

Because we require also that one (1,3,1,0) mode be massless, determinant of the mass
matrix for it (= M(1,3,1,0)) must be zero.

det M(1,3,1,0)
YA YAA2 a2 . YA2A2 Oé2 YA YAA2 ab
— 2 A 160 YA Y, - -

36 TYAaaA2 YA }9 y 18\/§
b 1630 Vaue Yazaab+ 11522, 02 + 2240
+

2 a
A A AA A Mo M

9v2 V6

16 V6i Yaeq M4y +
= 0.

Using (37) and (34)-(36), we obtain a following equation which determine a relation
between a and b corresponding to a set of above solutions respectively:
solution 1::

a’ (—3@2 +7vV3ab— 6b2) = 0.
solution 2::

—15a% +62vV3a® b+ 237a*b?* — 280 V3 a® B> — 249 4% b* + 234 V3 a b’ + 27 b°
— (33a4 —50V3a3b — 782 b + 783 ab® +9b4) Var —10a2 b2 + 9 bt

12



solution 3::

15a° — 62v3a°b — 237a*b% + 280 V3 a® b° + 249 a® b* — 2343 a b’ — 271°
— (33a4 —50v3a3b — 78a%b® +783ab’ +9b4) Var —10a2 b2 + 9 b2,

Numerically a and b must satisfy the following relation respectively:
solution 1::

o= { b/ 3, (38)

230

solution 2::

—0.987293 b

(—0.120361 — 0.7240074) b
(—0.120361 + 0.724007 ) b
5.11238b

solution 3::

—3.13416b

—0.0643986 b

(1.10047 — 0.061612217) b
(1.10047 + 0.06161221) b

(40)

The solution 1 is the exact solution and the others are exact up to O(e).

In other words, if a and b satisfy these relations, one (1,3,1,0) mode becomes massless.

Other requirements that two (2,2,1,0) modes, one (1,3,1,-6) + h.c mode, one (2,1,3,1)
+ h.c mode and one (2,1,1-3) + h.c mode be massless are easily satisfied by tuning
parameters such as Mg, My, Yaon, Yyga and so on.

To make (1,3,1,-6) 4+ h.c mode massless, from the mass term for it (see appendix C)

_ \/6Y¢AOZ+Y<1>AG+Y¢A5
10 106 102/

To make two (2,2,1,0) mode massless we tune parameters My, Mo, Yyoa and Yyga
so that the eigenvalue equation for the mass matrix of (2,2,1,0)

Mg =

(41)

N — My N + _YI%AbQ _ Viiga V? _ Yon b

Mp)? | A
10 10 (15\/§+ 2

Yon b Yon b Yygaae Yaoea b?
— + M. M + Mg | + =0 42
<15\/§ q’) ( " (15\/5 q’) 5 (42)

has two 0 solutions (exactly these two solutions may have at most O(e) solution)?®. The
way of getting two zero eigenvalues is to tune the zeroth and first terms of A zero. More
exactly the zeroth term must be at most O(€?) and the first term must be at most O(e).

3Implicitly it is assumed that the mass matrix for (2,2,1,0) is hermite, that is, all parameters appearing
in the mass matrix are real

13



To satisfy these constraint

Mg + Yaab ~ O(e),

15v/2 43
Yioa ~ Yyga ~ O(Ve). “3)
(41) and the first equation of (43) lead
V3a+b
You=— (44)

up to O(e).
Finally to make one (2,1,3,-1) + h.c mode and one (2,1,1,3) + h.c mode massless, foe
example, we can switch only couplings with subscript 4 on and tune

7
Yy = 1Yyaa/b, 45
va = 15t / (45)
My = ———=iYyaa — zYwA . (46)

4f 4f

4.1.4 check mass matrices

Now we know the necessary condition for the parameters realizing the spectrum (1). Then
we check all the mass matrices to examine whether these parameters really produce the
spectrum (1).

solution 1::

The solution 1 does not produce the spectrum (1), because by substituting the solu-
tion 1 (34) into the mass matrix of (2,2,6,2) multiplet, this multiplet is calculated to be
massless.

solution 2::

First to see whether the solution 2 | (35) with a relation between a and b (39), is
usable, we substitute (39) into (35).

24.3089 7 v/2 Ya24
{ 19.14410 V2 Ya2 0%/
(32.2574 + 5.36258 %) v/2Ya24 &
Ma { —4.78842 4 0.510831 1) v/2 Ya24b%/ar
My } ) [ (—32.2574 + 5.36258i) V2 Ya2a
{ (4.78842 + 0.5108317) /2 Ya24b%/cx
4.694497i 2 Y24
{103 0237 V2 Yazab?/a
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—13.6527¢ YAQA b/O[
(37.7632 — 7.133521) Yaza b/ox

Yaa = (—37.7632 — 7.1335214) Yaz4 b/ax )
677.1597 Ya24 b/
—104.016 7 Ya24 ou/b
Yo — J (=1560.23 — 131.8623) Yazp /b (49)

(1560.23 — 131.862) Yaza /b
—185.139¢ YAQA O[/b

In each of these equations, four expressions correspond to the four relations between
a and b in (39) respectively.

As we required that Yukawa couplings are not too big (see the statement below (7))
only the first expression of the solution 2 is meaningful. This means that only the first
relation between a and b in (39) is meaningful.

By substituting (35) with the first equation of (39) it is easy to check that all multiplets
other than those in (1) have their mass of O(My) which spread around My up to one
order of magnitude and multiplets in (1) are massless. Therefore this solution can be a
solution of our scenario.

solutiond::

First we substitute (40) (relation between a and b) into (36) to see an explicit form of
solution 3.

7.657560 /2 Yp24
{—15 8066 i V2 Ya24b%/cx
372.679i 2 Yp24
Ma } {1115 987 v/2 Y2 40? /cx (50)
My [ ) [ (1.21719 — 21.74074) V2 Ya24 &
{(17 3100 — 22.781214) v/2 Yazab?/ax
{ (—1.21719 — 21.7407) V2 Ya24
(—

17.3100 — 22.78121) /2 Ya240%/cx

—273.0791 Va2 b/ox
3343.291 Ypo, b/ar
56 3660 + 10.89044) Ya24 b/ax
—56.3660 + 10.89047) Y24 b/ox

793766 1 YAQA Oé/b

6698.93 1 Yaza /b

(241.144 — 102.803 i) Yaz4 /b
(—241.144 — 102.803 ) Yaz4 ov/b

Yaae = (51)

Ya = (52)

In each of these equations, four expressions correspond to the four relations between
a and b in (40) respectively.

By the same way as we picked only the first expression up from four cases in solution
2, the last two relations between a and b in (40) are meaningful.
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By substituting (36) with the third or fourth equation of (40) it is easy to check that
all multiplets other than those in (1) have their mass of O(M;) which spread around M,
up to one order of magnitude and multiplets in (1) are massless. Therefore this solution
can be a solution of our scenario too.

4.2 Second step

In this section we find a parameter region which produces our scenario exactly.

4.2.1 Deviation from the previous solutions

Because the accuracy of the previous calculation is O(e), all parameters besides b, « and
Ya24 can deviate from the value which is obtained at the previous section and therefore
we can expand the deviation in the power of € as follows.

a=ag+ ;aiei, (53)

Mp = Mpo + ; M€, (54)
My = Mg + ; M g€, (55)
YA =Yao + ; Vi€ (56)
Yaaz = Yaazo + Zz::l Yaazie€', (57)
8= ; Bie’, (58)

c=) ¢e. (59)
i=1

In these expressions, variables with subscript 0 stand for those which are obtained in
the previous section.

Substituting (53) - (59) into the F-flat condition (17) - (22), we get following relations.

From (17), (18) and (20) we get

16



Mno

MAI = - ay,
Qo
b 240/2iY a2 4b b?

My = ——Ya+ ———22(142)ay, 60
A1 930 A1 5 ( %)1 (60)
1447Y n» b?

Yau, = (b2/6a2)YA1+¢(1+?)a1.
0

We obtain the relation between 5 and ¢; by substituting (53) - (59) with (60) into
(19) and (21) as follows:
First we note (19) and (21) can be rewritten

waann(?) -4 ()@
and therefore
(2)- s () @

where M(1,3,1,0) is a mass matrix for (1,3,1,0) and by assumption ¢, ¢ ~ O(e).
Let us decompose the inverse of M(1,3,1,0)
M(1,3,1,0)"! = det (M(1,3,1,0)) " (A + O(e)) . (63)

Since by assumption there is one massless mode in (1,3,1,0) up to O(e), det(M(1,3,1,0))
~ O(e) and the first row in A is parallel to the second row in A, that is

dun _ G2 (64)
az1 22
where A = (a;5).
Then up to the leading order of ¢
a21
= —c¢ 65
g (65)
namely, as a exact relation
B = 2, (66)
an

is obtained.
To see this explicitly, we follow the above calculation in the case of the first relation
of solution 2.

17



16.1727 1Y a2, YA 163
«

det(M(1,3,1,0)) = (—26423.4Y 3. ;ba; + )e+ O(e?)
as we expected the determinant is O(e).
A is calculated to be

A — ( 723850@YA2A a, —3951482YA2AI) >
a —3951482YA2A b, 2157102YA2A b2/Oé

Apparently A satisfies (64).
Then

B = —1.83185%01 (67)

is obtained.

4.2.2 Determination of input parameters of the theory

Though we can determine the parameters in the power of € order by order, instead of
doing so we will give the parameters of the theory in a term of the VEVs because the
purpose of the paper is to find a parameter region for the theory, M’s and Y'’s, which
leads to the spectrum (1). As we will see, by the VEVs a, b, ¢, « and 3 we can express the
input parameters of the theory.

To do this, first we see the F-flat conditions (17) - (21). These equation can be
rewritten

M 1/(10v/6)Yan
My 1/(10v2)Yen |
Cl| Ya = — 1/10Ypa (030 (68)
YAA2 \/6/10Y<I>A
Ya2a 1/5Ypa
where
1.2 12 :
a, 0, WC s _ﬁﬂ s 24\/52@[7
b, 0, @b’ + s 5507 24+/2iac 4 24+/2ic
C=1¢ 0 ﬁac + 9—\1/560, —%@ﬂ, 16v/6iacc + 24+/2ib3 (69)
0, a, 0, —?&b - %ﬁc, 24+/2iab + 8/6ic?
0, 0, 0, —%&c — %aﬁ, 24+/2ibc

As we know from the previous argument that b, ¢ and « can be chosen freely and a
and (3 are given by

a = ag + aie,
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B = Bie + Pa€’ (70)

where a is given by the first equation of (39) or one of the last two equation of (40) and
1 is given by (66). Note that higher orders in (53) and (58) can be absorbed into a; and
(5 respectively.

Then the input parameters are reduced to

Mn 1/(10v/6)Yaa

My 1/(10v/2)Ypa

Yo | =-Ct 1/10Ysn | 90 (71)
YA a2 V6/10Yp 4
Yaza 1/5Yp4

For example, in the case of solution 2,

C™' = (detC)7'C'e
det C = (=3.76350i a? b By 1 — 2.2534Tia’b?arc?) € + O(e)*

0, 0, —2.68018iab3c;, 0, —1.088267iab?c;
0, 0, —211074iab’c;, 0, —0.857040ia2b*c;
' = 10, 0, 810927ia3b%¢c;, O, 3.29268 i ot b,
0, 0, 1.064397 a b* ¢4, 0, 0.432184ia2bc,
0, 0, —0.0779620*b>c;, 0, —0.0316556a3b*c;
+ O(e)

From this equation it is easy to see that all parameters are of order € and they satisfy
the first solution of the solution 2.
Finally from (22) Mg is determined:

B V6o I} a b c
My = —Yoa (1—O+g>—Yq>A <10\/€_3+10\/§+E>‘ (72)

4.2.3 check mass matrices

The multiplets in (1) besides one (2,2,1,0) must decouple at M,,.,
mass of O(M,,,).

From now on we check whether they have mass of O(M,,,).

First we note one (2,1,3,-1) + h.c and (2,1,1,3) + h.c can have mass of O(M,,,,) by the
following two reasons: (1) Parameters Yya and My may deviate from the value given by
(45) and (46) respectively *. (2) There exist couplings with ¢ and £3.

that is, they must acquire

“Though (2,1,3,-1) + h.c has a same quantum number under the SM group as an NG mode associated
with the breakdown of SO(10) the SM group (see table (23)), it does not mix with others because the
VEV of ¥ = 0 and therefore this NG mode does not consist of it. (2,1,1,3) + h.c has a same quantum
number as that of (2,2,1,0) under the SM group but by the same reason they do not mix with (2,2,1,0).
See the superpotential (5) - (8).
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Then we see the mass matrix for (2,2,1,0). Under SM it has a quantum number
(2,1,£1/2). (2,2,1,6) + h.c also includes the same component. Then the mass matrix is

MA? x, Y, 0
', My, u, v
M(2,1,+£1/2) = 0 UH 0 - (73)

y’? /07 w + Z? O
where

= M(Q, 2,1, 6_) + %YAC + 24iY 1028
= _%YH6A¢ ~ 0(63/2>

—%Ympmﬁ ~ O(e¥/?)

_%Y¢Aa ~ O(E)

—%chAgZS ~ O(E) (74)
—\/%YchA b+ ﬁYqu c ~ O(y/e),

F5Yiaa b+ 5= Viga ¢ ~ O(Ve),

Mq, + Yonb O(G),

5v2

Y: Ye
55 + 2552 ~ O(e).

SIS B ~ SIS &‘&52
Il

M(2,2,1,6) is given in the appendix C. Orders of z,y, .. are followed from (43)
Because one (2,1,£1/2) multiplet remains massless after Gga3; breaks down to the SM

group
det (M(2,1,41/2)) = {Ma(2* — w?) + yy' (w — 2)} My + 2Mauvw... = 0, (75)

and hence My is determined as follows:

2uvw
In this case the higher order terms must be included to have a pair of light Higgs doublets.
Next let us consider (1,1,8,0). This multiplet becomes (1,8,0) under the SM group
and therefore it mixes with T3z = 0 component of (1,3,8,0) under the SM. Then the mass
matrix for (1,8,0) is represented as 3 X 3 matrix.

(77)

M(1,8,0):<M(1’1’8’0)‘ mixing )

mixing ‘ M(1,3,8,0)

After Gag31 breaks down to the SM group, there is a correction of O(Mye ~ M,,) to
the mass matrices M(1,1,8,0) and M(1,3,8,0) because parameters appearing in them are
different by O(e) from those calculated at the previous section. It is directly calculated
using (71) (or equivalently (53) - (57) and (60) ) that one of the eigenvalues of M(1,1,8,0)
is of O(My) which has already suggested at the previous section and the other is O(M,,,).
As M(1,3,8,0) is O(My), even though there is a correction of O(M,,), M(1,3,8,0) is still
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O(My). Contributions of ¢ and 3 to the mass matrix (77) appear at mixing terms between
(1,1,8,0) and (1,3,8,0)° and they are of O(M,,,). Then M(1,8,0) takes the following form

O(My) 0 O(Muye)
0 (MUG) (MUE) . (78)
O(MUE) (MUE) O(MU)
Apparently two eigenvalues are of O(My) and the other is of O(M,,). This fact

suggests that the lightest element of (1,1,8,0) under Gae3; decouples at the scale M,,..
Finally we check the mass of (1,3,1,0) and (1,3,1,-6) + h.c. Under the SM (1,3,1,0)
is decomposed into one neutral singlet and a pair of charged singlet with hypercharge
Y = +1. (1,3,1,,-6) + h.c becomes two neutral singlets, a pair of ¥ = +1 and a pair of
Y = +2 singlets. Then Y = +1 component of them will mix with each other.
Mass for Y = +2 component takes the following form

o (482 2) o,

where (72) is used.
From this equation obviously the Y = £2 component has a mass of O(M,,,).
Mass matrix of Y = +1 component is

a b c 2 1
+ S [ S VY R 79
A (10\/6 0va 10) P E oA FYoac (79)

YA\Afza_i_MA’ YA\?EQ+247/\/_YA2Ab _Y<I>5A¢

N A%a+242_\/_YA2Ab, §@§+16ZWYA2A04+9Y§/§+MA, _Y%¢
— Al _Yass _YouafB _ Yenc
5 7 10 - A

(80)

Since it is an NG mode associated with the breakdown of Gae3; to Gasq there is one

massless mode. It is easy to see that this matrix has 0 eigenvalue because 1st row x 3/¢+

2nd row x ¢/¢+ 3rd row = 0 using the F-flat conditions (19) and (21). It is also explicitly
calculated that one eigenvalue is of O(My) and the other is of O(M,,,).

5 summary

As we saw, by constructing the input parameters for the theory using (71), (72), (74) and
(76) from the desired values of VEVs a, b, ¢, a, 3, ¢ and ¢ which satisfy (10) and (70), we
can have particles (1) in the intermediate region. They decouple from the spectrum at
M, except a pair of what we call Higgs doublets.

It means that it is possible to construct a SUSY SO(10) GUT with an intermediate
scale consistent with the gauge unification. It suggests also that the right-handed neu-
trinos acquire mass through a renormalizable coupling. and it can be understood as a
reflection of the breakdown of Gas31 to Gasy

SThere is no contribution of ¢ and 3 to M(1,1,8,0) and M(1,3,8,0). The reason is as follows. Under
G231 ¢ and 3 are contained in (1,3,1,0). Because (1,3,1,0)(1,1,8,0)? contains no singlet, ¢ and 3 do
not couple to (1,1,8,0)%. Though (1,3,1,0)(1,3,8,0)? can appear, as there is no three point coupling of
T3z = 0 component of SU(2) triplet, ¢ and 8 do not couple to T3z = 0 component of (1,3,8,0)
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There are many variations for a SUSY SO(10) GUT with an intermediate scale because
there are many candidates for the particle content which exist in the intermediate region
and we have many variations for content of SO(10) multiplets which contain one of the
candidates.

For example, we can replace (2,2,1,0) to (2,1,1,3) + h.c in the spectrum (1) and vise
versa, because their contribution to the running of the gauge coupling relevant to Gag; is
as same as that of each other.

When we remove one (2,2,1,0) from the spectrum (1) and add one (2,1,1,3) + h.c to it,
by adding a pair of SO(10) multiplets 16 + 16 which contains (2,1,1,3) + h.c under Gags;
we can have such a spectrum at the intermediate region. At that time while we have to
tune couplings relevant to SO(10) multiplets 16 + 16, we can release the constraint (43)
(or equivallently (74)).

Of course, there is a quite different type of content for the candidates. Using them we
can construct quite a different SO(10) GUT with an intermediate scale.

Though the gauge unification by the MSSM is a very attractive idea,to take into
account a right handed-neutrino mass we should consider a possibility of a GUT with an
intermediate symmetry.
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A The reason why we need a multiplet (1,3,1,0)

Here we show the reason why we need a multiplet (1,3,1,0) in the intermediate region.

First we note that we required at least there is a pair of multiplet (1,3,1,-6) + h.c
(= ® + ®) in the intermediate region [6] and hence at this region in the superpotential
effectively there must be a term

W = Mp®d. (81)

Because we consider an SO(10) GUT the mass parameter Mg is ,in general thought
to be of O(My).

In this case it is, however, impossible that ® acquires a VEV. Of course if we tune the
parameter Mg be 0, as there is a flat direction in D-term, ® can acquire a VEV, but in
this case there are two problems:

(1) there is no way to determine a magnitude of the VEV of ®.

(2) hypercharge Y = 42 component of ® cannot have mass®.

6Note that only an NG mode can get a mass through D-term. In general, such a component corresponds
to a massive gaugino.
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Then we have to add other multiplets. The easiest way to solve the problem (1) is to
add a singlet (= S) 7. If there is a singlet the superpotential will have a form

1 1

W = Ma®P® + Yps5PP + 5MSS2 + 51/553 (82)
and F-flat conditions are (< & >= ¢, < § >=s)
ow —
— = (My + Yag5) =0, (83)
¢
ow — 1
—— = Ya50p + Mgs + ~Ygs>. (84)
0s 2
Then VEVs are determined to
Mgy
S = — < 85
Yoo (85)
— MsMy 1, Mg,
= — =Yq(—)". 86
& Yos 2 S(chs) (86)

Though as we mention below (81) M’s are thought to be of O(My), we can give a
VEV of O(M,,,) to @ if coupling constants are fine-tuned while s is of O(My).
Unfortunately even after we add a singlet, the problem (2) is not solved because the
mass for Y=22 component is
Mg + Ygs =0 (87)

according to the F-flat condition (83). The reason why it is still massless is that no
multiplet couples to ® which acquires a VEV of O(M,,,) and distinguishes the component
of a SU(2), triplet and hence all component of ® is still degenerate after SU(2) , breaking.

This means that to make Y=%2 component decouple from the spectrum after SU(2),
breaking we have to make a multiplet couple to ® which will get a VEV of O(M,,,) and
distinguishes the component of a SU(2) triplet, that is, a non-singlet. It is easy to find
what non-singlet can couple to ®®. From ®® we have three representation:

(1, 1,1,
(1,3,1,
(1,5,1

o O O

) Y )

)
) (88)
)

As SU(2) , non-singlets are the latter two and (1,5,1,0) is not contained in a relatively
smaller representation of SO(10), we have to use (1,3,1,0). Since T3 = 0 component of a
triplet is an SM singlet it can get a VEV.

"Because we consider an SO(10) GUT, there are several singlets though naturally their masses are of
O(My).
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Since (1,3,1,0) is not a singlet under Gaagy, its VEV is at most of O(M,,), while
because (1,3,1,0) gives a mass of O(M,,) to Y==£2 component of ®, even if there are
many (1,3,1,0), one of their VEV must be of O(M,,). This implies that at least one of
(1,3,1,0) must have a mass of O(M,,,). In the following we will see it explicitly.

First when there are also (1,3,1,0) multiplets (= B;) the superpotential takes a follow-
ing form.

W = MePd + YosSPP + Z Y; B;®®

1 1

+ 5MSS2 + 5YSS?’ (89)
1 1
+ 5 2 My +YyS)BiBy + 57 > YipBiB; By
i?j ' i7j7k

and F-flat conditions are (< B; >= (3;)

ow =

9% (Mo + Yogs + Z Yi3;)® = 0, (90)
ow — 1
% = Yos500 + Mgs + §Y582 + ZYSU@'@' =0, (91)

i?j
ow —
9B — Yoo + Z(Mzg +Y;;5)8; = 0. (92)
i i

Note that there is no three point coupling of T3 = 0 component of SU(2) triplet and
hence there is no affect of Y;j;.
From (92) f; is calculated to

B = —(M)ia;09, (93)

By assumption ¢ ~ O(M,,,) and as we mentioned one of (; also must be of O(M,,,).
These facts imply that in the above equation M must have at least one eigenvalue of
O(M,,,). Because M is a mass matrix for (1,3,1,0) (see (89)), it means that at least one
of (1,3,1,0) must be massless at the GUT scale.

In this case mass for Y= +£2 is calculated

(Mq> -+ Y@SS — Z&ZBZ) = _QZazﬂz ~ O(M,,R) (94)

where (90) is used. Apparently this component decouples at M,

vr, Namely, the problem
(2) is solved.
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B Construction of Representations

In this section we briefly review how we construct representations of subgroups contained
in SO(10) representations and give the rule for calculating CG coefficient appearing in
three point couplings. However, we do not mention about an SO(10) spinor 16 because
it is impossible to understand the meaning of the indices for a spinor in the same way
of understanding that for an SO(10) vector 10 and essentially we do not need to handle
them directly in this paper. To see how to handle an SO(10) spinor, see ref.[12]. When
calculating CG coefficient relevant to a spinor the gamma matrices for SO(10) constructed
explicitly in the reference are used.

B.1 Meanings of Subscripts

For SO(10) the fundamental representation ® is a 10 dimensional real vector

H=(H), i=1,..,10.

It means when we construct a fundamental representation for SO(10) we can use a
following basis for it:

H = hiei, (95)
where
0
0
hi=eH, e;=| 1| }ithcomponent. (96)
0
0

Here after in this appendix, repeated subscripts are assumed to be contracted.

In this case index i means nothing but SO(10) vector.

For our convenience we can attach an additional meaning to it. SO(10) includes SU(5)
® U(1) and SO(6) ® SO(4) ~ SU(4) ® SU(2) ® SU(2). Under them the fundamental
representation 10 is decomposed into [11]

5(2) + 5(—2) under SU(5) ® U(1)
10=1¢ (6,1)+(1,4) under SO(6) ® SO(4)
(6,1,1) + (2 2,1) under SU(4) ® SU(2) ® SU(2)

8Exactly in a mathematical term what fundamental representation means is identity representation.
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Then we can add a meaning of, for example, SO(6) vector to indices 1 to 6 and SO(4)
vector to 7 to 10°. Here after 0 stands for 10. In other words SO(6), an SO(10) subgroup,
acts on the indices 1 to 6 and SO(4) acts on 7 to 0.

We can add more meaning to indices of an SO(10) vector by giving a meaning 5(2)
representation under SU(5) ® U(1) to (1 + 24,3+ 44,5+ 67,7+ 8,9 4 0i) and its complex
conjugate to (1 — 2,3 — 44,5 — 6i,7 — 8,9 — 01).

What 1 + 2¢ means is as follows. When we construct a vector representation we can
use a basis E,; and its complex conjugate E,_y = E,4p where b = a + 1 and a is an
odd number other than e; which is introduced at the top of this section.

0
Eorvi = % 1 {Ztt}}ll = %ea + éeb (97)
0
where % is a normalization factor to achieve E! iy = 1.
Then
H = hie; = hoivi Easi + ha—piEapi
where
hasvi = E} ,H = i(ha — hyi) (98)

V2

hatpi is a component of a SU(5) vector and its U(1) charge is 2. As it is easily seen the
component for an SO(10) vector depends on a basis.

Because both SU(5) and SO(6) ~ SU(4) contain SU(3), we can add the meaning of
SU(3) 3 and 3 to the SO(6) vector indices 1 to 6: (1+2i,3+ 44,5+ 64) is an SU(3) vector
3. By the same way we can add the meaning of SU(2) 2 and 2 to the SO(4) ~ SU(2) ®
SU(2) vector indices 7 to 0: (7 + 8,9 + 07) is an SU(2) vector 2.

As we will see later a higher representation is represented as a tensor. By this con-
struction when we consider what representations a higher representation contains under,
for example, SO(10) subgroup SU(4), it is sufficient to deal with indices 1 to 6. When
considering SU(5) subgroup we can deal with combinations of SO(10) subscripts 1 + 2i
and so on.

B.2 SO(10) Representations and Representations of subgroups
contained in SO(10) Representations
The representations 45, 126 + 126 and 210 are formulated from the fundamental repre-

sentation as antisymmetric tensors of 2nd, 5th and 4th rank respectively. By the charac-
teristic of SO(10) 5th rank antisymmetric tensor is decomposed into two parts, 126 and

9In the papers [7, 9] they give a meaning of SO(6) vector to indices 5 to 10 and that of SO(4) to 1 to
4
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126. Using 10th rank antisymmetric € tensor (= Egpedeijiim) it is decomposed into two
eigenstates[12]:

% —

Egabcdeijklméijklm - +(I)abcde: (99)
) — —

ﬁgabcdeijklmq)ijklm - _CI)abcde'

What has a plus eigenvalue is defined to be 126 and the other is to be 126.
In the same way as an SO(10) vector 10 we can express these representations using a
component and a basis. To express 45 (= A) we can take a basis e;; as follows:

A= a;je; (100)

where

1

aij = tI’A@Z‘j, 61‘]‘ = ((eij)ab) = \/i(éaiébj — 6aj5bi)' (101)

a;; corresponds to a component of 45 representation. In our notation subscripts i, j for a
component and a basis satisfy that i > j.
In a similar manner 126 4+ 126 (= ® + ®) is written as

D (or @) = bijrimeijhim (102)

where €;jkim is an antisymmetric tensor and only when a combination of indices coincide
with subscripts {ijklm} it has a value 1/v/5! or —1/4/5! . The sign is defined to make
€ijkim be antisymmetric. Here {ijkim} satisfies ¢ > j > k > | > m. Exactly, for e;jxm,
to be a basis of 126 (or 126) there is another constraint for it as we explained at (99),
though we do not touch the detail here. Then a component of 126 is given by

¢ijklm - q)abcde(eijklm)abcde' (103)

% is a necessary normalization factor to express a 126 representation by (102) and (103)
similar to % in (97).

In the case of 210 a basis for it becomes 4th rank antisymmetric tensor and its nor-
malization is 1/v/4!. Besides it 210 (= A) is represented in the same way:

A= 5z‘jk:z€z‘jk:z
where
5ijkl - Aabcd(ez‘jk:l)abcd

and v >7j5 >k >l

To construct a representation under subgroups we use a linear combination of these
basis in the same way that when we extract a 5(2) of the subgroup SU(5) ® U(1) from
an SO(10) vector we use a basis Eg ;.
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For example let us consider Gaz; singlets contained in 126 and 126. They are SU(5)
singlets. Then it is sufficient to deal with SU(5) subscripts 1 + 2¢ and so on. By the
quintality of SU(5) the form of the basis of SU(5) singlets in 126 and 126 are determined
to be e1_9i3-4i5-6i,7-8i,9-0is C1+2i,3+4i,5+6i,7+8i,9+0i- Lhey are understood in the same way
as Eyi9i, (97):

1 ,
€1-2i,3—4i,5—64,7—8i,9—0i — —\/— (13579 — 7€a3579 + ...,
13—44,5—61,7—84, 10

where \/% is an extra normalization factor to achieve

*
(61—2i,3—4i,5—6i,7—8i,9—0i)abcde (61—2i,3—4i,5—6i,7—8i,9—0i)abcde =1

similar to % in (97).

It is easily seen that the former is a basis of 126 and the latter is that of 126 by making
Eabedeijkim acting on them or by counting U(1) charge[11]. All other representation of
subgroups contained in SO(10) representations are constructed in a similar way.

B.3 CG coefficient
Using 10, 45, 126, 126 and 210 we have following SO(10) singlets[11].

HOA, HPA, A? DAD, DAD, AA, AN?
We can get singlets by contracting all indices of tensors:

HOA = HaéabcdeAbcde

HOA = H,PapedeApede
A’ = AgpealedesDefar
PAD = DupijiAubcaPedijn
PAD = DijinAaPoijn
AN = AwAcaDabed
AN = eopedesohijAabDeder Dghij

In a term of components of the representations

1
HOA = —ha ace(5067
\/g ¢ bedePbed
_ 1 —
H(I)A - —ha a665067
\/5 ¢ bedeYbed
1
A3 - —6abcd60def66fab7
6v/6
_ 1

——¢ “5ac cdijks
10\/6¢ab1]k: bd¢ dijk
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_ -
PAD = ﬁcbaijkl/lab@bijkla

1
AQA - _%aabacdéabcda

AA2 = 24\/§iaa550def59hij .

where repeated subscripts are not summed and in the last equation abcde fghij are dif-
ferent from each other.
Then we rewrite the superpotential (5) in a term of components, for example,

Y,
YAAS = ﬁ(sabcd(scdef(sefab

and so on. Therefore for components that as an expansion parameter for the perturbation
Yukawa coupling = 1 means Ya = 6v/6 and so on.

Of course, since a component of an irreducible representation is a linear combination
of these components, CG coefficient for an irreducible representation is different from, for
example, ﬁ in the case of A3,

For example let us calculate a CG coefficient for the singlet 3 contained in 45 and a
contained in 210 ( see the table (3)). They are contained in the form Azgi90 = Bersio0
and Arggy = aerggy respectively. Then

AwAcaDabed = ﬁ2ﬂ(€78+90)ab(€78+90)cd(€7890)abcd
.2
9 (1 1
= - —=212I x 2
&<2) NZT
1

V6

In the second line 5 comes from an element of ezg, 99 and ﬁ

erso0. 2! comes from a summation between {ab} and {cd}. {ab} and {cd} are {78} or
{90}. The last factor 2 comes from an exchange of {78} and {90}.

Ba.

comes from an element of

C Mass matrices under (G931 and their eigenvalue
equations

Under (o317 the multiplets of our model have mass terms as follows. They are listed
following the order of the list (23). Full mass matrices are given with contributions
from c, 3, ¢ and ¢ after Gag3; breaks down to Gasi. But these contributions are of order
M, ~ Mye and hence if the mass eigenvalue is of O(My), they are negligible and we do
not need to consider them.

(2,2,1,0) multiplet;
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Y_
My, -, N
M(2,2,1,0) = | —*Epal, 0, 1252+ Mo
Y, =. b Yan b
F R Me, 0

(1,1,3,-2) + h.c multiplet;

A{H: ) V30 ) V30
_ Yoo (V3a—b Y acr
M(1,1,3,2) = W’ 0 %—FM@
Y, zA (V3atb Y acx
7H‘M@ , - 5‘5\‘/‘5 + Mg, 0
(3,1,1,0) + h.c multiplet;
My + 22422 —Yag2% 947 /2Vpaub
M(3717170) = Y\ o« —Yaa \[ o
RIS 2402V a2 b, T2 —160V6 Vs + 522 + Ma
(1,3,1,0) multiplet;
A2a A2a
— + My, - +24iv/2Yn24b
M(1737170>: Y, 204\/_ . Y, vo 32;4
— A\‘/Aé —|—24Z\/_YA2Ab, \A/g+162\/_YA2AC¥+ f/"‘MA
(1,1,3,-4) multiplet;
—Yau2b ; Yoz o
+ My, 244/2iYp2 40 —
M(171737_4) = ( . 3\[ jéAAQOl YAAbQA 3\/5 )
242\/_YA2AG,—3—\/§, 18\[+MA
(1,1,8,0) multiplet;
Agb Y 2@
+ My, 24712 Yr2 00 —
M(1,1,8,0) = ( AT yf;A e )
247 v/2 Yo a0 — & ez, —1275 + Ma
(2,2,3,2) + h.c multiplet;
M., 8v/6iY a2 4D, —Jag2a
M(2,2,3,2) = | 8/6iYa24b, Mg, 16@'\/_YA2A04

Y, a .
—AAEE 16VBiYaraa, A%+ Ma

Y
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(3,1,1,6) + h.c multiplet;

_\/EYCDAOC Yona  Yaab

M(3,1,1,6) = — M.
(7:7) 10 10\/6+10\/§+ P

(3,1,3,2) + h.c multiplet;

Yoaaxe  Yona + Yoa b N
5v6 106 3012

M(3,1,3,2) = My

(3,1,6,-2) + h.c multiplet;

o Y@AOd Y@A& Y@Ab

= — - +
5v6 106 3042

M(3,1,6,—2) My

(1,3,1,-6) + h.c multiplet;

6Y; Y- Yonr b
:\/_ <1>AOZ+ <1>ACL+ DA +
10 10v6 102

M(1,3,1,—6) Me

(1,3,3,-2) + h.c multiplet;

Y@Aoz Y@A& Y@Ab

M(1,3,3,-2) = + + + M
( ) 5v6 106 30v2 ¢

(1,3,6,2) + h.c multiplet;

Yoaa Yeaa  Yoab

M(1,3,6,2) = — T - +
( ) 5v6  10v/6 302

Moy

(2,2,3,-4) + h.c multiplet;
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V6Yps Yon b
M(27 27 37 _4) = ( 1 + 30\/7 + Mq)’ \/6Y¢Aa OY([)Ab )
07 - 15 + 301/2 + M<I’

(2,2,8,0) multiplet;

Yon b

M(2,2,8,0) = 075 + My
(3,1,3,-4) + h.c multiplet;
M(3,1,3,—4):—Y——8z\/_YA2Aa+ + My
66 18 f
(1,3,3,-4) + h.c multiplet;
M(1,3,3,—4) = ::A—\/% + 8 1?\/2
(3,1,8,0) multiplet;
M(3,1,8,0) = —éfi\/% +8ivV6Yaoqa — 1?;5 + Ma
(1,3,8,0) multiplet;
M(1,3,8,0) = Z:A—\/% —8iV6Yazqa — % + Ma

(2,2,1,6) + h.c multiplet;
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Yab

M(2,2,1,6) = ~2~ + M
( ) 6\/§ A
(2,2,6,-2) + h.c multiplet;
Yab
M(2,2,6,—2) = — M
(2,1,3,-1) + h.c multiplet;
0
—%Z’YQZ&AO[

M(2,1,3,—1)= .
(2,1,3,-1) —%ZYWAO&—FQY%A(\/GG‘F\/?())

—%Z’YQMAQ + QYw4A(\/6a + \/Qb) + M\p

(1,2,3,1) + h.c multiplet;

0
%qu,Ag&
ﬁquJA:sOé + 2Yya3(—v6a + /2b)
T51Ywasa + 2Yyaa(—V6a + V2b) + My

M(1,2,3,1) =

(2,1,1,3) + h.c multiplet;

0
V6iYy a00
V6iYyaza + 2v/6Yga3(a — v/3b)
V6iYy asa + 2v/6Yyau(a — /3b) + My

M(2,1,1,3) =

(1,2,1,-3) 4+ h.c multiplet;

0
—/6i Yy a20x
—V6iYy a3 — 2¢/6Yga3(a + /3b)
—V6iYy a4 — 2v/6Yya4(a + v/3b) + My

M(1,2,1,-3) =
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