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Abstract

We study the structure of the soft SUSY-breaking terms obtained from

some classes of 4-D strings under the assumption of dilaton/moduli domi-

nance in the process of SUSY-breaking. We generalize previous analyses in

several ways and in particular consider the new features appearing when sev-

eral moduli �elds contribute to SUSY breaking (instead of an overall modulus

T ). Some qualitative features indeed change in the multimoduli case. A gen-

eral discussion for symmetric Abelian orbifolds as well as explicit examples

are given. Certain general sum-rules involving soft terms of di�erent particles

are shown to apply to large classes of models. Unlike in the overall modulus

T case, gauginos may be lighter than scalars even at the tree-level. How-

ever, if one insists in getting that pattern of soft terms, these sum rules force

some of the scalars to get negative mass2. These tachyonic masses could be

a problem for standard model 4-D strings but an advantage in the case of

string-GUTs. We also discuss the possible e�ects of o�-diagonal metrics for

the matter �elds which may give rise to avour-changing neutral currents.

Di�erent sources for the bilinear B soft term are studied. It is found that

the Giudice-Masiero mechanism for generating a \�-term", as naturally im-

plemented in orbifolds, leads to the prediction jtg�j = 1 at the string scale,

independently of the Goldstino direction.
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1 Introduction

Recently there has been some activity in trying to obtain information about the

structure of soft Supersymmetry (SUSY)-breaking terms in e�ective N = 1 theories

coming from four-dimensional strings. The basic idea is to identify some N = 1

chiral �elds whose auxiliary components could break SUSY by acquiring a vacuum

expectation value (vev). No special assumption is made about the possible origin of

SUSY-breaking. Natural candidates in four-dimensional strings are 1) the complex

dilaton �eld S = 4�
g2
+ ia which is present in any four-dimensional string and 2) the

moduli �elds T i; U i which parametrize the size and shape of the compacti�ed variety

in models obtained by compacti�cation of a ten-dimensional heterotic string. It is

not totally unreasonable to think that some of these �elds may play an important

role in SUSY-breaking. To start with, if string models are to make any sense,

these �elds should be strongly a�ected by non-perturbative phenomena. They are

massless in perturbation theory and non-perturbative e�ects should give them a
mass to avoid deviations from the equivalence principle and other phenomenological
problems. Secondly, these �elds are generically present in large classes of four-
dimensional models (the dilaton in all of them). Finally, the couplings of these
�elds to charged matter are suppressed by powers of the Planck mass, which makes

them natural candidates to constitute the SUSY-breaking \hidden sector" which is
assumed to be present in phenomenological models of low-energy SUSY.

The important point in this assumption of locating the seed of SUSY-breaking in
the dilaton/moduli sectors, is that it leads to some interesting relationships among
di�erent soft terms which could perhaps be experimentally tested. In ref.[1] three of

the authors presented a systematic discussion of the structure of soft terms which
may be obtained under the assumption of dilaton/moduli dominated SUSY breaking
in some classes of four-dimensional strings, with particular emphasis on the case of
Abelian (0; 2) orbifold models [2]. We mostly considered a situation in which only
the dilaton S and an \overall modulus T" �eld contribute to SUSY-breaking. In

fact, actual four-dimensional strings like orbifolds contain several Ti moduli. Generic

(0; 2) orbifold models contain three Ti moduli �elds (only Z3 has 9 and Z4, Z
0
6 have

5) and a maximum of three (\complex structure") Ui �elds. The use of an overall

modulus T is equivalent to the assumption that the three Ti �elds of generic orbifold

models contribute exactly the same to SUSY-breaking. In the absence of further
dynamical information it is reasonable to expect similar contributions from the three

moduli although not necessarily exactly the same. In any case it is natural to ask
what changes if one relaxes the overall modulus hypothesis and works with the

multimoduli case. This is one of the purposes of the present paper.
In section 2 we present an analysis of the e�ects of relaxing the overall modulus

assumption on the results obtained for soft terms. In the multimoduli case sev-

eral parameters are needed to specify the Goldstino direction in the dilaton/moduli

space, in contrast with the overall modulus case where the relevant information is

contained in just one angular parameter �. The presence of more free parameters
leads to some loss of predictivity for the soft terms. However, we show that in some

cases there are certain sum-rules among soft terms which hold independently of the

Goldstino direction. The presence of these sum rules cause that, on average the
qualitative results in ref.[1] still apply. Speci�cally, if one insists e.g. in obtaining

scalar masses heavier than gauginos (something not possible at the tree-level in the

approach of ref.[1]) , this is possible in the multimoduli case, but the sum-rules often
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force some of the scalars to get negative mass2. If we want to avoid this, we have to

stick to gaugino masses bigger than (or of order) the scalar masses. This would lead

us back to the qualitative results obtained in ref.[1]. In the case of standard model

4-D strings this tachyonic behaviour may be particularly problematic, since charge

and/or colour could be broken. In the case of GUTs constructed from strings, it

may just be the signal of GUT symmetry breaking. We exemplify the di�erent type

of soft terms which may be obtained in the multimoduli case in some particular

examples, including an SO(10) String-GUT.

Section 3 addresses another simplifying assumption in ref.[1]. There only the

case of diagonal kinetic terms for the charged �elds was considered. Indeed this

is the generic case in most orbifolds, where typically some discrete symmetries (or

R-symmetries) forbid o�-diagonal metrics for the matter �elds. On the other hand

there are some orbifolds in which o�-diagonal metrics indeed appear and one expects

that in other compacti�cation schemes such metrics may also appear. This question

is not totally academic since, in the presence of o�-diagonal metrics, the soft terms
obtained upon SUSY-breaking are also in general o�-diagonal. This may lead to
avour changing neutral current (FCNC) e�ects in the low energy e�ective N = 1
softly broken Lagrangian.

A third topic of interest is the B-parameter, the soft mass term which is asso-
ciated to a SUSY mass term �H1H2 for the pair of Higgsses H1;2 in the Minimal
Supersymmetric Standard Model (MSSM). Compared to the other soft terms, the
result for the B-parameter is more model-dependent. Indeed, it depends not only
on the dilaton/moduli dominance assumption but also on the particular mechanism

which could generate the associated \�-term". An interesting possibility to generate
such a term is the one suggested in ref.[3] in which it was pointed out that in the
presence of certain bilinear terms in the K�ahler potential an e�ective �-term of order
the gravitino mass, m3=2, is naturally generated. Interestingly enough, such bilinear
terms in the K�ahler potential do appear in string models and particularly in Abelian

orbifolds. In section 4 we compute the � and B parameters as well as the soft scalar
masses of the charged �elds which could play the role of Higgs particles in such

Abelian orbifold schemes. We �nd the interesting result that, independently of the

Goldstino direction in the dilaton/moduli space, one gets the prediction jtg�j = 1 at
the string scale. In other words, the direction hH1i = hH2i remains at even after

SUSY-breaking. The results for B corresponding to other sources for the �-term

are also presented in the multimoduli case under consideration. In particular, the

possibility of generating a small �-term from the superpotential [4] is studied. We
leave some �nal comments and conclusions for section 5.

2 Soft terms: the multimoduli case

We are going to consider N = 1 SUSY 4-D strings with m moduli Ti, i = 1; ::;m.

Such notation refers to both T -type and U -type (K�ahler class and complex struc-
ture in the Calabi-Yau language) �elds. In addition there will be charged matter

�elds C� and the complex dilaton �eld S. In general we will be considering (0; 2)

compacti�cations and thus the charged �elds do not need to correspond to 27s of

E6.
Before further specifying the class of theories that we are going to consider a

comment about the total number of moduli is in order. We are used to think of
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large numbers of T and U -like moduli due to the fact that in (2; 2) (E6) compact-

i�cations there is a one to one correspondence between moduli and charged �elds.

However, in the case of (0; 2) models with arbitrary gauge group (which is the case

of phenomenological interest) the number of moduli is drastically reduced. For ex-

ample, in the standard (2; 2) Z3 orbifold there are 36 moduli Ti, 9 associated to

the untwisted sector and 27 to the �xed points of the orbifold. In the thousands of

(0; 2) Z3 orbifolds one can construct by adding di�erent gauge backgrounds or doing

di�erent gauge embeddings, only the 9 untwisted moduli remain in the spectrum.

The same applies to models with U -�elds. This is also the case for compacti�cations

using (2; 2) minimal superconformal models. Here all singlets associated to twisted

sectors are projected out when proceeding to (0; 2) [5]. So, as these examples show,

in the case of (0; 2) compacti�cations the number of moduli is drastically reduced

to a few �elds. In the case of generic Abelian orbifolds one is in fact left with only

three T-type moduli Ti (i = 1; 2; 3), the only exceptions being Z3, Z4 and Z
0
6, where

such number is 9, 5 and 5 respectively. The number of U -type �elds in these (0; 2)
orbifolds oscillates between 0 and 3, depending on the speci�c example. Speci�cally,
(0; 2) Z2�Z2 orbifolds have 3 U �elds, the orbifolds of type Z4; Z6,Z8; Z2�Z4,Z2�Z6

and Z 0
12 have just one U �eld and the rest have no untwisted U -�elds. Thus, apart

from the three exceptions mentioned above, this class of models has at most 6 mod-
uli, three of T -type (always present) and at most three of U -type. In the case of
models obtained from Calabi-Yau type of compacti�cations a similar e�ect is ex-
pected and only one T -�eld associated to the overall modulus is guaranteed to exist
in (0; 2) models.

We will consider e�ective N = 1 supergravity (SUGRA) K�ahler potentials of the
type:

K(S; S�; Ti; T �
i ; C�; C

�
�) = � log(S + S�) + K̂(Ti; T

�
i ) + ~K��(Ti; T

�
i )C

��C�

+ ( Z��(Ti; T
�
i )C

�C� + h:c: ) : (1)

The �rst piece is the usual term corresponding to the complex dilaton S which is

present for any compacti�cation whereas the second is the K�ahler potential of the

moduli �elds, where we recall that we are denoting the T - and U -type moduli collec-
tively by Ti. The greek indices label the matter �elds and their kinetic term functions
are given by ~K�� and Z�� to lowest order in the matter �elds. The last piece is often

forbidden by gauge invariance in speci�c models although it may be relevant in some

cases as discussed in section 4. In this section we are going to consider the case of

diagonal metric both for the moduli and the matter �elds and leave the o�-diagonal

case for the next section. Then K̂(Ti; T
�
i ) will be a sum of contributions (one for each

Ti), whereas ~K�� will be taken of the diagonal form ~K�� � ��� ~K�. The complete
N = 1 SUGRA Lagrangian is determined by the K�ahler potential K(�M ; �

�
M), the

superpotential W (�M) and the gauge kinetic functions fa(�M), where �M generi-
cally denotes the chiral �elds S; Ti; C�. As is well known, K and W appear in the

Lagrangian only in the combination G = K + log jW j2. In particular, the (F-part of

the) scalar potential is given by

V (�M ; �
�
M ) = eG

�
GMK

M �NG �N � 3
�
; (2)

where GM � @MG � @G=@�M and KM �N is the inverse of the K�ahler metricK �NM �
@ �N@MK.
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The crucial assumption now is to locate the origin of SUSY-breaking in the

dilaton/moduli sector. It is perfectly conceivable that other �elds in the theory, like

charged matter �elds, could contribute in a leading manner to SUSY-breaking. If

that is the case, the structure of soft SUSY-breaking terms will be totally model-

dependent and we would be able to make no model-independent statements at all

about soft terms. On the contrary, assuming the seed of SUSY-breaking originates

in the dilaton-moduli sectors will enable us to extract some interesting results. We

will thus make that assumption without any further justi�cation. Let us take the

following parametrization for the vev's of the dilaton and moduli auxiliary �elds

F S = eG=2G�1
�SS
G �S and F i = eG=2G�1

�ii
G�i:

G
1=2
�SS
F S =

p
3m3=2 sin �e

�iS ; G
1=2
�ii
F i =

p
3m3=2 cos � e

�ii�i ; (3)

where
P

i�
2
i = 1 and eG = m2

3=2 is the gravitino mass-squared. The angle � and

the �i just parametrize the direction of the goldstino in the S; Ti �eld space. We

have also allowed for the possibility of some complex phases S ; i which could be
relevant for the CP structure of the theory. This parametrization has the virtue
that when we plug it in the general form of the SUGRA scalar potential eq.(2),

its vev (the cosmological constant) vanishes by construction. Notice that such a
phenomenological approach allows us to `reabsorb' (or circumvent) our ignorance
about the (nonperturbative) S- and Ti- dependent part of the superpotential, which
is responsible for SUSY-breaking. It is now a straightforward exercise to compute
the bosonic soft SUSY-breaking terms in this class of theories. Plugging eqs.(3) and

(1) into eq.(2) one �nds the following results (we recall that we are considering here
a diagonal metric for the matter �elds):

m2
� = m2

3=2

h
1 � 3 cos2 � (K̂ii)

�1=2�ie
ii(log ~K�)ij(K̂jj)

�1=2�je
�ij

i
;

A�� = �
p
3m3=2 [e�iS sin �

� e�ii cos � �i(K̂ii)
�1=2

�
K̂i �

P
�=�;�;(log ~K�)i + (log h��)i

� i
: (4)

The above scalar masses and trilinear scalar couplings correspond to charged �elds

which have already been canonically normalized. Here h�� is a renormalizable

Yukawa coupling involving three charged chiral �elds and A�� is its corresponding
trilinear soft term.

Physical gaugino masses Ma for the canonically normalized gaugino �elds are

given by Ma =
1

2
(Refa)

�1eG=2faMK
M �NG �N . Since the tree-level gauge kinetic func-

tion is given for any 4-D string by fa = kaS, where ka is the Kac-Moody level of the
gauge factor, the result for tree-level gaugino masses is independent of the moduli

sector and is simply given by:

M �Ma = m3=2

p
3 sin �e�iS : (5)

As we mentioned above, the parametrization of the auxiliary �eld vev's was
chosen in such a way to guarantee the automatic vanishing of the vev of the scalar

potential (V0 = 0). If the value of V0 is not assumed to be zero the above formulae
are modi�ed in the following simple way. One just has to replace m3=2 ! Cm3=2,

where jCj2 = 1 + V0=3m
2
3=2. In addition, the formula for m2

� gets an additional

contribution given by 2m2
3=2(jCj2 � 1) = 2V0=3.

The soft term formulae above are in general valid for any compacti�cation as long

we are considering diagonal metrics. In addition one is tacitally assuming that the
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tree-level K�ahler potential and fa-functions constitute a good aproximation. The

K�ahler potentials for the moduli are in general complicated functions. To illustrate

some general features of the multimoduli case we will concentrate here on the case

of generic (0; 2) symmetric Abelian orbifolds. As we mentioned above, this class of

models contains three T -type moduli and (at most) three U -type moduli. We will

denote them collectively by Ti, where e.g. Ti = Ui�3; i = 4; 5; 6. For this class of

models the K�ahler potential has the form [6]

K(�; ��) = � log(S + S�) �
X
i

log(Ti + T �
i ) +

X
�

jC�j2�i(Ti + T �
i )

ni� : (6)

Here ni� are fractional numbers usually called \modular weights" of the matter

�elds C�. For each given Abelian orbifold, independently of the gauge group or

particle content, the possible values of the modular weights are very restricted. For

a classi�cation of modular weights for all Abelian orbifolds see ref.[7]. Using the

particular form (6) of the K�ahler potential and eqs.(4,5) we obtain the following
results1 for the scalar masses, gaugino masses and soft trilinear couplings:

m2
� = m2

3=2(1 + 3 cos2 � ~n�: ~�2) ;

M =
p
3m3=2 sin �e

�iS ;

A�� = �
p
3m3=2 (sin �e

�iS + cos �
P6

i=1 e
�ii�i!i��) ; (7)

where we have de�ned :

!i�� = (1 + ni� + ni� + ni � Y i
��) ; Y i

�� =
hi��

h��
2ReTi : (8)

Notice that neither the scalar nor the gaugino masses have any explicit dependence
on S or Ti, they only depend on the gravitino mass and the goldstino angles. This
is one of the advantages of a parametrization in terms of such angles. In the case

of the A-parameter an explicit Ti-dependence may appear in the term proportional

to Y i
��. This explicit dependence disappears in three interesting cases: 1) In the

dilaton-dominated case (cos � = 0). 2) When the Yukawa couplings involve only

untwisted (U) particles, i.e couplings of the type UUU, in which case the coupling

is a constant. 3) When the particles involved in the coupling have all overall modular
weight n� = �1 (again, the coupling is constant). This is possible for couplings of

the type UT�1T�1, T�1T�1T�1, where the subindex indicates the value of the
overall modular weight of the twisted (T) particle (see below). This is for example

the case of any Z2�Z2 orbifold. There is a fourth case in which the Y i
��-term does

not disappear but is suppressed for large radii. This happens when the coupling

h�� links twisted �elds, TTT, associated to the same �xed point. In this case one
has h�� ' (constant+O(e�T )) [11] and then Y i

�� ! 0. In all the �rst three cases

discussed above the soft terms obtained are independent of the values of S and Ti.

It is appropriate at this point to recall some information about the \modular
weights" ni� appearing in these expressions. For particles belonging to the untwisted

sectors one has

ni� = ��i� ; i = 1; 2; 3; ni� = ��i�3� ; i = 4; 5; 6 : (9)

1This analysis was also carried out, for the particular case of the three diagonal moduli Ti, in
refs.[8] and [9], in order to obtain uni�cation of gauge coupling constants and to analyze FCNC
constraints, respectively. Some particular multimoduli examples were also considered in ref.[10] .
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Here i = 1; 2; 3 labels the three T -type moduli and i = 4; 5; 6 the three (maximum)

U -type moduli, whereas � = 1; 2; 3 labels the three untwisted sectors of the orbifold.

Each twisted sector is associated to an order N twist vector ~v = (v1; v2; v3) de�ned

so that 0 � vi < 1,
P3

i=1 v
i = 1. In terms of the vi one �nds the following modular

weights for particles in twisted sectors:

ni� = �(1� vi + pi � qi) ; i = 1; 2; 3; (vi 6= 0) ;

ni+3� = �(1 � vi + qi � pi) ; i = 1; 2; 3; (vi 6= 0) ;

ni� = ni+3� = 0 (vi = 0) ; (10)

where pi and qi denote the number of (left-handed) oscillator operators of each

chirality in the i-th complex direction (see ref.[7] for details). The \overall T modular

weights" corresponding to the \overall modulus" T �eld considered in ref.[1] are

given by n� =
P3

i=1 n
i
�. Twisted sectors with all vi 6= 0 (and no oscillators) have

overall modular weights n� = �2 due to the property
P3

i=1 v
i = 1. Twisted sectors

with one of the vi vanishing have the form ~v = (1=r; (r�1)=r; 0) (plus permutations)
with r = 2; 3; 4; 6. Such sectors obviously have overall modular weights n� = �1. If
the twisted particle has also p (q) positive (negative) chirality oscillators, the overall
T modular weight gets an extra addition = p�q. Particles with oscillators normally
correspond to small representations of the gauge group (e.g., singlets) so that one
expects the interesting charged particles to be associated to either untwisted sector
or twisted sectors with no oscillators (or perhaps at most one or two oscillators).

With the above information we can now analyze the di�erent structure of soft
terms available for each Abelian orbifold. The results obtained in ref.[1] corre-
sponded to the assumption that only S and the overall modulus T were the seed of
SUSY breaking. Within the more general framework here described, those results
correspond to the particular goldstino direction

~�2 = (
1

3
;
1

3
;
1

3
; 0; 0; 0) (11)

and can be recovered from eq.(7) and eq.(8) (assuming also i = T , h
i
�� = hT��=3):

m2
� = m2

3=2(1 + n� cos
2 �) ;

M =
p
3m3=2 sin �e

�iS ;

A�� = �
p
3m3=2 (sin �e

�iS + 1p
3
cos �e�iT!��) ; (12)

where we have de�ned :

!�� = (3 + n� + n� + n � Y T
��) ; Y T

�� = 2ReT
hT��

h��
: (13)

In that case one could extract a number of generic qualitative properties of soft

terms with regard to three important issues : the existence or not of negative mass2

for some matter �elds, the universality of soft scalar masses, and the relative sizes

of gaugino versus scalar masses. In the case of an overall T modulus one �nds (see
the above formulae):

1) Scalars in untwisted and in twisted sectors with overall T -modular weight

n� = �1 have always masses-squared � 0.
2) Scalars in twisted sectors with n� � �2 are always lighter than those with

n� = �1. The condition cos2 � � 1=jn�j is required for a particle C� not to become
tachyonic.
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3) Universal soft scalar masses are obtained in two cases: First, in the dilaton-

dominated SUSY-breaking (cos � = 0) which implies that the whole soft terms are

universal (see eq.(7)) [12, 1]. Second, if all scalars have the same overall modular

weight n� = n [1]. For example, this always occurs for any Z2 � Z2 orbifold.

4) Due to the above constraints, all scalars C� verifyM2 � m2
�.

We would like now to study to what extent these general conclusions change in

the multimoduli case. We will discuss them in turn.

1) Soft masses for n� = �1 particles

Let us start with the �rst of these issues, the masses of n� = �1 sectors. There
are two types of such sectors, the untwisted sector (which is present in any orbifold)

and the twisted sectors with n� = �1. We will discuss them in turn. Using the

formulae above one �nds the following expressions for scalars in the three untwisted

sectors of any orbifold:

m2
1 = m2

3=2 (1� 3 cos2 �(�2
1 +�2

4)) ;

m2
2 = m2

3=2 (1� 3 cos2 �(�2
2 +�2

5)) ;

m2
3 = m2

3=2 (1� 3 cos2 �(�2
3 +�2

6)) : (14)

One immediately observes that the only way to avoid the presence of tachyons
for any choice of goldstino direction in all three sectors is imposing the condition
cos2 � � 1=3. This is to be compared to the overall modulus case (12) in which

positive mass2 was obtained for any �. Notice the following important sum-rule
which is valid for the untwisted particles of any orbifold:

m2
1 + m2

2 + m2
3 = jM j2 : (15)

Furthermore, since ~n1+ ~n2+ ~n3 = �(1; 1; 1; 1; 1; 1) and the UUU Yukawa couplings
do not depend on the moduli one also has

A123 = �M : (16)

Let us consider now the case of twisted sectors with n� = �1. As we said, the
associated twist vectors have the form ~v = (1=r; (r � 1)=r; 0) (plus permutations)
with r = 2; 3; 4; 6. Looking at the �rst of the eqs.(7) one sees that one has guaranteed
a positive mass2 if cos2 � � r=3(r � 1). The tighter bound is obtained when r = 6

which yields cos2 � � 2=5. A generalization of eqs.(15) and (16) apply also in

this case. Consider three particles C�,C�,C all with overall modular weight = �1
coupling through a Yukawa h��. They may belong both to the untwisted sector or
to a twisted sector with n = �1, i.e. couplings of the type UT�1T�1, T�1T�1T�1.
Then it is easy to convince oneself that again for any possible twist ~n� + ~n� + ~n =

�(1; 1; 1; 1; 1; 1). Then one �nds that for any choice of goldstino direction

m2
� + m2

� + m2
 = jM j2 = 3m2

3=2 sin
2 � (17)

and besides

A�� = �M : (18)

The only di�erence with eqs.(15), (16) is that eqs.(17), (18) apply to any three

n = �1 particles linked by a Yukawa coupling (and not only to the three untwisted
sectors). Thus, for example, the sum-rule applies to any set of three particles which

couple in any Z2 � Z2 orbifold. Speci�c examples will be shown below.
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Notice that if we insist in having a vanishing gaugino mass, the sum-rules (15)

and (17) force the scalars to be either all massless or at least one of them tachyonic.

As we will discuss below, having a tachyonic sector is not necessarily a problem,

it may even be an advantage, so one should not disregard this possibility at this

point. Of course, in the trivial case when there is no physical particle in that

particular sector which would have negative mass2 the situation is also harmless.

Let us show an explicit example of this possibility. Consider the second example of

Table 3 of ref.[13]. This is a three-generation Z3 orbifold model with gauge group

SU(3)c � SU(3)L � SU(3)R. It has the particular property that it has no charged

matter in the untwisted sector so that the sum-rule (15) can cause no trouble in the

untwisted sector (i.e., no physical tachyons). Consider the goldstino direction e.g.
~� = (0; 0; 1). The untwisted particles would have had masses m2

1 = m2
2 = m2

3=2,

m2
3 = m2

3=2(1 � 3 cos2 �) whereas the twisted particles would have m2
T
= m2

3=2(1 �
2 cos2 �). The absence of charged massless particles in the untwisted sector would

have allowed us to have e.g., 1=3 � cos2 � � 1=2, values which would have lead to
tachyonic states in the untwisted sector. For the particular value cos2 � = 1=2 one
gets m2

T
= 0 and gaugino masses M2 = 3=2m2

3=2.
From the above discussion we conclude that in the multimoduli case, depending

on the goldstino direction, tachyons may appear both in the untwisted and n� = �1
twisted sectors unless cos2 � � 1=3. This is to be compared to the overall modulus
T case in which tachyons never appear. For cos2 � � 1=3, one has to be very careful
with the goldstino direction if one is interested in avoiding tachyons. In some sense,
a certain amount of �ne tuning is required so that the goldstino direction goes more

and more in the overall T modulus direction as one increases cos2 �. Nevertheless we
should not forget that tachyons, as we already mentioned above, are not necessarily
a problem, but may just show us an instability.

2) Soft masses for n� = �2 particles

In the absence of oscillators, these are particles originated in twisted sectors

~v = (v1; v2; v3) with all vi 6= 0. Plugging the expressions for the modular weights

one �nds in this case

m2
� = m2

3=2(1� 3 cos2 �) + 3m2
3=2 cos

2 �~v�: ~�2 ; (19)

where ~v� = (v1; v2; v3; v1; v2; v3). It is obvious from eq.(19) that having cos2 � � 1=3
will be enough to guarantee the absence of tachyons for any n = �2 particle. This is
to be compared with the overall modulus case analyzed in ref.[1] in which the weaker

condition cos2 � � 1=2 was required. Notice also that in the overall modulus T case
one always had that the n = �1 scalar had bigger masses than the n = �2 scalars.

Here the situation may even be reversed. For any three �elds C�,C�,C linked
through a T�2T�2T�2 Yukawa coupling one can check the following sum-rule which

is true for any goldstino direction ~� :

m2
� +m2

� +m2
 = 3m2

3=2(1 � 2 cos2 �) = jM j2 � 3m2
3=2 cos

2 � : (20)

This shows us that, on average, n = �2 twisted particles are lighter than n = �1
particles but the reverse may be true for some particular �elds as long as the above

sum-rules are not violated.

It is worth noticing here that twisted Yukawa couplings mixing particles with

n = �1 and n = �2 are also possible (e.g. T�1T�2T�2, T�1T�1T�2). In this case
the sum-rule is

m2
� +m2

� +m2
 = jM j2 � 3m2

3=2 cos
2 � � (21)
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with

� � 1 �
X
k

�2
k ; (22)

where �k are the auxiliary �elds of the moduli associated to the vanishing entry of

the n = �1 twist vectors (see below eq.(16)) present in the coupling, i.e. those with

nk� = 0. Since 0 < � < 1, the sum-rule (21) is rather in-between the (17) and the

(20).

Let us �nally comment that if the twisted particle has associated an oscillator

operator, the modular weight decreases in as many units as (positive chirality) oscil-

lators. This makes very likely for such particles to have negative mass2 (unless there

is approximate dilaton dominance) . In many cases such particles are just singlets

and such tachyonic behaviour may just denote that these �elds are forced to aquire

vev's.

3) Universality of soft scalar masses

In the dilaton-dominated case (cos � = 0) the whole soft terms are universal as
in the overall modulus case. Also scalars with di�erent overall modular weights n�
have di�erent masses. However, unlike the overall modulus case, non-universal soft

scalar masses for particles with the same n� are allowed and in fact this will be the
most general situation (see e.g. eqs.(14,19)).

4) Gaugino versus scalar masses

In the overall modulus T discussed in ref.[1] the heaviest scalars were the ones
with modular weight n = �1 which had mass2 = jM j2=3. So scalars are lighter

than gauginos at this level. In the multimoduli case sum-rules like (17) replace the
equation 3m2

n=�1 = jM j2. In some way, on average the scalars are lighter than
gauginos but there may be scalars with mass bigger than gauginos. In the case of
particles with n = �1, eq.(17) tells us that this can only be true at the cost of
having some of the other three scalars with negative mass2. This may have diverse

phenomenological implications depending what is the particle content of the model,
as we now explain in some detail:

4-a) Gaugino versus scalar masses in standard model 4-D strings

Let us consider �rst the case of string models with gauge group SU(3)c�SU(2)L�
U(1)Y�G and see whether one can avoid the general situation of ref.[1], where scalar

masses were found to be always smaller than gaugino masses (at tree-level). In the
present more general framework, one can certainly �nd explicit examples of orbifold

sectors where some individual scalar mass is bigger than gaugino masses even at the

tree-level. For example, let us consider the case of the Z8 orbifold with an observable
particle in the twisted sector T�6 . The modular weight associated to that sector is

~n�6 = (�1=4;�3=4; 0; 0) and therefore (see eq.(7))

m2
�6 = m2

3=2

�
1 � 3 cos2 �

�
1

4
�2

1 +
3

4
�2

2

��
: (23)

Then, choosing e.g. a goldstino direction with cos2 � = 5=6, �1 = �2 = 0, one gets

m2
�6 = m2

3=2, M
2 = m2

3=2=2. Many more examples along these lines can be found
of course. In general one �nds that it is possible to get m� > M , provided sin �

is su�ciently small. Indeed, from the general formulae eq.(7) we see that always

m� � m3=2 and therefore a necessary (although usually not su�cient) condition to
get scalars heavier than gauginos is

cos2 � > 2=3 : (24)
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After such preliminary remark one immediately realizes that, especially in the

case of standard model 4-D strings, further important restrictions on the possibil-

ity of getting scalars heavier than gauginos come from sum-rules like (15,17,20,21),

which typically constrain the masses of three particles linked via a Yukawa coupling.

Suppose that all the three particles involved are observable particles (squarks, slep-

tons, Higgses). If we require that the corresponding squared masses be non-negative

in order to avoid automatically phenomenological problems such as charge and color

breaking or Planck scale Higgs vevs, then the sum rule will immediately imply that

such masses are smaller than gaugino masses. Conversely, if we tried to obtain one

scalar mass bigger than gaugino masses by an appropriate choice of the goldstino

direction, then at least one of the other two scalar masses would become tachyonic.

On the other hand, tachyons may be helpful if the particular Yukawa coupling does

not involve observable particles. They could break extra gauge symmetries and

generate large masses for extra particles. We recall that standard-like models in

strings usually have too many extra particles and many extra U(1) interactions. Al-
though the Fayet-Iliopoulos mechanism helps to cure the problem [14], the existence
of tachyons is a complementary solution.

Concerning observable particles, we have just seen that the sum rules, supple-

mented by `no-tachyon' requirements, typically lead to the conclusion that observ-
able scalars are lighter than gauginos

m� < M ; (25)

similarly to the situation found in the sympli�ed scenario of ref.[1]. Therefore, since
gaugino loops play a main role in the renormalization of scalar masses down to low-
energy, the gluino, slepton and (�rst and second generation) squark mass relations

at the electroweak scale turn out (again) to be

ml < mq 'Mg ; (26)

where gluinos are slightly heavier than squarks. We recall that slepton masses are
smaller than squark masses because they do not feel the important gluino contribu-

tion.

It is still possible to ask whether the generic situation described by eqs.(25) and

(26) admits exceptions. One possibility is the following. One could get some squark
or slepton mass bigger than gaugino masses by allowing a negative soft squared

mass for a Higgs �eld, provided the total squared Higgs mass (including the �2

contribution) is non-negative2. Another possibility which comes to mind is the case
in which a Yukawa coupling among `observable' particles originates actually from a

non-renormalizable (rather than renormalizable) coupling3, where the extra �elds in
the coupling get vevs (e.g. H2QLu

c
L < �:::� > rather than just H2QLu

c
L). In such

a case new sum-rules would apply to the full set of �elds in the coupling and the
above three-particle sum-rules could be violated. In particular, observable scalars

would be allowed to be heavier than gauginos, possibly at the price of having some
tachyon among the (standard model singlet) � �elds. In both cases mentioned here

one could get a violation of (25) for some scalars, i.e.

m� > Ma: (27)

2Notice that such a possibility can be explored in detail only after specifying the mechanism
for generating the � parameter itself (see e.g. ref.[15]).

3Notice however that this is unlikely to be the case for the top Yukawa coupling, which is
relevant e.g. for radiative symmetry breaking.
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However we recall from our initial discussion that this can happen only for small

sin � and special goldstino directions. Moreover, even for small (but not too small)

sin �, scalar and gaugino masses will be still of the same order, so that the low-

energy relation (26) will still hold. The only di�erence is that now squarks, ful�lling

eq.(27), will be slightly heavier than gluinos. In order to reverse the situation and

get instead

Mg < ml;mq (28)

one needs one of the above `mechanisms' and very small sin �, so that m� >> Ma.

Note that in such a limit additional attention should be payed to avoid that a too

large scalar-to-gaugino mass ratio could spoil the solution to the gauge hierarchy

problem.

Before concluding, we recall that a pattern like (28) for very small sin � was also

obtained in the overall modulus analysis of ref.[1] for di�erent reasons, i.e. as an

e�ect of string loop corrections to K and fa. After the inclusion of such corrections

the masses of gauginos and n� = �1 scalars, which vanish at tree-level for sin �! 0,
become nonvanishing and typically satisfy relation (27). One di�erence with the
previous case is that the loop-induced case gives scalar masses smaller than m3=2

instead than O(m3=2). In addition, one may consider this possibility of obtaining

scalars heavier than gauginos as a sort of �ne-tuning. In the absence of a more
fundamental theory which tells us in what direction the goldstino angles point, one
would naively say that the most natural possibility would be to assume that all
moduli contribute to SUSY-breaking in more or less (but not exactly) the same4

amount.

Summarizing the situation concerning standard model strings, we have seen that
the overall modulus results are qualitatively con�rmed, in the sense that for generic
goldstino directions (with not too small sin �) the low-energy pattern of eq.(26)
typically holds, mainly because of the restrictions coming from mass sum rules and
absence of tachyons. Possible exceptions giving rise to patterns like (28) may exist

for special goldstino angles, necessarily including a su�ciently small sin �.

4-b ) Gaugino versus scalar masses in GUT 4-D strings

What it turned out to be a potential disaster in the case of standard model
strings may be an interesting advantage in the case of string-GUTs. In this case

it could well be that the negative mass2 may just induce gauge symmetry breaking

by forcing a vev for a particular scalar (GUT-Higgs �eld) in the model. The latter

possibility provides us with interesting phenomenological consequences. Here the

breaking of SUSY would directly induce further gauge symmetry breaking.
Let us now show an explicit example of the di�erent possibilities discussed

above (scalars lighter or heavier than gauginos) in the context of GUTS. We are
going to consider a Z2 � Z2 orbifold model which is an SO(10) string-GUT re-

cently constructed in ref.[17]. We show in Table 1 the particle content of the
model and the quantum numbers of the particles with respect to the gauge group

SO(10) � (SO(8) � U(1)2). The three untwisted sectors are denoted by U1,U2,U3

and the three twisted sectors by T�,T! and T�!. This model has a GUT-Higgs �eld
transforming as a 54 of SO(10) in the U3 untwisted sector. Four net generations

as well as two pairs 16 + 16 are present in the T�,T! twisted sectors. Finally, 10-
plets adequate to do the electro-weak symmetry breaking belong to the T�! sector.

4For an explicit example of this, using gaugino condensation, see ref.[16].
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Yukawa couplings of the following types are present in the model:

U1U2U3 ; U3T�!T�! ; T�T!T�! (29)

(Not all of the latter two couplings are allowed since the space-group selection rules

may forbid some of them.) All Yukawa couplings are constants, do not depend on

Ti [11].

The Z2 � Z2 orbifold has three T moduli and three U moduli in the untwisted

sector but we are considering in this example for simplicity the case in which only

S and the Ti; i = 1; 2; 3 participate in SUSY-breaking. The modular weights of the

di�erent sectors are:

~n1 = (�1; 0; 0) ; ~n2 = (0;�1; 0) ; ~n3 = (0; 0;�1) ;
~n� = (0;�1=2;�1=2) ; ~n! = (�1=2; 0;�1=2) ; ~n�! = (�1=2;�1=2; 0) : (30)

All the sectors in the Z2 � Z2 orbifold have overall modular weight ={1 and hence
the sum-rule (17) applies for any three set of particles linked by a Yukawa coupling.
Notice in particular that ~n� + ~n� + ~n = �(1; 1; 1; 1; 1; 1) for the sets of particles

related by the Yukawas (29). Thus, for any goldstino angle one has the constraints:

m2
1 +m2

2 +m2
3 = m2

� +m2
! +m2

�! = m2
3 +m2

�! +m2
�! = M2 ;

A123 = A�!(�!) = A3(�!)(�!) = �M : (31)

To study the di�erent e�ects of chosing di�erent goldstino directions let us consider
several examples:

A) Dilaton dominance: cos2 � = 0. All scalars have masses m2
� = m2

3=2 and

M2 = 3m2
3=2. The same universal M=m� ratio is mantained in the overall modulus

case (i.e., ~�2 = (1=3; 1=3; 1=3)) for any �. This happens because n� = �1 in eq.(12).

B) Consider the goldstino direction ~�2 = (1=2; 1=2; 0) and cos2 � = 2=3. One
�nds jM j2 = jAj2 = m2

3=2 and the scalars get masses as shown in column B of Table

1. The soft masses are no longer universal since e.g. the masses of the electroweak

doublets and the generations are di�erent. This is important e.g. in computing
electro-weak radiative symmetry breaking.

C) Consider the goldstino direction ~�2 = (0; 0; 1) and cos2 � = 2=3. One still has
jM j2 = jAj2 = m2

3=2 but now the GUT-Higgs 54 and the singlets get negative mass2

(see column C in Table 1). This will drive a large vev (of order the string scale)

< 54 >. Although one would naively think that the potential becomes unbounded
below, one has to recall that the matter metrics that we are using are correct to
leading order on the matter �elds and hence for vev's of order of the string scales

the potential should be stabilized.

D) Consider �nally the direction ~�2 = (0; 0; 1) but cos2 � = 1, i.e., only the mod-
ulus T3 contributes to SUSY-breaking (no dilaton contribution). Now the gauginos

are massless, the 10-plets have positive masses but both the 54 and the 16+16 pairs
will tend to get vev's (see column D in Table 1).

As the above examples show, di�erent possibilities are obtained for each given
orbifold model depending on the particular goldstino direction. However, not any

possibility may be realized within a given class of models. For example, the addition

of any combination of soft terms violating the constraints (31) would be inconsis-

tent with the hypothesis of dilaton/moduli induced SUSY-breaking. The reader
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Sector SO(10) � SO(8) Q QA A B C D

gauginos (45; 1) + (1; 28) 0 0 3m2
3=2 m2

3=2 m2
3=2 0

U1 (1,8) 1/2 1/2 m2
3=2 0 m2

3=2 m2
3=2

(1,8) -1/2 -1/2 m2
3=2 0 m2

3=2 m2
3=2

U2 (1,8) -1/2 1/2 m2
3=2 0 m2

3=2 m2
3=2

(1,8) 1/2 -1/2 m2
3=2 0 m2

3=2 m2
3=2

U3 (54,1) 0 0 m2
3=2 m2

3=2 �m2
3=2 �2m2

3=2

(1,1) 0 0 m2
3=2 m2

3=2 �m2
3=2 �2m2

3=2

(1,1) 0 1 m2
3=2 m2

3=2 �m2
3=2 �2m2

3=2

(1,1) 1 0 m2
3=2 m2

3=2 �m2
3=2 �2m2

3=2

(1,1) -1 0 m2
3=2 m2

3=2 �m2
3=2 �2m2

3=2

(1,1) 0 -1 m2
3=2 m2

3=2 �m2
3=2 �2m2

3=2

T� 3(16; 1) 1/4 1/4 m2
3=2 1=2m2

3=2 0 �1=2m2
3=2

(16; 1) -1/4 -1/4 m2
3=2 1=2m2

3=2 0 �1=2m2
3=2

T! 3(16; 1) -1/4 1/4 m2
3=2 1=2m2

3=2 0 �1=2m2
3=2

(16; 1) 1/4 -1/4 m2
3=2 1=2m2

3=2 0 �1=2m2
3=2

T�! 4(10; 1) 0 1/2 m2
3=2 0 m2

3=2 m2
3=2

4(10; 1) 0 -1/2 m2
3=2 0 m2

3=2 m2
3=2

3(1; 8) 0 1/2 m2
3=2 0 m2

3=2 m2
3=2

(1; 8) 0 -1/2 m2
3=2 0 m2

3=2 m2
3=2

8(1; 1) 1/2 0 m2
3=2 0 m2

3=2 m2
3=2

8(1; 1) -1/2 0 m2
3=2 0 m2

3=2 m2
3=2

Table 1: Particle content and charges of the string-GUT example discussed in the
text. The four rightmost columns desplay four examples of consistent soft masses

from dilaton/moduli SUSY breaking.
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may check that indeed the four choices of soft terms shown in the Table verify the

constraints in (31).

Comparing the conclusions of this section with those found in ref.[1] one certainly

�nds plenty of di�erences. However the reader must keep in mind that e.g. the

examples B,C,D above correspond to extreme cases in which some modulus does

not participate at all in the process of symmetry breaking. On the other hand

the overall modulus case is also in some way an extreme case since the di�erent

moduli participate in exactly the same way, which is also a sort of �ne-tuning. As

already mentioned above, in the absence of a more fundamental theory which tells

us in what direction the goldstino angles point, one would naively say that the most

natural possibility would be to assume that all moduli contribute to SUSY-breaking

in more or less (but not exactly the same) amount. In this case the conclusions

would be half-way in-between the results found in this section and those found in

ref.[1]. In this context we must remark the sum-rules discussed above which would

be valid for any choice of goldstino directions. Let us �nally remark that, in spite
of the di�erent possibilities of soft masses in the multimoduli case, the most natural
(slepton-squark-gluino) mass relations at low-energy will be similar to the ones of
the overall modulus case eq.(26) as shown in point 4-a.

3 O�-diagonal matter metric

In the previous chapter we con�ned ourselves to the case of diagonal matter metric
~K�� ' ���. In fact that assumption is justi�ed for most of the Abelian orbifold

models. The reason is that, in the case of twisted sectors, each particle has associated
space-group discrete quantum numbers which forbid o�-diagonal metrics (we are
talking here about singular, non-smoothed out (0; 2) orbifolds). In the case of matter
�elds in untwisted sectors, both gauge invariance and discrete R-symmetries from
the right-moving sector forbids o�-diagonal terms in almost all cases. There are only

three exceptions to this general rule, the (0; 2) models based on the orbifolds Z3,Z4

and Z 0
6. They are precisely the only Abelian orbifolds in which there are more than

three Ti moduli, 9, 5 and 5 respectively. They also have in common the existence of
an enhanced non-Abelian gauge symmetry in their (2; 2) versions (SU(3) in the �rst

case, SU(2) in the other two). An o�-diagonal metric only appears for �elds in the

untwisted sectors of those examples. In spite of the relative rareness of o�-diagonal
metric in orbifolds, it is worth studying what new features can appear in this case

compared to the diagonal one, since o�-diagonal metrics could be present in other
less simple (e.g., Calabi-Yau) compacti�cations.

First we go back to eq.(1) and compute the scalar soft terms in the most general

case where the moduli and matter metrics are not diagonal. Then the soft mass
matrixM02

�� (corresponding to unnormalized charged �elds) and the soft parameters

A�� read

M02
�� = m2

3=2
~K�� � F

i
(@i@j

~K�� � @i
~K�

~K�@j ~K��)F
j (32)

A�� = F SKSh�� + �A�� (33)

�A�� = F i
h
K̂ih�� + @ih�� �

�
~K��@i ~K��h�� + (�$ �) + (�$ )

�i
(34)

where

F S = eG=2K�1
�SS
G �S ; F i = eG=2K̂ ijGj (35)
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A generalization of the usual `angular parametrization' of the F-�eld vev's will be

introduced below in a representative example. The matrix K̂ ij is the inverse of the

moduli metric K̂jk = @j@kK̂, i.e. K̂ ijK̂jk = �ik. Similarly, for the matter metric,

we de�ne ~K�� so that ~K�� ~K� = �� . Notice that, after normalizing the �elds to

get canonical kinetic terms, the �rst piece in eq.(32) will lead to universal diagonal

soft masses but the second piece will generically induce o�-diagonal contributions.

Concerning theA-parameters, notice that in this section we have not factored out the

Yukawa couplings as usual, since proportionality is not guaranteed. Indeed, although

the �rst term in A�� is always proportional in avour space to the corresponding

Yukawa coupling, the same thing is not necessarily true for the terms contained in

�A. One purpose of this section is to study such `o�-diagonal' e�ects in the soft

terms.

In order to get more concrete and manageable results, we will now particularize

the above formulae to the untwisted sectors of Z3,Z4 and Z 0
6 orbifolds. The 9 T i-

moduli of the Z3 orbifold enter in the K�ahler potential as elements of a 3�3 matrix
T ��, the role of the index i being played by a pair of indices (with �; � = 1; 2; 3).
Similarly, the 4 T i-moduli of Z4 and Z 0

6 orbifolds associated to (say) the �rst and

second complex planes enter by a 2�2 matrix T �� (with �; � = 1; 2). In addition, Z4

(Z 0
6) has two additional moduli T 3 and U3 (one additional modulus T 3) associated to

the third complex plane. Such moduli have diagonal metric, as well as the associated
untwisted �elds. On the other side, the moduli of `matrix' type and the associated
untwisted charged �elds have non-diagonal metric, derivable from a K�ahler potential
of the form

�K = � log det
�
(T + T y)�� � C�C

�
�

(36)

' � log det (T + T y)�� + (T + T y)�1��C
�
C� : (37)

It is convenient to de�ne the hermitian matrix

t � t�� � (T + T y)�� : (38)

Then it is easy to �nd that the metric and inverse metric for moduli and matter

�elds have the following simple expressions in terms of t:

K̂ij = t�1� t
�1
��

; K̂ji = t�t�� (i � �� ; j � �) ; (39)

~K�� = t�1�� ; ~K�� = t�� : (40)

In addition, the F i's and Gi's in such sectors are also conveniently represented by

matrices F � F �� and G � @G=@T ��. The relation between the matrices F and G

follows from eqs. (35) and (39):

F = m3=2tG
�t : (41)

We �rst consider the A�� parameters, where the indices can now refer to any
untwisted �elds of the orbifolds under study. The relevant result is that �A�� = 0.

This follows from the above structure of the metric and from the antisymmetry

property of Yukawa couplings with respect to extra indices (understood above),
e.g. SU(3) indices in (2,2) Z3 orbifolds or SU(2) indices in (2,2) Z4, Z

0
6 orbifolds.

Therefore the result for A�� is simply

A�� = F SKSh�� = �
p
3m3=2 sin �e

�iSh�� (42)
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which is the same result (after factorizing out the Yukawa coupling as usual) as for

the untwisted sector of any other orbifold eq.(16). Thus even in the presence of

o�-diagonal metrics and multiple moduli the result in eq.(16) still holds.

We will now consider the soft mass matrix (32) in one of the sectors with o�-

diagonal metric. The result can be written in the following compact form:

M02 = m2
3=2t

�1 � t�1Ft�1F yt�1 : (43)

If the matter �elds are canonically normalized as C� ! Ĉ� = (t�1=2)��C
�, the

normalized soft mass matrix can be written as

M2 = m2
3=2(1��) ; (44)

where 1 stands for the unit matrix and the � is the matrix

� =
1

m2
3=2

t�1=2Ft�1F yt�1=2 : (45)

It is interesting to notice that the contribution to SUSY-breaking from the moduli
of such a sector is

F
i
K̂ijF

j = m2
3=2Tr� : (46)

To continue the discussion we will focus for de�niteness on the case of Z3, where
the 9 moduli T �� exhaust the set of untwisted moduli. We can consider the following
parametrization of the dilaton/moduli SUSY-breaking:

(S + S�)�1F S =
p
3m3=2 sin �e

�iS ; t�1=2Ft�1=2 =
p
3m3=2 cos �� ; (47)

where � is a 3� 3 matrix satisfying

Tr��y = 1 : (48)

Notice that the matrix � inM2 (44) can be written

� = 3 cos2 ���y : (49)

In particular, from this one immediately sees that: 1) � is positive de�nite and

Tr� = 3 cos2 � ; 2) the sum of the three eigenvalues of M2 satis�es

TrM2 = 3m2
3=2 sin

2 � = jM j2 (50)

which con�rms the already stated sum-rule eq.(15) for untwisted matter in orbifolds,
even in the presence of o�-diagonal metrics.

An interesting question related to avour changing issues5 concerns the degree

of degeneracy among the three eigenvalues ofM2. It is clear that, for generic values

(vev's) of the matrices t and F (or �), � will have a generic matrix structure
and therefore the eigenvalues of M2 will be non-degenerate. The approximately

degenerate case occurs only when M2 is approximately proportional to the unit

matrix6, i.e. M2 / 1. This happens: 1) when �� 1 ; 2) when � / 1.

5These were analyzed for the simplest case of diagonal metric in refs.[1, 18].
6This corresponds to the simplest way of avoiding FCNC. Another possibility occurs if scalar

and fermionic mass matrices happen to be aligned [19]. This and other issues on FCNC would
require a detailed analysis of the avour structure of the models, which go beyond the scope of the
present paper.
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1) � � 1. This happens when cos2 � � 1, i.e. when the contribution of the

moduli T �� to SUSY-breaking is negligible. In the case of Z3 this just corresponds

to the dilaton dominated SUSY-breaking (in the case of Z4; Z
0
6 the SUSY-breaking

could be shared between S and the third-complex-plane moduli). Actually, when

discussing FCNC constraints on soft masses, one should consider the renormalization

e�ects from the string scale to the electroweak scale. Such e�ects include avour

independent contributions from gauginos. For example, if squarks originated from a

sector like the one under study, the low energy mass matrix would readM2(MZ) �
m2

3=2((1+24 sin
2 �)1��), with � as in eq.(49) for Z3. Then the constraint cos

2 �� 1

would be relaxed to cos2 � � 1 + 24 sin2 � [1] and the moduli would be allowed to

participate to some extent to SUSY-breaking. On the other side, no signi�cant

relaxation would be obtained for sleptons.

2) � / 1. This condition guarantees that M2 / 1 even when the moduli

participate signi�cantly to SUSY-breaking. Observing eq.(45), we can distinguish

two subcases. 2a) If t and F are treated as independent objects, than the only
obvious way to satisy that condition is that both t / 1 and F / 1. This requires
not only that the o�-diagonal moduli and F-terms be negligible, but also that the
diagonal ones be almost identical, i.e. one is pushed towards the overall modulus

limit. 2b) Such conclusion may be evaded if t and F are related in some way, e.g.
if F / t (giving again � / 1). If this were the case, the o�-diagonal elements of F
and t would not need to be negligible with respect to the diagonal ones. An extreme
example of this situation happens when W does not depend on the T ��. In that
case F = �m3=2t and � = 1, implyingM2 = 0 and a no-scale scenario. An example

where M2 6= 0 can be obtained e.g. if W depends on T �� only via detT �� (and if

the vev of T �� is hermitian).

4 The B-parameter and the � problem

When an (e�ective) N = 1 SUSY mass ���C
�C� appears in the Lagrangian of

an N = 1 theory, SUSY-breaking also induces an associated SUSY-breaking term

B�����C
�C� + h:c:. Very often these terms are absent due to gauge invariance.

Thus in the MSSM there is only one B-term associated to a possible �H1H2 SUSY

mass term. In fact both a �-term and a B-term are phenomenologically required in
the MSSM in order to, among other things, avoid the presence of a visible axion.

The parameter � of the MSSM has to be (on phenomenological grounds) of the
order of the low-energy SUSY-breaking scale (i.e., of order m3=2). The absence of a

symmetry reason for such small value for � is called the \�-problem" [20]. Thus in

order to be able to compute B-term in a given model, we need �rst a mechanism

which might naturally induce a �-term of order m3=2. We will discuss some of the

mechanisms proposed within the context of string-models to solve this �-problem
and we will also provide expressions for the associated B-terms in this section.

4.1 B-term from the K�ahler potential in orbifold models

It was pointed out in ref.[3] that terms in a K�ahler potential like the one proportional

to Z�� in eq.(1) can naturally induce a �-term for the C� �elds of order m3=2 after
SUSY-breaking, thus providing a rationale for the size of �. Recently it has been
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realized that such type of terms do appear in the K�ahler potential of some Calabi-

Yau type compacti�cations [12] and in orbifold models [21, 22, 10]. Let us consider

the case in which e.g., due to gauge invariance, there is only one possible �-term

(and correspondingly one B-term) associated to a pair of matter �elds C1,C2. From

eqs.(1,2,3) and from the fermionic part of the SUGRA lagrangian one can check

that a SUSY mass term �C1C2 and a scalar term B�(C1C2)+h:c: are induced upon

SUSY-breaking in the e�ective low energy theory (here the kinetic terms for C1;2

have been normalized to one). If we introduce the abbreviations

LZ � logZ ; L� � log ~K� ; X � 1 �
p
3 cos � eii�i(K̂ii)

�1=2LZ
i

(51)

the � and B parameters (we will call them �Z and BZ) are given by

�Z = m3=2( ~K1
~K2)

�1=2ZX ; (52)

BZ = m3=2X
�1
h
2 +

p
3 cos �(K̂ii)

�1=2�i

�
e�ii(LZi � L1

i � L2
i )� eiiLZ

i

�

+ 3 cos2 �(K̂ii)
�1=2�ie

ii
�
LZ
i
(L1

j + L2
j )� LZ

i
LZj � LZ

ij

�
(K̂jj)

�1=2�je
�ij

i
:(53)

The above formulae apply to the cases where the moduli on which ~K1(Ti; T
�
i ),

~K2(Ti; T
�
i ) and Z(Ti; T

�
i ) depend have diagonal metric, which is the relevant case

we are going to discuss (anyway, the above formulae are easily generalized to more
general situations).

If the value of V0 is not assumed to be zero, one just has to replace cos �! C cos �
in eqs.(51,52,53), where C is given below eq.(5). In addition, the formula for B gets
an additional contribution given by m3=2X

�13(C2 � 1).

It has been recently shown that the untwisted sector of orbifolds with at least
one complex-structure �eld U possesses the required structure Z(Ti; T

�
i )C1C2+ h:c:

in their K�ahler potentials. Speci�cally, the ZN orbifolds based on Z4; Z6,Z8; Z
0
12 and

the ZN � ZM orbifolds based on Z2 � Z4 and Z2 � Z6 do all have a U -type �eld in
(say) the third complex plane. In addition the Z2 � Z2 orbifold has U �elds in the

three complex planes. In all these models the piece of the K�ahler potential involving

the moduli and the untwisted matter �elds C1;2 in the third complex plane has the
form

K(Ti; T
�
i ; C1; C2) = K 0(Tl; T �

l )

� log ((T3 + T �
3 )(U3 + U�

3 )� (C1 + C�
2)(C

�
1 + C2)) (54)

' K 0(Tl; T �
l )� log(T3 + T �

3 )� log(U3 + U�
3 ) +

(C1+C
�

2
)(C�

1
+C2)

(T3+T
�

3
)(U3+U

�

3
)

(55)

The �rst term K 0(Tl; T �
l ) determines the (not necessarily diagonal) metric of the

moduli Tl 6= T3; U3 associated to the �rst and second complex planes. The last

term describes an SO(2; n)=SO(2) � SO(n) K�ahler manifold (n = 4 if we focus on

just one component of C1 and C2) parametrized by T3; U3; C1; C2. If the expansion
shown in (55) is performed, on one hand one recovers the well known factorization

SO(2; 2)=SO(2) � SO(2) ' (SU(1; 1)=U(1))2 for the submanifold spanned by T3
and U3 (which have therefore diagonal metric to lowest order in the matter �elds),

whereas on the other hand one can easily identify the functions Z; ~K1; ~K2 associated

to C1 and C2:

Z = ~K1 = ~K2 =
1

(T3 + T �
3 )(U3 + U�

3 )
: (56)
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Plugging back these expressions in eqs.(52,53,51) one can easily compute � and B

for this interesting class of models:

�Z = m3=2

�
1 +

p
3 cos �(ei3�3 + ei6�6)

�
; (57)

BZ�Z = 2m2
3=2

�
1 +

p
3 cos �(cos 3�3 + cos 6�6)

+ 3 cos2 � cos(3 � 6)�3�6) : (58)

In addition, we recall from eq.(14) that the soft masses are

m2
C1

= m2
C2

= m2
3=2

�
1 � 3 cos2 �(�2

3 +�2
6)
�
: (59)

In general, the dimension-two scalar potential for C1;2 (now denoting again normal-

ized �elds) after SUSY-breaking has the form

V2(C1; C2) = (m2
C1

+ j�j2)jC1j2 + (m2
C2

+ j�j2)jC2j2 + (B�C1C2 + h:c:) (60)

In the speci�c case under consideration, from eqs.(57,58,59) we �nd the remarkable

result, which is also true for any value of C, that the three coe�cients in V2(C1; C2)
are equal, i.e.

m2
C1

+ j�Zj2 = m2
C2

+ j�Zj2 = BZ�Z (61)

so that V2(C1; C2) has the simple form

V2(C1; C2) = BZ�Z (C1 + C�
2)(C

�
1 + C2) : (62)

Although the common value of the three coe�cients in eq.(61) depends on the
Goldstino direction via the parameters cos �, �3, �6,. . . (see expression of BZ�Z in
eq.(58)), we stress that the equality itself and the form of V2 hold independently of

the Goldstino direction. The only constraint that one may want to impose is that the
coe�cient BZ�Z be non-negative, which would select a region of parameter space.

For instance, if one neglects phases, such requirement can be written simply as

(1 +
p
3 cos � �3)(1 +

p
3 cos � �6) � 0 : (63)

We notice in passing that the �elds C1;2 appear in the SUSY-breaking scalar potential

in the same combination as in the K�ahler potential. This particular form may be

understood as due to a symmetry under which C1;2 ! C1;2 + i� in the K�ahler

potential which is transmitted to the �nal form of the scalar potential.

An important (Goldstino-direction-independent) consequence of the above form
(62) is that V2(C1; C2) identically vanishes along the direction C1 = �C�

2 , on which

gauge symmetry is broken. If dimension-four couplings respect such at direction
(which is certainly the case for D-terms), we arrive at the important result that

along < C1 >= � < C�
2 > the atness is not spoiled by the dilaton/moduli induced

SUSY-breaking. This is certainly a very remarkable property.

This result can be rephrased in terms of the usual parameter tan � =< C2 >

= < C1 > (we now assume real vev's). It is well known that, for a potential of the
generic form (60) (+D-terms), the minimization conditions yield

sin 2� =
�2B�

m2
C1

+m2
C2

+ 2j�j2
: (64)
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In particular, this relation embodies the boundedness requirement: if the absolute

value of the right-hand side becomes bigger than one, this would indicate that the

potential becomes unbounded from below. As we have seen, in the class of models

under consideration the particular expressions of the mass parameters lead to the

equality (61), which in turns implies sin 2� = �1. Thus one �nds tan� = �1 for

any value of cos �,�3,�6 (and of the other �i's of course), i.e. for any Goldstino

direction.

It is interesting to relate these results to similar ones obtained in ref.[23] in

a slightly di�erent context. In ref.[23] a speci�c SUGRA model was built, where

the Higgs-dependent part of the K�ahler potential had the form in eq.(54), with

T3 = U3. The geometrical properties of the associated manifold and a simple choice

for the superpotential allowed to obtain the simultaneous breaking of SUSY and

gauge symmetry, with the cosmological constant identically vanishing along some

at directions which included the jC1j = jC2j direction. This also implied a partial

participation of charged �elds in the process of SUSY-breaking7. In the limit of sup-
pressed goldstino components along the Higgsinos, SUSY-breaking was essentially
dilaton/moduli dominated. Then such model could be viewed as a very special case
of the more general framework here discussed, characterized by speci�c values of

the goldstino angles: cos2 � = 2=3, �2
3 = �2

6 = 1=2 and vanishing values for the
remaining �i's. In particular one had V2(C1; C2) � 0, the at direction jC1j = jC2j
being enforced by the D-term. The remarkable result obtained in this section is that
the prediction j tan �j = 1 is actually valid for a much broader class of models and
holds irrespectively of the goldstino direction in the dilaton/moduli space. Whether

the above mechanism can be successfully implemented in the case of the electroweak
Higgs �elds remains an open question. Flat potentials of the type here considered
could be interesting also for the breaking of a grand-uni�ed gauge group (as sug-
gested e.g. in ref.[24]), in particular in the context of models like string-GUTs [17],
in which a vev of order the string scale is not problematic.

As an additional comment, it is worth recalling that in previous analyses of the
above mechanism for generating � and B in the string context [12, 25, 1] the value

of � was left as a free parameter since one did not have an explicit expression for the

function Z. However, if the explicit orbifold formulae for Z are used, one is able to
predict both � and B reaching the above conclusion. We should add that situations
are conceivable where the above result may be evaded, for example if the physical

Higgs doublets are a mixture of the above �elds with some other doublets coming

from other sectors (e.g. twisted) of the theory.

4.2 B-term from the superpotential

There is an alternative mechanism to the one studied in the previous subsection to
generate a B-term in the scalar potential. It is well known that if the superpotential

W is assumed to have a �C1C2 SUSY mass term, � being an initial parameter,

then a B-term is automatically generated. We will call it B�. If we introduce the

abbreviation
L� � log � (65)

the � and B parameters are given by

�0 = �eK=2W
�

jW j(
~K1

~K2)
�1=2 ; (66)

7An elaboration of this idea was later studied in ref.[24].
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B� = m3=2

h
�1 �

p
3e�iS sin �(1 � L

�
S2ReS)

+
p
3 cos �(K̂ii)

�1=2�ie
�ii(K̂i + L

�
i � L1

i � L2
i )
i
; (67)

where the low-energy SUSY mass �0 is related to � via the usual SUGRA rescaling,

and again the kinetic terms for C1;2 have been normalized to one. In the above

formulae we have assumed that in general � will depend on the SUSY-breaking

sector �elds, i.e. � = �(S; Ti). These formulae are completely general and valid for

any solution to the �-problem which introduces a small mass term �(S; Ti)C1C2 in

W . This type of solutions exists.

In ref.[4] was pointed out that the presence of a non-renormalizable term in the

superpotential

�WC1C2 (68)

characterized by the coupling �, yields dynamically a � parameter when W acquires

a vev

� = �W : (69)

The fact that � is small is a consequence of our assumption of a correct SUSY-
breaking scale m3=2 = eG=2 = eK=2jW j. The superpotential eq.(68) which provides

a possible solution to the � problem can naturally be obtained in the context of
strings. A realistic example where non-perturbative SUSY-breaking mechanisms
like gaugino-squark condensation induce that superpotential was given in ref.[4],
where � = �(Ti) is a non-renormalizable Yukawa coupling between the Higgses
and the squarks and after eliminating the gaugino and squarks bound states W =
W (S; Ti). In ref.[22] the same kind of superpotential was obtained through pure

gaugino condensation in orbifolds with at least one complex-structure �eld U . This
is because in these orbifolds matter �eld-dependent threshold corrections (/ C1C2)
appear in the gauge kinetic function f . We recall that after eliminating the gaugino
bound states the non-perturbative superpotential W � exp(3f=2b0), where b0 is the
one-loop �-function coe�cient of the \hidden" gauge group. After expanding the

exponential, the superpotential will have a contribution of the type (68). Again, � =

�(Ti), since the above proportionality factor due to threshold corrections depends
on Dedekind functions which depend in turn on the moduli.

So with this solution (69) to the �-problem in strings:

�(S; Ti) = �(Ti)W (S; Ti) : (70)

Plugging back this expression in eqs.(66,67) and imposing the vanishing of the cos-
mological constant V0, one can easily compute � and B for this mechanism. We will

call them �� and B�

�� = �m3=2( ~K1
~K2)

�1=2 ; (71)

B� = m3=2

h
2 +

p
3 cos �(K̂ii)

�1=2�ie
�ii(L�i � L1

i � L2
i )
i
; (72)

where
L� � log � : (73)

If the value of V0 is not assumed to be zero, one just has to replace cos �! C cos �

and sin � ! C sin � in eqs.(67,72), where C is given below eq.(5). In addition, the

formula for B�, eq.(72), gets an additional contribution given by m3=23(C
2 � 1).
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Concentrating again on the interesting case of orbifolds, where the K�ahler po-

tential eq.(6) is known, we obtain from eq.(72)

B� = m3=2

h
2�

p
3 cos �

P6
i=1 e

�ii�i

�
ni1 + ni2 � �i

�
2ReTi

�i
: (74)

Notice that it is conceivable that both mechanisms, the one solving the �-problem

through the K�ahler potential (see subsection 4.1) [3] and the other one solving it

through the superpotential [4] shown above, could be present simultaneously. In

that case the general expressions for B and � are easily obtained

� = �Z + �� ; (75)

B = ��1(BZ�Z +B���) ; (76)

where �Z , BZ are given in eqs.(57,58). For example, in the case of orbifolds with at

least one complex-structure �eld U , where the BZ-term from the K�ahler potential

is present, if a gaugino condensate is formed, then automatically the B�-term from
the superpotential is also present as mentioned above. Now, as in the case of BZ

(see eqs.(57,58)), in B� (74) only �3 and �6 contribute. We recall that the values of
~K1; ~K2 are given by eq.(56) and besides, � = �(T3; U3) (the concrete expression can
be found in ref.[22]). However, in this case the last equality of eq.(61) with Z ! �

does not hold.

5 Final comments and conclusions

In this paper we have generalized in several directions previous analyses of SUSY-
breaking soft terms induced by dilaton/moduli sectors. In particular, we have stud-
ied the new features appearing when one goes to the Abelian orbifold multimoduli

case. We have found that there are qualitative changes in the general patterns of
soft terms. In some way (on average) the results are similar to the case in which

only S and the \overall modulus" T �eld are considered. However, if one examines

the soft terms for each particle individually one �nds di�erent extreme patterns. For
example, non-universal soft scalar masses for particles with the same overall modu-

lar weight are allowed and in fact this will be the most general situation. Besides,
unlike in the case considered in [1], gauginos may be lighter than scalars even at the

tree-level. The possibilities are, however, not arbitrary. The fact that on average

the results are similar to the simple S; T case are embodied in general sum rules like
those in eqs.(15,17,20,21) which relate soft terms of di�erent particles in the theory.

Due to the mentioned sum-rules, if we insist in obtaining results qualitatively
di�erent from those in ref.[1] (e.g., gauginos lighter than scalars at the tree-level),

some scalars may get negative mass2. This tachyonic behaviour may be just signal-

ing gauge symmetry breaking, which might be a useful possibility in GUT model-
building. On the contrary, in the case of standard model 4-D strings, the appearence

of this tachyonic behaviour could be dangerous since it could lead to the breaking
of charge and/or colour. In order to avoid this problem, one is typically lead to a

situation with gauginos heavier than scalars, as in the overall modulus case [1]. We

have also commented on possible exceptions to such scenario (involving non renor-
malizable Yukawa couplings or negative soft mass2 for the standard model Higgses)

which could lead to scalars heavier than gauginos. Such inversion however can take

place only for special goldstino directions, and requires necessarily a small sin �. We
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recall that the sin � ! 0 limit was also the only one which could produce scalars

heavier than gauginos in the overall modulus analysis, for other reasons (i.e. the

di�erent e�ect of string loop corrections on gaugino and scalar masses, vanishing at

tree-level).

We have also generalized our study to include the case of orbifolds with o�-

diagonal untwisted T �� moduli. In this type of models non-diagonal metrics for the

untwisted matter �elds appear. In spite of this complication, sum rules analogous

to those in eqs.(15,16) still hold (i.e., eqs.(50,42)). Non-diagonal metrics for the

matter �elds do also in general induce o�-diagonal soft-masses for the scalars which

in turn can induce avour-changing neutral currents depending on the size of the

o�-diagonal moduli, as discussed in section 3.

We have �nally considered the � and B terms obtained in orbifold schemes.

We have shown that the scheme in ref.[3] in which a �-term is generated from a

bilinear piece in the K�ahler potential, is rather constrained in its orbifold implemen-

tation. We �nd that irrespective of the Goldstino direction one always gets jtg�j = 1
at the string scale. Another way of stating the same result is that the at direc-
tion hH1i = hH2i still remains at after including arbitrary dilaton/moduli-induced
SUSY-breaking terms. This is an intriguing result which could have interesting

phenomenological applications. The results obtained for the B-parameter in the
scheme of ref.[4] in which a �-term is generated from the superpotential are more
model dependent.

A few comments before closing up are in order. First of all we are assuming
here that the seed of SUSY-breaking propagates through the auxiliary �elds of the

dilaton S and the moduli Ti �elds. However attractive this possibility might be,
it is fair to say that there is no compelling reason why indeed no other �elds in
the theory could participate. Nevertheless the present scheme has a certain predic-
tivity due to the relative universality of the couplings of the dilaton and moduli.
Indeed, the dilaton has universal and model-independent couplings which are there

independently of the four-dimensional string considered. The moduli Ti �elds are
less universal, their number and structure depend on the type of compacti�cation

considered. However, there are thousands of di�erent (0; 2) models with di�erent

particle content which share the same Ti moduli structure. For example, the moduli
structure of a given ZN orbifold is the same for all the thousands of (0; 2) models
one can construct from it by doing di�erent embeddings and adding discrete Wilson

lines. So, in this sense, although not really universal, there are large classes of mod-

els with identical Ti couplings. This is not the case of generic charged matter �elds
whose number and couplings are completely out of control, each individual model

being in general completely di�erent from any other. Thus assuming dilaton/moduli
dominance in the SUSY-breaking process has at least the advantage of leading to

speci�c predictions for large classes of models whereas if charged matter �elds play

an important role in SUSY-breaking we will be forced to a model by model analysis,
something which looks out of reach.

Another point to remark is that we are using the tree level forms for both the
K�ahler potential and the gauge kinetic function. One-loop corrections to these func-

tions have been computed in some classes of four-dimensional strings and could be

included in the above analysis without di�culty. The e�ect of these one-loop correc-
tions will in general be negligible except for those corners of the Goldstino directions

in which the tree-level soft terms vanish. However, as already mentioned above, this
situation would be a sort of �ne-tuning. More worrysome are the possible non-
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perturbative string corrections to the K�ahler and gauge kinetic functions. We have

made use in our orbifold models of the known tree-level results for those functions.

If the non-perturbative string corrections turn out to be important, it would be

impossible to make any prediction about soft terms unless we know all the relevant

non-perturbative string dynamics, something which looks rather remote (although

perhaps not so remote as it looked one year ago!).

One might hope that the relationships obtained among soft terms in the dila-

ton/moduli dominated schemes could be more general than the original tree-level

Lagrangians from which they are derived. In this connection it has been recently

realized that the boundary conditions �A = M1=2 =
p
3m of dilaton dominance

coincide with some boundary conditions considered by Jones, Mezincescu and Yau

in 1984 [26]. They found that those same boundary conditions mantain the (two-

loop) �niteness properties of certain N = 1 SUSY theories. It has also been noticed

[27] that this coincidence could be related to an underlying N = 4 structure of

the dilaton Lagrangian and that the dilaton-dominated boundary conditions could
also appear as a �xed point of renormalization group equations [27, 28]. This could
perhaps be an indication that at least some of the possible soft terms obtained in
the present scheme could have a more general relevance, not necessarily linked to a

particular form of a tree level Lagrangian.
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