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Buckling Bars and Boxy Bulges

M. R. Merri�eld

Department of Physics, Southampton University, Southampton, SO17
1BJ, UK

Abstract. It has been suggested that the peanut-shaped bulges seen
in some edge-on disk galaxies are produced when bars in these galaxies
buckle. This paper reviews the modelling which seeks to show how bars
buckle, and I present a very simple new model which captures the essen-
tial physics of this process. I then discuss the problems in establishing
observationally the connection between peanut-shaped bulges and bars:
con�rmation of the link has proved di�cult because boxy bulges are only
apparent in edge-on galaxies whereas bars are only easily detectable in
more face-on systems. Finally, I present a new technique which avoids this
di�culty by searching for the distinctive kinematic signature of an edge-
on bar; application of this method to spectra of peanut-shaped bulges
reveals that they are, indeed, associated with hidden bars.

1. Introduction

Around 30% of disk galaxies are observed to contain central bar-like structures
(Sellwood & Wilkinson 1993). Normal mode analysis (e.g. Hunter 1992) and
N-body simulations (e.g. Sparke & Sellwood 1987) show that a global instability
in self-gravitating disks provides a natural explanation for the formation of such
bars. As will be shown in Section 2., calculations also predict that thin bars are
themselves unstable, and they should rapidly buckle perpendicular to the plane
of the disk, ultimately producing a thickened bar which is peanut-shaped when
viewed from the side.

Photometric work by Shaw (1987) has shown that at least 20% of edge-
on disk galaxies have such peanut-shaped bulge isophotes. This percentage
is su�ciently close to the fraction of galaxies with bars for it to be tempting
to conclude that all the peanut-shaped bulges that we see are produced by
central bars. Unfortunately, as will be seen in Section 3., the link between these
phenomena has eluded direct con�rmation. Fundamentally, the problem is that
any peanut shape to the bulge is only detectable in a galaxy which lies close to
edge-on, whereas a bar can only be seen easily in a more face-on system.

Section 4. shows how this problem can be overcome by using kinematic ob-
servations to probe the full three-dimensional structure of disk galaxies. To this
end, in collaboration with Konrad Kuijken (Kapteyn Instituut) I have obtained
spectra of edge-on galaxies with peanut-shaped bulges. These observations re-
veal the characteristic kinematic signature of bars at the centres of these systems,
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providing the �rst strong observational evidence that peanut-shaped bulges are
a by-product of bar formation.

2. The Buckling Instability

The dramatic bar instability in cold galaxy disks has made such systems very
popular with N-body simulators. Due to computational limitations, most early
N-body models were restricted to two dimensions. However, ground-breaking
work by Combes & Sanders (1981) indicated that important physics was being
missed through this restriction: their fully three dimensional N-body simulations
of a bar-unstable disk galaxy showed that the bar thickens out of the plane to
produce a distinctive peanut shape. More recently, with the advent of much
more powerful computers, this phenomenon has been the subject of detailed
investigation (Combes et al 1990, Raha et al. 1991). This work has shown that,
once a bar forms, it rapidly bends out of the plane of the disk forming initially a
boomerang shape and ultimately thickening up to produce a boxy or peanut-like
structure. Combes et al. (1990) and Pfenniger & Friedli (1991) have examined
the three-dimensional orbits in barred potentials, and they have shown that stars
on orbits lying close to a 2:1 vertical resonance are unstable, and the orbits end
up bending out of the plane. They therefore proposed that this instability is
responsible for the vertical buckling of bars.

Merritt & Sellwood (1994) have pointed out that this orbital instability
cannot provide the full story. Firstly, the gravitational potential changes as the
bar buckles, and so considering the stability of orbits in a �xed potential may
not provide an accurate model of the system. Secondly, not all stars lie on
the vertically unstable orbits, and yet all the stars in the bar follow the bend.
Individual stellar orbits cannot, therefore, be treated in isolation | the buckling
instability can only be fully understood as a collective phenomenon.

In the light of these comments, Merritt & Sellwood went on to describe a
very general criterion for assessing the vertical stability of bars: a star travel-
ling along the major axis of a bar will have a natural frequency of oscillation
perpendicular to the bar, 
z . If the bar is slightly bent, then its gravitational
potential will be slightly perturbed, and a star moving back and forth along the
bar with a frequency 
x will encounter this perturbation as a periodic forcing
with frequency 
force = 2
x. From the theory of forced harmonic oscillators, we
know that a particular star will respond in phase with the forcing term if the
forcing frequency is less than or equal to its natural frequency of oscillation, and
out of phase if this inequality is not met. Stars responding in phase with the
forcing term will make the bend grow to a larger amplitude, and so the overall
system will be unstable if

2
x � 
z (1)

for the majority of the stars. Since a thin bar produces a strong gravitational
restoring force toward the plane, 
z is large and so inequality (1) is likely to be
met and the bar will buckle. Notice also that the largest response to a pertur-
bation will occur when the gravitational forcing term is close to resonance with
the natural frequency (2
x � 
z), as is also implied by the orbital instability
analysis.
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Figure 1. Edge-on view of a \shoe box" bar, showing the e�ects of
bending such a system when it is populated by stars whose orbits lie
close to the 2:1 vertical resonance. For clarity, only stars moving from
left to right have been shown.

One shortcoming in the analysis that led to this criterion is that it is only
strictly valid for stars whose unperturbed paths run along the major axis of the
bar. When a bar is bent, stars on non-major axis orbits will also respond in
phase with the forcing gravitational perturbation if they meet inequality (1).
However, some such orbits will experience a perturbation where the force is in
the opposite direction to the bend, and so stars on these orbits will try to atten
the bar back out, opposing the instability. It is therefore not immediately clear
what the collective behavior of all the stars will be in response to a bend in the
bar.

Ultimately, if we are to understand the cause of the bar buckling instability,
we need a model which recognizes that bars are intrinsically three-dimensional
structures with di�erent stars following di�erent orbits. We also need to be
able to treat explicitly the collective response of all the stars on their particular
orbits in order to investigate the instability. A particularly simple model which
meets these criteria is the \shoe box" bar. In this model, stars are treated as
free-streaming particles which bounce elastically from the con�ning \walls" of
a rectangular box. We thus treat the self-gravity of the bar impulsively via the
interactions with the walls, and we can investigate the tendency of the system
to buckle by measuring the di�erence between the pressures exerted on the top
and bottom of the box due to the stellar \collisions" with these surfaces. For
example, Fig. 1 shows schematically what happens when such a bar, populated
by stars on orbits close to the 2:1 vertical resonance, is slightly bent: the concave
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upper surface of the bent bar focuses the stars, concentrating them to collide with
the lower surface of the bar near its end, whereas the convex lower surface of the
bar de-focuses stars away from the upper surface of the bar near its ends. The
net e�ect is thus an excess downward pressure on the ends of the bar, causing
it to bend further; this positive feedback will make the bar buckle. We can
thus see that the buckling phenomenon is intrinsically a collective e�ect which
arises because stars on di�erent orbits respond di�erently to perturbations in the
gravitational potential. This model also once again emphasizes the importance
of the 2:1 vertical resonance, and explains why bars buckle in a single bend
about their mid-points.

3. Photometric Evidence for a Peanut/Bar Connection

As we have seen, vertical instability seems to be a generic feature of galaxy
bars. What, then, is the observational evidence that thickened structures in
the centres of galaxies such as peanut-shaped bulges are connected with bars
in these systems? The connection between these two phenomena has proved
di�cult to establish. As already mentioned, vertical structure is only readily
observable in edge-on galaxies, whereas the presence of a bar in a disk galaxy
is only apparent if the disk is viewed fairly face-on. In seeking to overcome this
problem, Bettoni & Galletta (1994) have found a barred galaxy at an interme-
diate inclination (NGC 4442) where the boxy structure appears to be so strong
that it is still detectable even in this inclined system. As these authors point
out, the photometry of NGC 4442 with it boxy isophotes and twisting major
axis is remarkably similar to what is seen in Combes et al.'s (1990) simulations
of peanut-shaped bars. However, photometric observations do not directly con-
strain the third dimension in such systems | NGC 4442 could, for example, be
an entirely at disk which just happens to have a strange isophotal structure.

Further indirect evidence for a link between peanut-shaped bulges and bars
comes from photometry of galaxies like the edge-on S0 galaxy, NGC1381. This
system has a very boxy bulge. It also has a strong central plateau in the lumi-
nosity distribution along its major axis, which looks very like the contribution
from the at luminosity distribution of a bar (de Carvalho & da Costa 1987).
Similarly, Dettmar & Barteldrees (1990) have found thin central bar-like struc-
tures in a large number of edge-on galaxies with boxy bulges. However, none of
these photometric observations provides unequivocal evidence for a bar | all of
these systems could also be modelled as axisymmetric disks.

4. Kinematic Evidence for a Peanut/Bar Connection

Kinematic observations o�er further evidence for the connection between peanut-
shaped bulges and galaxy bars. For example, N-body simulations show that,
unlike normal galaxy bulges, the peanut-shaped structure associated with a bar
should rotate cylindrically (i.e. with azimuthal velocities that do not vary with
distance from the plane of the galaxy). Observations of peanut-shaped structures
in edge-on galaxies have shown that they also exhibit this property (Jarvis 1987,
1990). However, it is also quite possible to construct axisymmetric bulge models
which appear peanut-shaped and rotate cylindrically (Rowley 1988).
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Figure 2. Spatial distribution of stars in a set of disk galaxy models.
Bar strength (parameterized by �) increases to the right, and viewing
angle changes up the page.

Recently, it has been shown that we can use detailed kinematic observations
to detect bars in edge-on galaxies directly. Useful insight into the kinematics
of barred galaxies can be obtained by considering the closed orbits allowed by
the potential: the collisional nature of gas forces it to follow non-intersecting
closed orbits, and most stellar orbits can be interpreted as oscillations about
closed orbits. The closed orbit families in barred potentials have been discussed
extensively in the literature [see Sellwood & Wilkinson (1993) for a review]; the
property that is important for identifying bars in edge-on galaxies is the fact
that the major orbit families follow elongated paths, and that the direction of
elongation changes by 90 degrees at orbital resonances. Inside any inner Lind-
blad resonance (ILR), for example, orbits are elongated perpendicular to the
bar potential major axis; at radii between the ILR and co-rotation resonance,
orbits are aligned along the bar axis, etc. These changes in the direction of
elongation mean that there is a lack of non-intersecting orbits at the major
resonances, and hence a de�cit of material (particularly the collisional gas com-
ponent) near these radii. To illustrate this point, Fig. 2 shows material on the
non-intersecting orbits in a set of simulated galaxies with varying bar strengths,
viewed from various directions.

When using spectra to make kinematic observations of a galaxy, the most
general observable quantity is the density of material as a function of its pro-
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Figure 3. Phase density of material as a function of projected radius
(x-axis) and line-of-sight velocity (y-axis) for the material in the galaxy
models of Fig. 2. The models were \observed" edge-on from the bottom
of Fig. 2.

jected position and its line-of-sight velocity (as measured by the Doppler shift in
its spectral lines) | the \l { v diagram" in the parlance of galactic astronomers.
Figure 3 shows the projected phase density of the material in the simulated
galaxies of Fig. 2 which would be observable if these systems were viewed edge-
on. It is apparent from this �gure that the presence of bars in these galaxies
(� 6= 0) introduces complicated structure to the observable kinematics due to
the non-circular orbits and the absence of material close to the orbital reso-
nances. This structure varies dramatically with the strength of the bar and
its orientation, and so observations of such detailed kinematics in real edge-on
galaxies should provide strong constraints on the properties of any bar that may
lie hidden therein.

To search for this kinematic signature, we have obtained spectra of two
edge-on galaxies with peanut-shaped bulges (NGC 5746 and NGC 5965; Kui-
jken & Merri�eld 1995). The spectra were obtained using the ISIS two armed
spectrograph on the William Herschel Telescope. The blue arm of the spec-
trograph was used to observe the Mg b absorption feature at 5190�A, and the
red arm was used to observe either H� emission or the Ca absorption triplet
at � 8600�A. The gaseous kinematics were derived directly from the emission
line spectra, and the stellar kinematics were inferred by using the Unresolved
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Figure 4. Photometry and kinematics of NGC 5746. (a) I-band pho-
tometry of the galaxy, with contours spaced by 0.3 magnitudes: the
thick line indicates the position of the slit for the spectral observa-
tions. Line-of-sight velocity distribution, normalized to unit velocity
integral, as a function of projected radius for: (b) the gaseous compo-

nent as traced by the [NII] line at 6583�A; (c) the stellar component

as derived from absorption lines around the Mg b feature at 5170�A;
and (d) the stellar component as derived from absorption lines around

the Ca triplet at 8600�A. The greyscale bar indicates the relative phase
space density scale in both (c) and (d).
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Gaussian Decomposition algorithm (Kuijken & Merri�eld 1993) to deconvolve
the stellar line-of-sight velocity distribution from the Doppler broadening of the
absorption lines. Figure 4 shows the kinematics derived from this process for
NGC 5746. It is apparent from this �gure that the detailed kinematics of both
the gaseous and stellar components in this edge-on galaxy show exactly the same
sort of structure as the simulations in Fig. 3. Such structure cannot occur in an
axisymmetric disk galaxy, and so we �nd unmistakeable evidence for a bar in
this galaxy. Our second target with a peanut-shaped bulge, NGC 5965, revealed
similar structure in both its gaseous and stellar kinematics. Further, long-slit
spectra of the H� line in the edge-on disk galaxy NGC 2683 show the same
kinematic signature (Rubin, private communication), and inspection of images
of this galaxy reveal that it has a very boxy bulge.

Here, then, is the �rst unequivocal evidence that peanut-shaped bulges are
associated with bars. Clearly, the sample size must be increased if we are to
show that all peanut-shaped structures are a by-product of bar formation. It
would also be interesting to look for the kinematic signature of a bar in some
edge-on galaxies with non-boxy bulges. From such observations we would be
able to see if any thin bars exist, or whether the buckling instability means that
all bars are destined to end up as peanut-shaped structures.

Acknowledgments. Many thanks to Konrad Kuijken, my collaborator on
this project. This research was supported by a PPARC Advanced Fellowship
(B/94/AF/1840).

Discussion

Prof. Hawarden: Does the excellent agreement of your absorption line kinematics
at both 5000�A and 8000�A not only rule out the falsi�cation of the observed
structure by extinction but also the suggested high opacity levels in galaxies?

Dr. Merri�eld : The galaxies that we have observed thus far are somewhat in-
clined to the line-of-sight (� 5 degrees from edge-on), and the e�ects of even a
fairly high opacity on the observed kinematics are limited in such cases (Bosma
et al. 1992). However, application of the same method to galaxies which are
even closer to edge-on does provide an exciting new approach to measuring the
opacity of spiral galaxies. We are already seeking telescope time to make such
a measurement.

Prof. Quillen: How di�cult would it be to determine observationally whether a
face-on bar is a peanut?

Dr. Merri�eld : Once again, stellar kinematics may provide the key: the stars'
line-of-sight motions perpendicular to the plane of a face-on bar o�ers a direct
measure of the structure of the bar in the third dimension. Comparison between
the stellar kinematics obtained from long slit spectra of face-on bars and the
predictions of bar models should allow us to answer this question.

Prof. Freeman: Would you expect to see your e�ect in the motions of the stars
in the galactic bulge?
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Dr. Merri�eld : The hotter the stellar population, the more \washed out" the
structure in the line-of-sight velocity distribution. However, if we could observe
su�ciently close to the plane to pick up a reasonable fraction of kinematically
cooler disk stars then such observations would provide a new window on the
galactic bar.

Prof. Miller : An unstable object cannot exist in nature. Your discussion of
instability is a nice description of an object (a thin disk) that could not have
formed in the �rst place. Instabilities in numerical models simply tell you that
you've set up something that cannot exist in the real world.

Dr. Merri�eld : I don't believe that this line of argument invalidates the use of
instability analysis. The fact that all the pens on my desk are lying down rather
than standing on their points can usefully be explained by the instability of the
latter arrangement. Even if (as the simulations seem to show) a bar buckles
as soon as it forms, the instability analysis still shows why the bar follows this
evolutionary track, and provides a causal explanation for the phenomenon.
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