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Abstract

We have searched for two-body charmless hadronic decays of B mesons.

Final states include ��, K�, and KK with both charged and neutral kaons

and pions; ��, K�, and K��; and K�, K��, and ��. The data used in this

analysis consist of 2.6 million B �B pairs produced at the �(4S) taken with the

CLEO-II detector at the Cornell Electron Storage Ring (CESR). We measure

the branching fraction of the sum of B0 ! �+�� and B0 ! K+�� to be

(1:8+0:6+0:2
�0:5�0:3 � 0:2) � 10�5. In addition, we place upper limits on individual

branching fractions in the range from 10�4 to 10�6.

PACS numbers:13.25.Hw,14.40.Nd
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I. INTRODUCTION

The decays of B mesons to two charmless hadrons can be described by a b ! u tree-
level spectator diagram (Figure 1a), or a b ! sg one-loop \penguin-diagram" (Figure 1b)
and to a lesser extent, by the color-suppressed tree (Figure 1c) or CKM-suppressed b! dg

penguin diagrams. Although such decays can also include contributions from b ! u W -
exchange (Figure 1d), annihilation (Figure 1e), or vertical W loop (Figure 1f) processes,
these contributions are expected to be negligible in most cases.

Decays such as B0 ! �+�� and B0 ! ���� are expected to be dominated by the b! u

spectator transition, and measurements of their branching fractions could be used to extract
a value for jVubj. The decay mode B0 ! �+�� can be used to measure CP violation in the
B sector at both asymmetric B factories [1] and hadron colliders [2]. Since the �+�� �nal
state is a CP eigenstate, CP violation can arise from interference between the amplitude for
direct decay and the amplitude for the process in which the B0 �rst mixes into a �B0 and then
decays. Measurement of the time evolution of the rate asymmetry leads to a measurement of
sin 2�, where � is one of the angles in the unitarity triangle [3]. If the B0 ! �+�� decay has a
non-negligible contribution from the b! dg penguin, interference between the spectator and
penguin contributions will contaminate the measurement of CP violation via mixing [4], an
e�ect known as \penguin pollution." If this is the case, the penguin and spectator e�ects can
be disentangled by also measuring the isospin-related decays B0 ! �0�0 and B� ! ���0

[5]. Alternatively, SU(3) symmetry can be used to relate B0 ! �+�� and B0 ! K+��

[6,7]. Penguin and spectator e�ects may then be disentangled [6] once the ratio of the two
branching fractions and sin 2� [3] are measured.

Decays such as B0 ! K+�� and B0 ! K�+�� are expected to be dominated by the
b ! sg penguin process, with a small contribution from a Cabibbo-suppressed b ! u

spectator process. Interference between the penguin and spectator amplitudes can give rise
to direct CP violation, which will manifest itself as a rate asymmetry for decays of B0

and �B0 mesons, but the presence of hadronic phases complicates the extraction of the CP
violation parameters.

There has been discussion in recent literature about extracting the unitarity angles using
precise time-integrated measurements of B decay rates. Gronau, Rosner, and London have
proposed [8] using isospin relations and 
avor SU(3) symmetry to extract, for example, the
unitarity angle 
 by measuring the rates of B+ decays to K0�+, K+�0, and �+�0 and their
charge conjugates. More recent publications [9{12] have questioned whether electroweak
penguin contributions (b! s
, b! sZ) are large enough to invalidate isospin relationships
and whether SU(3) symmetry-breaking e�ects can be taken into account. If it is possible to
extract unitarity angles from rate measurements alone, the measurements could be made at
either symmetric or asymmetric B factories (CESR, KEK, SLAC), but will require excellent
particle identi�cation to distinguish between the K� and �� modes.

Decays such as B ! K� and B+ ! K0�+ cannot occur via a spectator process and are
expected to be dominated by the penguin process. Measurement of these decays will give
direct information on the strength of the penguin amplitude.

Various extensions or alternatives to the Standard Model have been suggested. Such
models characteristically involve hypothetical high mass particles, such as fourth generation
quarks, leptoquarks, squarks, gluinos, charged Higgs, charginos, right-handed W 's, and so
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on. They have negligible e�ect on tree diagram dominated B decays, such as those involving
b! cW� and b! uW�, but can contribute signi�cantly to loop processes like b! sg and
b! dg.

Since non-standard models can have enhanced CP violating e�ects relative to predictions
based on the standard Kobayashi-Maskawa mechanism [13,14], such e�ects might turn out
to be the key to the solution of the baryogenesis problem, that is, the obvious asymmetry
in the abundance of baryons over antibaryons in the universe. Many theorists believe that
the KM mechanism for CP violation is not su�cient to generate the observed asymmetry or
even to maintain an initial asymmetry through cool-down [15]. Loop processes in B decay
may be our most sensitive probe of physics beyond the Standard Model.

This paper reports results on the decays B ! ��, B ! K�, B ! KK, B ! ��,
B ! K�, B ! K��, B ! K�, B ! K��, and B ! �� [16]. Recent observations of
the sum of the two-body charmless hadronic decays B0 ! �+��and K+�� [17] and of the
electromagnetic penguin decay B ! K�
 [18], indicate that we have reached the sensitivity
required to observe such decays. The size of the data set and e�ciency of the CLEO detector
allow us to place upper limits on the branching fractions in the range 10�4 to 10�6.

II. DATA SAMPLE AND EVENT SELECTION

The data set used in this analysis was collected with the CLEO-II detector [19] at the
Cornell Electron Storage Ring (CESR). It consists of 2:42 fb�1 taken at the �(4S) (on-
resonance) and 1:17 fb�1 taken at a center of mass energy about 35 MeV below B �B threshold.
The on-resonance sample contains 2.6 million B �B pairs. The below-threshold sample is used
for continuum background estimates.

The momenta of charged particles are measured in a tracking system consisting of a
6-layer straw tube chamber, a 10-layer precision drift chamber, and a 51-layer main drift
chamber, all operating inside a 1.5 T superconducting solenoid. The main drift chamber also
provides a measurement of the speci�c ionization loss, dE=dx, used for particle identi�cation.
Photons are detected using 7800 CsI crystals, which are also inside the magnet. Muons are
identi�ed using proportional counters placed at various depths in the steel return yoke of the
magnet. The excellent e�ciency and resolution of the CLEO-II detector for both charged
particles and photons are crucial in extracting signals and suppressing both continuum and
combinatoric backgrounds.

Charged tracks are required to pass track quality cuts based on the average hit residual
and the impact parameters in both the r�� and r�z planes. We require that charged track
momenta be greater than 175 MeV/c to reduce low momentum combinatoric background.

Pairs of tracks with vertices displaced from the primary interaction point are taken as K0
S

candidates. The secondary vertex is required to be displaced from the primary interaction
point by at least 1 mm for candidates with momenta less than 1 GeV/c and at least 3 mm
for candidates with momenta greater than 1 GeV/c. We make a momentum-dependent cut
on the �+�� invariant mass.

Isolated showers with energies greater than 30 MeV in the central region of the CsI
detector, j cos �j < 0:71, where � is the angle with respect to the beam axis, and greater
than 50 MeV elsewhere, are de�ned to be photons. Pairs of photons with an invariant mass

5



within two standard deviations of the nominal �0 mass [20] are kinematically �tted with
the mass constrained to the �0 mass. To reduce combinatoric backgrounds we require that
the �0 momentum be greater than 175 MeV/c, that the lateral shapes of the showers be
consistent with those from photons, and that j cos ��j < 0:97, where �� is the angle between
the direction of 
ight of the �0 and the photons in the �0 rest frame.

We form � candidates from �+�� or �+�0 pairs with an invariant mass within 150 MeV
of the nominal � masses. K� candidates are selected from K+��, K+�0, K0

S�
+ or K0

S�
0

pairs [21] with an invariant mass within 75 MeV of the nominal K� masses. We form �

candidates from K+K� pairs with invariant mass within 6:5 MeV of the nominal � mass.
Charged particles are identi�ed as kaons or pions according to dE=dx. We �rst reject

electrons based on dE=dx and the ratio of the track momentum to the associated shower
energy in the CsI calorimeter. We reject muons by requiring that the tracks not penetrate
the steel absorber to a depth of �ve nuclear interaction lengths. We de�ne S for a particular
hadron hypothesis as

Shypothesis =
dE
dx
jmeasured� dE

dx
jhypothesis

�
(1)

where � is the expected resolution, which depends primarily on the number of hits used in
the dE=dx measurement. We measure the S distribution in data for kaons and pions using
D0 ! K��+ decays where the D0 
avor is tagged using D�+ ! D0�+ decays. In particular,
we are interested in separating pions and kaons with momenta near 2.6 GeV/c. The S�
distribution for the pion hypothesis is shown in Figure 2 for pions and kaons with momenta
between 2.3 and 3.0 GeV/c. At these momenta, pions and kaons are separated by 1:8� 0:1
in S�.

III. CANDIDATE SELECTION

A. Energy Constraint

Since the B's are produced via e+e� ! �(4S) ! B �B, where the �(4S) is at rest in
the lab frame, the energy of either of the two B's is given by the beam energy, Eb. We
de�ne �E = E1 + E2 � Eb where E1 and E2 are the energies of the daughters of the B
meson candidate. The �E distribution for signal peaks at �E = 0, while the background
distribution falls linearly in �E over the region of interest. The resolution of �E is mode
dependent and in some cases helicity angle dependent (see section III.C) because of the
di�erence in energy resolution between neutral and charged pions. For modes including
high momentum neutral pions in the �nal state, the �E resolution tends to be asymmetric
because of energy loss out of the back of the CsI crystals. The �E resolutions for the modes
in this paper, obtained from Monte Carlo simulation, are listed in Tables I and II.

We check that the Monte Carlo accurately reproduces the data in two ways. First,
the r.m.s. �E resolution for B0 ! h+h� (where h� indicates a �� or K�) is given by
��E

h+h�
=
p
2�p where �p is the r.m.s. momentum resolution at p = 2:6 GeV=c. We measure

the momentum resolution at p = 5:3 GeV=c using muon pairs and in the range p = 1:5{2.5
GeV=c using the modes B !  K, B ! D�, and B ! D��. We �nd ��E

h+h�
= 24:7�2:3+1:4

�0:7
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MeV, where the �rst error is statistical and the second is systematic. This result is in good
agreement with the Monte Carlo prediction. We also test our Monte Carlo simulation in the
modes B+ ! �D0�+ and B0 ! D��+ (where �D0 ! K+��, �D0 ! K0

S�
0, and D� ! K0

S�
�)

using an analysis similar to our B ! K�� analysis. Again, �E resolutions for data and
Monte Carlo are in good agreement.

The energy constraint also helps to distinguish between modes of the same topology.
When a real K is reconstructed as a �, �E will peak below zero by an amount dependent
on the particle's momentum. For example, �E for B ! K+��, calculated assuming B !
�+��, has a distribution which is centered at �42 MeV, giving a separation of 1:7� between
B ! K+�� and B ! �+��.

B. Beam-Constrained Mass

Since the energy of a B meson is equal to the beam energy, we use Eb instead of
the reconstructed energy of the B candidate to calculate the beam-constrained B mass:

MB =
q
E2
b � p2B. The beam constraint improves the mass resolution by about an order of

magnitude, since jpBj is only 0:3 GeV/c and the beam energy is known to much higher pre-
cision than the measured energy of the B decay products. Mass resolutions range from 2.5
to 3.0 MeV, where the larger resolution corresponds to decay modes with high momentum
�0's. Again, we verify the accuracy of our Monte Carlo by studying fully reconstructed B
decays.

The MB distribution for continuum background is described by the empirical shape

f(MB) /MB

p
1� x2 exp

�
��(1 � x2)

�
(2)

where x is de�ned as MB=Eb and � is a parameter to be �t. As an example, Figure 3 shows
the �t for B ! h+�0 background from data taken below B �B threshold.

C. Helicity Angle

The decays B ! ��, B ! K�, B ! K��, and B ! K� are of the form pseudoscalar
! vector + pseudoscalar. Therefore we expect the helicity angle, �H , between a resonance
daughter direction and the B direction in the resonance rest frame to have a cos2 �H distri-
bution. For these decays we require j cos �Hj > 0:5.

D. D Veto

We suppress events from the decay B+ ! �D0�+ (where �D0 ! K+�� or �D0 ! K0
S�

0)
or B0 ! D��+ (where D� ! K0

S�
�) by rejecting any candidate that can be interpreted as

B ! �D�, with a K� invariant mass within 2� of the nominal D mass. We expect less than
half an event background per mode from B ! �D� events after this veto. The vetoed D�
signal is used as a cross-check of signal distributions and e�ciencies.
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IV. BACKGROUND SUPPRESSION USING EVENT SHAPE

The dominant background in all modes is from continuum production, e+e� ! q�q (q =
u; d; s; c). After the D veto, background from b! c decays is negligible in all modes because
�nal state particles in such decays have maximum momenta lower than what is required
for the decays of interest here. We have also studied backgrounds from the rare processes
b! s
 and b! u`� and �nd these to be negligible as well.

Since the B mesons are approximately at rest in the lab, the angles of the decay products
of the two B decays are uncorrelated and the event looks spherical. On the other hand,
hadrons from continuum q�q production tend to display a two-jet structure. This event shape
distinction is exploited in two ways.

First, we calculate the angle, �T , between the thrust axis of the B candidate and the
thrust axis of all the remaining charged and neutral particles in the event. The distribution
of cos �T is strongly peaked near �1 for q�q events and is nearly 
at for B �B events. Figure 4
compares the cos �T distributions for Monte Carlo signal events and background data. We
require j cos �T j < 0:7 which removes more than 90% of the continuum background with
approximately 65% e�ciency for signal events [22].

Second, we characterize the event shape by dividing the space around the candidate
thrust axis into nine polar angle intervals of 10� each, illustrated in Figure 5; the ith interval
covers angles with respect to the candidate thrust axis from (i� 1)� 10� to i� 10�. We fold
the event such that the forward and backward intervals are combined. We then de�ne the
momentum 
ow, xi (i = 1; 9), into the ith interval as the scalar sum of the momenta of all
charged tracks and neutral showers pointing in that interval. The 10� binning was chosen to
enhance the distinction between B �B and continuum background events.

Angular momentum conservation considerations provide additional distinction between
B �B and continuum q�q events. In q�q events, the direction of the candidate thrust axis, �q�q,
with respect to the beam axis in the lab frame tends to maintain the 1+cos2 �q�q distribution
of the primary quarks. The direction of the candidate thrust axis for B �B events is random.
The candidate B direction, �B, with respect to the beam axis exhibits a sin2 �B distribution
for B �B events and is random for q�q events.

A Fisher discriminant [23] is formed from these eleven variables: the nine momentum

ow variables, j cos �q�qj, and j cos �Bj. The discriminant, F , is the linear combination

F =
11X
i=1

�i xi (3)

of the input variables, xi, that maximizes the separation between signal and background.
The Fisher discriminant parameters, �i, are given by

�i =
11X
j=1

(U b
ij + U s

ij)
�1 � (�bj � �sj): (4)

where U s
ij and U

b
ij are the covariance matrices of the input variables for signal and background

events, and �sj ; �
b
j are the mean values of the input variables. We calculate �i using Monte

Carlo samples of signal and background events in the mode B ! �+��.
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Figure 6 shows the F distributions for Monte Carlo signal in the mode B0 ! �+��,
and data signal in the modes B ! �D�. Figure 6 also shows the F distributions for Monte
Carlo background in the mode B ! h+�� and below-threshold background data for modes
comprising three charged tracks or two charged tracks and a �0. The F distribution for signal
is �t by a Gaussian distribution, while the F distribution for background data is best �t by
the sum of two Gaussians with the same mean but di�erent variances and normalizations.
The separation between signal and background means is approximately 1.3 times the signal
width. We �nd that the Fisher coe�cients calculated for B0 ! �+�� work equally well for
all other decay modes presented in this paper. Figure 7 shows the remarkable consistency
of the means and widths of the F distributions for signal and background Monte Carlo for
the modes in this study.

V. ANALYSIS

For the decay modes B ! ��, B ! K�, and B ! KK, we extract the signal yield using
a maximum likelihood �t. For the other decay modes, we use a simple counting analysis.
Both techniques are described below.

A. Maximum Likelihood Fit

We perform unbinned maximum likelihood �ts using �E, MB, F , and dE=dx (where
appropriate) as input information for each candidate event to determine the signal yields for
B0 ! �+��; K+��; K+K�; �0�0; K0�0, and B+ ! �+�0; K+�0; K0�+. Five di�erent
�ts are performed as listed in Table II.

For each �t a likelihood function L is de�ned as:

L =
NY
i=1

P (f1; :::; fm; (�E;MB;F ; dE=dx)i) (5)

where P (f1; :::; fm; (�E;MB;F ; dE=dx)i) is the probability density function evaluated at the
measured point (�E; MB; F ; dE=dx)i for a single candidate event, i, for some assumption
of the values of the yield fractions, fj, that are determined by the �t. N is the total number
of events that are �t. The �t includes all the candidate events that pass the selection criteria
discussed above as well as j cos �T j < 0:7, and 0 < F < 1. The �E and MB �t ranges are
given in Table II.

For the case of B ! h+h�, the probability Pi = P (f1; :::; fm; (�E;MB;F ; dE=dx)i) is
then de�ned by:

Pi = fS��P
S
�� + fSK�P

S
K� + fSKKP

S
KK + (1 � fS�� � fSK� � fSKK)P

C (6)

PC = fC��P
C
�� + fCK�P

C
K� + (1 � fC�� � fCK�)P

C
KK

where, for example, P S
�� (PC

��) is the product of the individual probability density functions
for �E, MB, F , and dE=dx for �+�� signal (continuum background). The signal yield in
B0 ! �+��, for example, is then given by N�� � fS�� �N .
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The central values of the individual signal yields from the �ts are given in Table III.
None of the individual modes shows a statistically compelling signal. To illustrate the �ts,
Figure 8 shows MB projections for events in a signal region de�ned by j�Ej < 2��E and
F < 0:5 and Figure 9 shows the �E projections for events within a 2� MB cut and F < 0:5.
The modes are sorted by dE=dx according to the most likely hypothesis and are shown in the
plots with di�erent shadings. Overlaid on these plots are the projections of the �t function
integrated over the remaining variables within these cuts. (Note that these curves are not
�ts to these particular histograms.)

Our previous publication [17] reported a signi�cant signal in the sum of B0 ! �+�� and
B0 ! K+��. While our current analysis con�rms this result, we now focus on separating
the two modes. We separate the systematic errors that a�ect the total yield from those
that a�ect the separation of the two modes. We do this by repeating the likelihood �t using
Nsum � N�� +NK�, R � N��=Nsum, and �xing NKK = 0, its most likely value. We �nd:

Nsum = 17:2+5:6 +2:2
�4:9 �2:5

R = 0:54+0:19
�0:20 � 0:05

where the �rst error is statistical and the second is systematic (described below). The result
of this �t is shown in Figure 10. This �gure shows a contour plot (statistical errors only) of
Nsum vs. R in which the solid curves represent the n� contours (n =1{4) corresponding to
decreases in the log likelihood by 0:5n2. The dashed curve represents the 1:28� contour, from
which estimates of the 90% con�dence level limits can be obtained. The central value of Nsum

has a statistical signi�cance of 5:2�. The signi�cance is reduced to 4:2� if all parameters
de�ning L are varied coherently so as to minimize Nsum. Further support for the statistical
signi�cance of the result is obtained by using Monte Carlo to draw 10000 sample experiments,
each with the same number of events as in the data �t region but no signal events. We then
�t each of these sample experiments to determine Nsum in the same way as done for data.
We �nd that none of the 10000 sample experiments leads to Nsum > 10.

None of the physical range of R can be excluded at the 3� level. However the systematic
error of R is only 10% (see below and Table IV). We therefore conclude that our analysis
technique has su�cient power to distinguish the �+�� mode from K+��, but at this time
we do not have the statistics to do so.

Since none of our �ts has a statistically signi�cant signal, we calculate the 90% con�dence
level upper limit yield from the �t, N90, given by

RN90

0 Lmax(N)dNR
1

0 Lmax(N)dN
= 0:90 (7)

where Lmax(N) is the maximal L at �xedN to conservatively account for possible correlations
among the free parameters in the �t. The upper limit yield is then increased by the systematic
error determined by varying the parameters de�ning L within their systematic uncertainty
as discussed below. Table III summarizes upper limits on the yields for the various decay
modes.

To determine the systematic e�ects on the yield due to uncertainty of the shapes used
in the likelihood �ts, we vary the parameters that de�ne the likelihood functions. The
variations of the yields are given in Table IV. The largest contribution to the systematic
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error arises from the variation of the MB background shape. For this shape, f(MB) /
MB

p
1� x2 exp(��(1�x2)) (x �MB=Eb), we vary Eb by �1 MeV, consistent with observed

variation; we vary � by the amount allowed by a �t to background data (below-threshold
and on-resonance �E sideband) which pass all other selection criteria. To be conservative,
we allow for correlated variations of Eb and �.

B. Event-Counting Analyses

In the event-counting analyses we make cuts on �E, MB, F , and dE=dx. The cuts for
�E and MB are mode dependent and are listed in Table I. We require F < 0:5. Tracks
are identi�ed as kaons and/or pions if their speci�c ionization loss, dE=dx, is within three
standard deviations of the expected value. For certain topologies, candidates can have
multiple interpretations under di�erent particle hypotheses. In these cases we use a strict
identi�cation scheme where a track is positively identi�ed as a kaon or a pion depending on
which dE=dx hypothesis is more likely: we sort the modes with two charged tracks plus a �0

(�+��, �0�0, K+��, K�+��, and K�0�0) by requiring strict identi�cation for both charged
tracks. For modes with three charged tracks (�+�0, K+�0, and K�0�+) we require strict
identi�cation of the two like-sign tracks, while the unlike-sign track [24] is required to be
consistent with the pion hypothesis within two standard deviations. We separate modes
with one charged track plus two �0's (�+�0 and K�+�0) by requiring strict identi�cation of
the charged track.

Figures 11{14 show MB distributions for B ! ��, B ! K�, B ! K��, B ! K�, B !
K�� and B ! �� candidates (after making the cuts on �E, F , and particle identi�cation
described above.) The numbers of events in the signal regions are listed in Table V.

In order to estimate the background in our signal box, we look in a large sideband region
in the �E vs: MB plane: 5:20 < MB < 5:27 GeV and j�Ej < 200 MeV. The expected
background in the signal region is obtained by scaling the number of events seen in the
on-resonance and below-threshold sideband regions (weighted appropriately for luminosity).
Scale factors are found using a continuum Monte Carlo sample which is about �ve times the
continuum data on-resonance. In many modes, the backgrounds are so low that there are
insu�cient statistics in the Monte Carlo to adequately determine a scale factor. For these
modes, we calculate upper limits assuming all observed events are signal candidates. The
estimated background for each mode is also listed in Table V.

Although we �nd that there are slight excesses above expected background in some modes,
no excess is statistically compelling. We therefore calculate upper limits on the numbers of
signal events using the procedure outlined in the Review of Particle Properties [20] for
evaluation of upper limits in the presence of background. To account for the uncertainties in
the estimated continuum background we reduce the background estimate by its uncertainty
prior to calculating the upper limit on the signal yield.

VI. EFFICIENCIES

The reconstruction e�ciencies were determined using events generated with a GEANT-
based Monte Carlo simulation program [25]. Systematic uncertainties were determined using
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data wherever possible. Some of the largest systematic errors come from uncertainties in the
e�ciency of the j cos �T j < 0:7 cut (6%), the uncertainty in the �0 e�ciency (7% per �0), and
the uncertainty in the K0

S e�ciency (8% per K0
S). In higher multiplicity modes, substantial

contributions come from the uncertainty in the tracking e�ciency (2% per track). In the
B ! ��; K�; K�� analyses, the simulation of the e�ciency for the particle identi�cation
method has a systematic error of 15%. For the event-counting analyses, the uncertainty in
the F < 0:5 cut is 5%.

The total detection e�ciency, E, is given by E � Er � Ed, where Er is the reconstruc-
tion e�ciency and Ed is the product of the appropriate daughter branching fractions. The
e�ciencies, with systematic errors, are listed in Tables III and VI.

VII. UPPER LIMIT BRANCHING FRACTIONS

Upper limits on the branching fractions are given by NUL=(ENB) where NUL is the upper
limit on the signal yield, E is the total detection e�ciency, and NB is the number of B0's
or B+'s produced, 2.6 million, assuming equal production of charged and neutral B mesons.
To conservatively account for the systematic uncertainty in our e�ciency, we reduce the
e�ciency by one standard deviation. The upper limits on the branching fractions appear in
Tables III and V.

VIII. SUMMARY AND CONCLUSIONS

We have searched for rare hadronic B decays in many modes and �nd a signal only
in the sum of �+�� and K+��. The combined branching fraction, B(�+�� + K+��) =
(1:8+0:6+0:2

�0:5�0:3�0:2)�10�5, is consistent with our previously published result. We have presented
new upper limits on the branching fractions for a variety of charmless hadronic decays of
B mesons in the range 10�4 to 10�6. These results are signi�cant improvements over those
previously published. Our sensitivity is at the level of Standard Model predictions for the
modes �+��; K+��; �+�0; K+�0; ����; K+�, and K�0�.
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TABLES

TABLE I. Resolutions of �E and the signal regions for �E and �MB =MB � 5280 MeV for

the event-counting analyses. Indicated in parentheses are the K� decay modes used.

Signal Region

Mode ��E j�Ej j�MBj

(MeV) (MeV) (MeV)

���� 25{46 < 2�a < 6:0

�0�0 46 < 90 < 6:0

�+�0 23 < 50 < 6:0

�0�+ 50 < 100 < 6:0

K+�� 25{46 < 2�a < 6:0

K0�0 22 < 50 < 6:0

K+�0 23 < 50 < 6:0

K0�+ 22{45 < 2�a < 6:0

K�+��

(K+�0) 25{40 < 2�a < 6:0

(K0�+) 21 < 50 < 6:0

K�0�0

(K+��) 44 < 90 < 6:0

K�+�0

(K+�0) 50 < 100 < 6:0

(K0�+) 45 < 90 < 6:0

K�0�+

(K+��) 23 < 50 < 6:0

(K0�0) 22{40 < 2�a < 6:0

K0� 18 < 45 < 6:5

K+� 23 < 60 < 6:5

K�0�

(K+��) 20 < 50 < 6:5

(K0�0) 24 < 60 < 6:5

K�+�

(K+�0) 23 < 60 < 6:5

(K0�+) 17 < 45 < 6:5

�� 16 < 40 < 6:5

aThe �E resolution and cut are functions of the helicity angle.
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TABLE II. Resolutions of �E, the �t regions in �E and MB, and the number of events, N , in

the �t regions for the likelihood analyses.

Fit region

��E �E MB

Mode(s) (MeV) (MeV) (GeV) N

�+��=K+��=K+K� �25 �185 < �E < 140 5:21 < MB < 5:30 453

�+�0=K+�0 +43=�55 �300 5:20 < MB < 5:30 896

�0�0 +51=�85 �300 5:20 < MB < 5:30 104

K0�0 +44=�53 �200 5:20 < MB < 5:30 44

K0�+ �27 �200 5:20 < MB < 5:30 220

TABLE III. Results from the likelihood analyses: the signal yield central value from the �t

(NS), detection e�ciencies (E), the 90% con�dence level upper limit on the number of signal events

(NUL), the 90% CL upper limit of the branching fraction (UL B), and the theoretical predictions

for the branching fractions [26{28]. We also include the measured branching fraction (B) for the

sum of �+�� and K+��, where the �rst error is statistical, the second is the systematic error from

the yield, and the third is the systematic error from the e�ciency.

E B UL B Theory

Mode NS (%) (10�5) NUL (10�5) (10�5)

h+�� 17.2+5:6+2:2
�4:9�2:5 37� 3 1:8+0:6+0:2

�0:5�0:3� 0:2

�+�� 9.4+4:9
�4:1 37� 3 17.9 2.0 1.0{2.6

K+�� 7.9+4:5
�3:6 37� 3 15.3 1.7 1.0{2.0

K+K� 0.0+0:8
�0:0 37� 3 3.5 0.40 {

K+�0 4.9+3:6
�2:8 33� 3 11.2 1.4 0.3{1.3

�+�0 5.0+4:2
�3:2 33� 3 13.1 1.7 0.6{2.1

�0�0 1.2+1:7
�0:9 26� 4 5.2 0.91 0.03{0.10

K0�+ 5.2+3:5
�2:8 11� 2 11.3 4.8 1.1{1.2

K0�0 2.3+2:2
�1:5 7� 1 6.2 4.0 0.5{0.8
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TABLE IV. Dominant variations in the upper limit signal yield (%) due to systematic uncer-

tainties in the �t shapes.

Mode Background MB Signal MB Signal �E F dE=dx Total

�+�� 8:6 2:9 5:4 4:7 5:1 13

K+�� 5:0 3:3 2:6 2:5 4:6 8

K+K� 4:7 < 1 < 1 2:2 3:2 9

K+�0 5:9 < 0:5 2:3 2:0 2:7 7

�+�0 13:5 2:8 3:3 3:2 1:7 15

�0�0 12:1 3:1 1:2 5:1 � 14

K0�+ 7:5 4:8 1:8 5:7 � 9

K0�0 6:9 1:0 1:1 1:6 � 7

a Nsum +10:4=�12:8 +3:9=�3:5 +1:5=�0:7 +5:9=�6:4 �1 +13=�15
a R +2:0=�3:3 +1:7=�1:4 �7:2 +1:7=�2:6 �5:6 +9=�10

aSystematic errors on central value.
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TABLE V. Results of the event-counting analyses: the number of events in the signal region

(NS), the estimated background in the signal region (NB), the 90% con�dence level upper limit on

the branching fractions (UL B), and theoretical predictions [26{28]. Indicated in parenthesis are

the K� decay modes used.

UL B Theory

Mode NS NB (10�5) (10�5)

���� 7 2:9� 0:7 8.8 1.9{8.8

�0�0 1 1:8� 0:6 2.4 0.07{0.23

�+�0 4 2:3� 0:3 4.3 0.0{1.4

�0�+ 8 5:5� 1:2 7.7 1.5{3.9

K+�� 2 2:0� 0:4 3.5 0.0{0.2

K0�0 0 0 3.9 0.004{0.04

K+�0 1 3:8� 0:2 1.9 0.01{0.06

K0�+ 0 0 4.8 0{0.03

K�+�� 3 0:7� 0:2 7.2 0.1{1.9

(K+�0) (3) (0:7� 0:2)

(K0�+) (0) (0)

K�0�0 0 1:1� 0:3 2.8 0.3{0.5

(K+��) (0) (1:1� 0:3)

K�+�0 4 1:9� 0:7 9.9 0.05{0.9

(K+�0) (3) (1:9� 0:7)

(K0�+) (1) (0)

K�0�+ 2 1:0� 0:6 4.1 0.6{0.9

(K+��) (2) (1:0� 0:6)

(K0�0) (0) (0)

K0� 1 0 8.8 0.07{1.3

K+� 0 0 1.2 0.07{1.5

K�0� 2 0 4.3 0.02{3.1

(K+��) (2) (0)

(K0�0) (0) (0)

K�+� 1 0 7.0 0.02{3.1

(K+�0) (0) (0)

(K0�+) (1) (0)

�� 0 0 3.9
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TABLE VI. Reconstruction e�ciencies (Er), the products of the appropriate daughter branching

fractions (Ed), and total detection e�ciencies (E � Er � Ed) for the event-counting analyses.

Mode Er (%) Ed E (%)

���� 5:3� 1:1 0.988 5:2� 1:0

�0�0 6:5� 1:3 0.988 6:4� 1:2

�+�0 7:4� 1:5 1.0 7:4� 1:5

�0�+ 5:5� 1:1 0.976 5:4� 1:1

K+�� 5:7� 1:1 0.988 5:7� 1:1

K0�0 7:8� 1:2 0.343 2:7� 0:4

K+�0 7:1� 1:4 1.0 7:1� 1:4

K0�+ 6:4� 1:0 0.339 2:2� 0:3

K�+�� 3:7� 0:4

(K+�0) 4:5� 0:8 0.329 (1:5� 0:2)

(K0�+) 9:8� 2:0 0.228 (2:2� 0:3)

K�0�0

(K+��) 6:1� 1:2 0.657 4:0� 0:8

K�+�0 3:0� 0:4

(K+�0) 3:9� 0:8 0.325 (1:3� 0:2)

(K0�+) 7:6� 1:5 0.226 (1:7� 0:3)

K�0�+ 5:6� 0:9

(K+��) 7:1� 1:4 0.665 (4:7� 0:9)

(K0�0) 7:9� 1:6 0.113 (0:9� 0:2)

K0� 11:9� 1:8 0.168 2:0� 0:3

K+� 17:8� 2:7 0.491 8:7� 1:3

K�0� 5:6� 0:8

(K+��) 16:2� 2:4 0.327 (5:3� 0:8)

(K0�0) 5:6� 0:8 0.055 (0:3� 0:1)

K�+� 2:6� 0:5

(K+�0) 9:2� 1:4 0.162 (1:5� 0:2)

(K0�+) 9:4� 1:4 0.112 (1:1� 0:2)

�� 11:0� 1:7 0.241 2:7� 0:4
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FIG. 1. Feynman diagrams for rare hadronic B decays: (a) b ! u external W emission, (b)

b ! s; d loop or gluonic penguin, (c) b ! u internal W emission, (d) b ! u W exchange, (e)

annihilation, and (f) vertical W loop.
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FIG. 2. Distribution of S� for kinematically identi�ed high momentum kaons and pions from

D�+ ! D0�+; D0 ! K��+ decays. The solid line shows S� for pions and the dashed line shows

S� for kaons.
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FIG. 3. MB distribution from below-threshold background events (squares) and the �t to the

parameterization given in the text (curve). The mass for the below-threshold data is shifted up to

match the kinematic endpoint of the on-resonance data.
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FIG. 4. The cos �T distributions for background data (squares) and B0 ! �+�� Monte Carlo

signal (histogram).
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FIG. 5. Illustration of the �rst three of the nine polar angle intervals.

24



F

A
rb

it
ra

ry
  S

ca
le

30

20

10

0 0.25 0.50 0.75 1.00

0990695-010

FIG. 6. The F distribution for B0 ! �+�� Monte Carlo (solid histogram), B ! D� signal

data (�lled squares), the �t to the signal data (solid curve), the background Monte Carlo (dotted

histogram), background data (open squares), and the �t to the background data (dotted curve).

25



K
+

π+
π-

πo

K*o

K*+

K
+

K
+

π+π-

πo

K
o

K*o

K*+

K
+

K
+

π+

φ

φ

φ

K*o

K*+

o

K
o

K
+

ρ

πo

K
+

π+

π-

πo

K
o

φ

K*o

K*+

o

K
o

K
+

ρ

ρ-

ρ+

π

K
+

π+

π-

π
o

φ

K*o

K*+

o

K
o

K
+
ρ
ρ-

K
+

π+

π-

πo

φ

K*+

oρ
ρ+

π
o

π
o

πo πo

πo

πo

πo

πo

πo

π+

π+

π+
π-

π-

φ
φ

)

(

)(

)

( )

( )

( )

( )

(

)(

)

(

)(

)

/
/

Signal Background

0990695-009

0.20 0.40 0.60 0.80 1.00
F

(

K
o

K
o

K
o

K
o

K
o
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Since the backgrounds in the � modes are small, their background means are poorly measured.
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background component (dotted curve) are overlaid.
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FIG. 12. MB plots for (a)B0 ! K+��, (b)B0 ! K0�0, (c)B+ ! K+�0, and (d) B+ ! K0�+.

The signal region is indicated.
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FIG. 13. MB plots for (a) B0 ! K�+��, (b) B0 ! K�0�0, (c) B+ ! K�+�0, and (d)

B+ ! K�0�+. The shaded events are from K� ! K0
S� decay modes and the unshaded events are

from K� ! K+� decay modes. The signal region is indicated.
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FIG. 14. MB plots for (a) B0 ! K0�, (b) B+ ! K+�, (c) B0 ! K�0�, (d) B+ ! K�+�, and

(e) B0 ! ��. The shaded events are from K� ! K0
S� decay modes and the unshaded events are

from K� ! K+� decay modes. The signal region is indicated.

33


