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Abstract

In this review I will consider several di�erent issues related to ination. I will
begin with the wave function of the Universe. This issue is pretty old, but recently
there were some new insights based on the theory of the self-reproducing inationary
universe. Then we will discuss stationarity of inationary universe and the possibility
to make predictions in the context of quantum cosmology using stochastic approach to
ination. Returning to more pragmatic aspects of inationary theory, we will discuss
inationary models with 
 6= 1. Finally, we will describe several aspects of the theory
of reheating of the Universe based on the e�ect of parametric resonance.
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1 Wave function of the Universe

Investigation of the wave function of the Universe goes back to the fundamental papers byWheeler
and DeWitt [1]. However, for a long time it seemed almost meaningless to apply the notion of
the wave function to the Universe itself, since the Universe is not a microscopic object. Only with
the development of inationary cosmology [2]{[7] it became clear that the whole Universe could
appear from a tiny part of space of the Planck length (at least in the chaotic ination scenario
[5]). Such a tiny piece of space can appear as a result of quantum uctuations of metric, which
should be studied in the context of quantum cosmology.

Unfortunately, quantum cosmology is not a well developed science. This theory is based on
the Wheeler-DeWitt equation, which is the Schr�odinger equation for the wave function of the
Universe. However, Bryce DeWitt, one of the authors of this equation, in some of his talks em-
phasized that he is not particularly fond of it. This equation has many solutions, and at the
present time the best method to specify preferable solutions of this equation (i.e. its boundary
conditions) is based on the Euclidean approach to quantum gravity. This method is very pow-
erful, but some of its applications are not well justi�ed. In such cases this method may give
incorrect answers, but rather paradoxically sometimes these answers appear to be correct in ap-
plication to some other questions. Therefore it becomes necessary not only to solve the problem
in the Euclidean approach, but also to check, using one's best judgement, whether the solution
is related to the original problem or to something else. An alternative approach is based on the
use of stochastic methods in inationary cosmology. These methods allows one to understand
such e�ects as creation of inationary density perturbations, the theory of tunneling, and even
the theory of self-reproduction of inationary universe. Both Euclidean approach and stochastic
approach to ination have their limitations. However, despite all its problems, quantum cosmol-
ogy is a very exciting science which changed dramatically our point of view on the structure and
evolution of the Universe.

We will begin our discussion with the issue of the Universe creation. According to classical
cosmology, the Universe appeared from the singularity in a state of in�nite density. Of course,
when the density was greater than the Planck density M4

P one could not trust classical Einstein
equations, but in many cases there is no demonstrated need to study the Universe creation
using the methods of quantum theory. For example, in the simplest versions of chaotic ination
scenario [5] ination, at the classical level, could begin directly in the initial singularity. However,
in certain models, such as the Starobinsky model [2] or the new inationary universe scenario [4],
ination cannot start in a state of in�nite density. In such cases one may speculate about the
possibility that inationary universe appears due to quantum tunneling \from nothing."

The �rst idea how one can describe creation of inationary universe \from nothing" was
suggested in 1981 by Zeldovich [8] in application to the Starobinsky model [2]. His idea was
qualitatively correct, but he did not propose any quantitative description of this process. A very
important step in this direction was made in 1982 by Vilenkin [9]. He suggested to calculate the
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Euclidean action on de Sitter space with the energy density V (�),

SE =
Z
d4x

p
�g

�
� R

16�G
+ V (�)

�
= � 3M4

P

8V (�)
: (1)

This action was interpreted as the action on the tunneling trajectory describing creation of the

Universe with the scale factor a = H�1 =
r

3M2

P

8�V
from the state with a = 0. This would imply

that the probability of quantum creation of the Universe is given by

P / exp(�SE) = exp

 
3

8V (�)

!
: (2)

(In the �rst three sections of this review we use the system of units with the Planck massMP = 1.)
A year later this result received a strong support when Hartle and Hawking reproduced it by a
di�erent though closely related method [10]. They argued that the wave function of the \ground
state" of the Universe with a scale factor a �lled with a scalar �eld � in the semi-classical
approximation is given by

	0(a; �) � exp (�SE(a; �)) : (3)

Here SE(a; �) is the Euclidean action corresponding to the Euclidean solutions of the Lagrange
equation for a(� ) and �(� ) with the boundary conditions a(0) = a; �(0) = �. The reason for
choosing this particular wave function was explained as follows. Let us consider the Green's
function of a particle which moves from the point (0; t0) to the point x; t:

< x; 0j0; t0 >=
X
n

	n(x)	n(0) exp (iEn(t� t0)) =
Z
dx(t) exp (iS(x(t))) ; (4)

where 	n is a complete set of energy eigenstates corresponding to the energies En � 0.

To obtain an expression for the ground-state wave function 	0(x), one should make a rotation
t ! �i� and take the limit as � ! �1. In the summation (4) only the term n = 0 with the
lowest eigenvalue E0 = 0 survives, and the integral transforms into

R
dx(� ) exp(�SE(� )). Hartle

and Hawking have argued that the generalization of this result to the case of interest in the
semiclassical approximation would yield (3).

The gravitational action corresponding to one half of the Euclidean section S4 of de Sitter
space with a(� ) = H�1(�) cosH� (0 � � � H�1) is negative,

SE(a; �) = �
3�

4

Z
d�
h�da
d�

�2
� a2 + 8�V

3
a4
i
= � 3

16V (�)
: (5)

Here � is the conformal time, � =
R

d�
a(�)

. Therefore, according to [10],

	0(a; �) � exp
�
�SE(a; �)

�
� exp

 
3

16V (�)

!
: (6)

By taking a square of this wave function one again obtains eq. (2). The corresponding expression
has a very sharp maximum as V (�) ! 0. This suggests that the probability of �nding the
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Universe in a state with a large �eld � and having a long stage of ination should be strongly
suppressed. Some authors consider it as a strong argument against the Hartle-Hawking wave
function. However, nothing in the `derivation' of the Hartle-Hawking wave function tells that it
describes initial conditions for ination. The point of view of the authors of this wave function
was not quite clear. They have written that their wave function gives the amplitude for the
Universe to appear from nothing. On the other hand, Hawking emphasized [11] that \instead of
talking about the Universe being created one should just say: the Universe is." This seems to
imply that the Hartle-Hawking wave function was not designed to describe initial conditions at
the moment of the Universe creation.

Indeed, eq. (2) from the very beginning did not seem to apply to the probability of the
Universe creation. The total energy of matter in a closed de Sitter space with a(t) = H�1 coshHt
is greater than its minimal volume � H�3 multiplied by V (�), which gives the total energy of
the Universe E >� M3

P=
p
V . Thus the minimal value of the total energy of matter contained in a

closed de Sitter universe grows when V decreases. For example, in order to create the Universe
at the Planck density V �M4

P one needs no more than the Planckian energy MP � 10�5 g. For
the Universe to appear at the GUT energy density V � M4

X one needs to create from nothing
the Universe with the total energy of matter of the order of MSchwarzenegger � 102 kg, which is
obviously much more di�cult. Meanwhile, eq. (2) suggests that it should be much easier to create
a huge Universe with small V but enormously large total energy rather than a small Universe
with large V . This seems very suspicious.

There is one particular place where the derivation (or interpretation) of eq. (2) could go
wrong. The e�ective Lagrangian of the scale factor a in (5) has a wrong sign. The Lagrange
equations do not know anything about the sign of the Lagrangian, so we may simply change the
sign before studying the tunneling. Only after representing the theory in a conventional form
can we consider tunneling of the scale factor. But this then gives us the probability of quantum
creation of the Universe

P / exp(�jSEj) = exp

 
� 3

8V (�)

!
: (7)

This equation predicts that a typical initial value of the �eld � is given by V (�) � 1 (if one does
not speculate about the possibility that V (�)� 1), which leads to a very long stage of ination.

Originally I obtained this result by the method described above. However, because of the
ambiguity of the notion of tunneling from the state a = 0, I was not quite satis�ed and decided
to look at it from the perspective of derivation of the Hartle-Hawking wave function. In this
approach the problem of the wrong sign of the Lagrangian appears again, though in a somewhat
di�erent form. Indeed, the total energy of a closed Universe is zero, being a sum of the positive
energy of matter and the negative energy of the scale factor a.) Thus, the energy En of the scale
factor is negative, and in order to suppress terms with large negative En and to obtain 	0 from
(5) one should rotate t not to �i� , but to +i� . This gives [12]

	0(a; �) � exp
�
�jSE(a; �)j

�
� exp

 
� 3

16V (�)

!
; (8)
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and

P (�) � j	0(a; �)j2 � exp
�
�2jSE(a; �)j

�
� exp

 
� 3

8V (�)

!
: (9)

Few months later this equation was also derived by Zeldovich and Starobinsky [13], Rubakov [14],
and Vilenkin [15] using the methods similar to the �rst method mentioned above (investigation of
tunneling in the theory with the wrong sign of the Lagrangian). The corresponding wave function
(8) was called \the tunneling wave function."

An obvious objection against this result is that it may be incorrect to use di�erent ways of
rotating t for quantization of the scale factor and of the scalar �eld. However, the idea that a
consistent quantization of matter coupled to gravity can be accomplished by a proper choice of a
complex contour of integration may be too optimistic. We know, for example, that despite many
attempts to suggest Euclidean formulation for nonequilibrium quantum statistics or for the �eld
theory in a nonstationary background, such formulation does not exist. It is quite clear from (4)
that the t!�i� trick would not work if the spectrum En were not bounded from below. Absence
of equilibrium, of any simple stationary ground state seems to be a typical situation in quantum
cosmology. In some cases where a stationary or quasistationary ground state does exist, eq. (2)
may be correct, see the next Section. In a more general situation it may be very di�cult to obtain
any simple expression for the wave function of the Universe. However, in certain limiting cases
this problem is relatively simple. For example, at present the scale factor a is very big and it
changes very slowly, so one can consider it to be a C-number and quantize matter �elds only by
rotating t! �i� . On the other hand, in the inationary universe the evolution of the scalar �eld
is very slow; during the typical time intervals O(H�1) it behaves essentially as a classical �eld, so
one can describe the process of the creation of an inationary universe �lled with a homogeneous
scalar �eld by quantization of the scale factor a only and by rotation t! i� .

Derivation of equations (2), (9) and their interpretation is far from being rigorous, and there-
fore even now it remains the subject of debate. In our opinion, the Hartle-Hawking wave function
describes not the Universe creation, but the uctuations of the Universe near its de Sitter ground
state, under the condition that such a state exists, see next section. Meanwhile the distribution
(9) is related to the probability of creation of inationary universe from nothing (or from the
space-time foam). However, the two di�erent derivations of this probability distribution em-
phasize two slightly di�erent features of the process. Investigation of tunneling should give the
probability of quantum creation of the Universe of a size H�1 from the Universe with a = 0.
Meanwhile wave function of the \ground state" should give information about some kind of prob-
ability distribution of various Universes in the space-time foam. We will not concentrate here
on this subtle di�erence since we believe that it would bring us far away from the domain of
applicability of our approach. Also, we should emphasize again that quantum tunneling is nec-
essary only if one cannot use the classical trajectory. In the Starobinsky model [2], as well as in
the new inationary universe scenario [4], creation of the Universe \from nothing" appears to be
one of the most natural mechanisms for ination to begin. Meanwhile, in the simplest version of
chaotic ination scenario the process of ination formally may begin directly in the singularity, in
a state with in�nitely large V (�), without any need for quantum tunneling. However, quantum
tunneling in that case is possible as well, since for V (�) � 1 the probability of quantum creation
of inationary universe is not exponentially suppressed.
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In the next section we will discuss stochastic approach to quantum cosmology. Within this
approach equations (2) and (9) can be derived in a much more clear and rigorous way, but they
will have somewhat di�erent interpretation.

2 Wave function of the Universe and stochastic approach

to ination

The �rst models of ination were based on the standard assumption of the big bang theory that
the Universe was created at a single moment of time in a state with the Planck density, and
that it was hot and large (much larger than the Planck scale M�1

P = 1) from the very beginning.
The success of ination in solving internal problems of the big bang theory apparently removed
the last doubts concerning the big bang cosmology. Even in our quantum mechanical treatment
of the Universe production we still used the standard idea that the Universe as a whole can be
described by one scale factor a, and its creation should be considered as a process beginning from
a = 0. Meanwhile during the last ten years the inationary theory has broken the umbilical cord
connecting it with the old big bang theory, and acquired an independent life of its own. For the
practical purposes of description of the observable part of our Universe one may still speak about
the big bang. However, if one tries to understand the beginning of the Universe, or its end, or its
global structure, then some of the notions of the big bang theory become inadequate.

For example, in the chaotic ination scenario [5] even without taking into account quantum
e�ects there was no need to assume that the whole Universe appeared from nothing at a single
moment of time associated with the big bang, that the Universe was hot from the very beginning
and that the inaton scalar �eld � which drives ination originally occupied the minimum of
its potential energy. On the other hand, it was found that if the Universe in this scenario
contains at least one inationary domain of a size of horizon (`h-region') with a su�ciently large
and homogeneous scalar �eld �, then this domain will permanently produce new h-regions of
a similar type due to quantum uctuations [16, 17]. This process occurs in the old, new and
extended ination scenario as well [18]{[21]. Thus, instead of a single big bang producing a
one-bubble Universe, we are speaking now about inationary bubbles producing new bubbles,
producing new bubbles, ad in�nitum. In this sense, ination is not a short intermediate stage
of duration � 10�35 seconds, but a self-regenerating process, which occurs in some parts of the
Universe even now, and which will continue without end.

It is extremely complicated to describe an inhomogeneous self-reproducing Universe. Fortu-
nately, there is a particular kind of stationarity of the process of the Universe self-reproduction
which makes things more regular. Due to the no-hair theorem for de Sitter space, the process of
production of new inationary domains occurs independently of any processes outside the hori-
zon. This process depends only on the values of the �elds inside each h-region of radius H�1.
Each time a new inationary h-region is created during the Universe expansion, the physical
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processes inside this region will depend only on the properties of the �elds inside it, but not on
the `cosmic time' at which it was created.

In addition to this most profound stationarity, which we will call local stationarity, there may
also exist some simple stationary probability distributions which may allow us to say, for example,
what the probability is of �nding a given �eld � at a given point. To examine this possibility one
should consider the probability distribution Pc(�; �; t), which describes the probability of �nding
the �eld � at a given point at a time t, under the condition that at the time t = 0 the �eld � at
this point was equal to �. The same function also describes the probability that the scalar �eld
which at time t was equal to �, at some earlier time t = 0 was equal to �.

The probability distribution Pc is in fact the probability distribution per unit volume in
comoving coordinates (hence the index c in Pc), which do not change during expansion of the
Universe. By considering this probability distribution we neglect the main source of the self-
reproduction of inationary domains, which is the exponential growth of their volume. Therefore,
in addition to Pc, we introduced the probability distribution Pp(�; �; t), which describes the
probability to �nd a given �eld con�guration in a unit physical volume [16]. In the situations
where one of these distributions can be stationary, we will speak about global stationarity.

Let us remember some details of stochastic approach to ination. Consider the simplest model
of chaotic ination based on the theory of a scalar �eld � minimally coupled to gravity, with the
e�ective potential V (�). If the classical �eld � is su�ciently homogeneous in some domain of
the Universe, then its behavior inside this domain is governed by the equation 3H _� = �dV=d�,
where H2 = 8�V (�)

3
. Investigation of these equations has shown that in all power-law potentials

V (�) � �n ination occurs at � > �e � n=6. In the theory with an exponential potential
V (�) � e�� ination ends only if we bend down the potential at some point �e; for de�niteness
we will take �e = 0 in this theory.

Ination stretches all initial inhomogeneities. Therefore, if the evolution of the Universe were
governed solely by classical equations of motion, we would end up with an extremely smooth
Universe with no primordial uctuations to initiate the growth of galaxies. Fortunately, new
density perturbations are generated during ination due to quantum e�ects. The wavelengths of
all vacuum uctuations of the scalar �eld � grow exponentially in the expanding Universe. When
the wavelength of any particular uctuation becomes greater than H�1, this uctuation stops
oscillating, and its amplitude freezes at some nonzero value ��(x) because of the large friction
term 3H _� in the equation of motion of the �eld �. The amplitude of this uctuation then remains
almost unchanged for a very long time, whereas its wavelength grows exponentially. Therefore,
the appearance of such a frozen uctuation is equivalent to the appearance of a classical �eld
��(x) that does not vanish after averaging over macroscopic intervals of space and time.

Because the vacuum contains uctuations of all wavelengths, ination leads to the creation
of more and more perturbations of the classical �eld with wavelengths greater than H�1. The
average amplitude of such perturbations generated during a time interval H�1 (in which the
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Universe expands by a factor of e) is given by

j��(x)j � H

2�
: (10)

The phases of each wave are random. Therefore, the sum of all waves at a given point uctuates
and experiences Brownian jumps in all directions in the space of �elds.

One can describe the stochastic behavior of the inaton �eld using di�usion equations for
the probability distribution Pc(�; tj�). The �rst equation is called the backward Kolmogorov
equation,

@Pc(�; tj�)
@t

=
H3=2(�)

8�2
@

@�

 
H3=2(�)

@

@�
Pc(�; tj�)

!
� V 0(�)

3H(�)

@

@�
Pc(�; tj�) : (11)

In this equation one considers the value of the �eld � at the time t as a constant, and �nds the
time dependence of the probability that this value was reached during the time t as a result of
di�usion of the scalar �eld from di�erent possible initial values � � �(0).

The second equation is the adjoint to the �rst one; it is called the forward Kolmogorov
equation, or the Fokker-Planck equation [22],

@Pc(�; tj�)
@t

=
@

@�

 
H3=2(�)

8�2
@

@�

�
H3=2(�)Pc(�; tj�)

�
+
V 0(�)
3H(�)

Pc(�; tj�)
!
: (12)

One may try to �nd a stationary solution of equations (11), (12), assuming that @Pc(�;tj�)
@t

= 0.
The simplest stationary solution (subexponential factors being omitted) would be [22, 24, 25]

Pc(�; tj�) � exp

 
3

8V (�)

!
� exp

 
� 3

8V (�)

!
: (13)

This looks like a miracle: The �rst term in this expression is equal to the square of the Hartle-
Hawking wave function of the Universe (2), whereas the second one gives the square of the
tunneling wave function (9)! And we obtained this result without any ambiguous considerations
based on Euclidean approach to quantum cosmology!

At �rst glance, this result gives a direct con�rmation and a simple physical interpretation of
both the Hartle-Hawking wave function of the Universe and the tunneling wave function. First
of all, we see that the distribution of the probability to �nd the Universe in a state with the �eld
� is proportional to exp

�
3

8V (�)

�
. Note that we are speaking here about the state of the Universe

rather than the probability of its creation. Meanwhile, the probability that the Universe emerged
from the state with the �eld � is proportional to exp

�
� 3

8V (�)

�
. Now we are speaking about the

probability that a given part of the Universe was created from the state with the �eld �, and the
result coincides with our result for the probability of the quantum creation of the Universe, eq.
(9).

This would be a great peaceful resolution of the conict between the two wave functions.
However, the situation is much more complicated. In all realistic cosmological theories, in which
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V (�) = 0 at its minimum, the Hartle-Hawking distribution exp
�

3
8V (�)

�
is not normalizable. The

source of this di�culty can be easily understood: any stationary distribution may exist only
due to compensation of the classical ow of the �eld � downwards to the minimum of V (�)
by the di�usion motion upwards. However, di�usion of the �eld � discussed above exists only
during ination. Thus, there is no di�usion motion upwards from the region � < �e. Therefore
expression (13) is not a true solution of equation (12); all solutions with the proper boundary
conditions at � = �e (i.e. at the end of ination) are non-stationary (decaying) [16].

It is possible to use the solution (13) in the cases where the state can be quasistationary. For
example, in the case when the e�ective potential has a local minimum with a su�ciently large
V , this distribution gives a correct expression for the probability of the Hawking-Moss tunneling
[22]. We were unable to �nd a situation in the context of inationary cosmology where one could
ascribe a more fundamental meaning to the Hartle-Hawking wave function, but of course this
might be a result of our own limitations.

One can get an additional insight by investigation of the probability distribution Pp. In
order to do so, one should write stochastic equations for V(�; tj�), where V(�; tj�) is the total
volume of domains with the �eld � originated from the domains containing �eld �. The system of
stochastic equations for V(�; tj�) can be obtained from eqs. (11), (12) by adding the term 3HV,
which appears due to the growth of physical volume of the Universe by the factor 1 + 3H(�) dt
during each time interval dt [23]{[25]:

@V
@t

=
H3=2(�)

8�2
@

@�

 
H3=2(�)

@V
@�

!
� V 0(�)

3H(�)

@V
@�

+ 3H(�)V ; (14)

@V
@t

=
@

@�

 
H3=2(�)

8�2
@

@�

�
H3=2(�)V

�
+
V 0(�)
3H(�)

V
!
+ 3H(�)V : (15)

To �nd solutions of these equations one must specify boundary conditions. Behavior of solutions of
these equations typically is not very sensitive to the boundary conditions at the boundary � = �e
where ination ends; it is su�cient to assume that the di�usion coe�cient (and, correspondingly,
the �rst terms in the r.h.s. of equations (14), (15)) vanish for � < �e. The conditions at the
Planck boundary � = �p play a more important role. In what follows we will assume that ination
ceases to exist at � > �p [25]. This leads to the boundary condition

V(�p; tj�) = V(�; tj�p) = 0 ; (16)

where V (�p) � V (�p) = O(1).

One may try to obtain solutions of equations (14), (15) in the form of the following series of
system of eigenfunctions of the pair of adjoint linear operators de�ned by the left hand sides of
the equations below:

V(�; tj�) =
1X
s=1

e�st  s(�)�s(�) : (17)

Indeed, this gives us a solution of eq. (15) if

H3=2

8�2
@

@�

 
H3=2 @

@�
 s(�)

!
� V 0

3H

@

@�
 s(�) + 3H �  s(�) = �s  s(�) ; (18)
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and
@

@�

 
H3=2

8�2
@

@�

�
H3=2�j(�)

�!
+

@

@�

 
V 0

3H
�j(�)

!
+ 3H � �j(�) = �j �j(�) : (19)

In our case (with regular boundary conditions) one can easily show that the spectrum of �j
is discrete and bounded from above. Therefore the asymptotic solution for V(�; tj�) in the limit
t!1 is given by

V(�; tj�) = e�1t  1(�)�1(�) �
�
1 +O

�
e�(�1��2)t

��
: (20)

Here  1(�) is the only positive eigenfunction of eq. (18), �1 is the corresponding (real) eigenvalue,
and �1(�) is the eigenfunction of the conjugate operator (19) with the same eigenvalue �1. Note,
that �1 is the highest eigenvalue, Re (�1 � �2) > 0. This means that the distribution

Pp(�; tj�) = e��1t V(�; tj�) (21)

gradually converges to the time-independent normalized distribution

Pp(�; �) � Pp(�; t!1j�) =  1(�)�1(�) : (22)

It is this stationary distribution that we were looking for. Pp(�; �) gives the fraction of the
volume of the Universe occupied by the �eld �, under the condition that the corresponding part
of the Universe at some time in the past contained the �eld �. The remaining problem is to �nd
the functions  1(�) and �1(�), and to check that all assumptions about the boundary conditions
which we made on the way to eq. (20) are actually satis�ed.

We have solved this problem for chaotic ination in a wide class of theories including the
theories with polynomial and exponential e�ective potentials V (�) and found the corresponding
stationary distributions [25]. Here we will present some of our results for the theory �

4
�4.

Solution of equations (18) and (19) for  1(�) and �1(�) shows that these functions are ex-
tremely small at � � �e and � � �e, where �e � �e � 1 correspond to the end of ination.
These functions grow at large � and �, then rapidly decrease, and vanish at � = � = �p. With a
decrease of � the solutions become more and more sharply peaked near the Planck boundary. To
give a physical interpretation to our solutions, it will be convenient to parametrize �1 in the fol-
lowing form: �1 = d(�)Hmax(�). Here d is the so-called fractal dimension of inationary universe
[26, 25], and Hmax is the maximal value of the Hubble constant in the model under consideration.
For example, in the models where ination ceases to exist at the Planck density V (�) = 1 the

maximal value of the Hubble constant is given by 2
q

2�
3
. The eigenvalues d(�) corresponding to

di�erent coupling constants � are given by the following table:

� 1 10�1 10�2 10�3 10�4 10�5 10�6

d 0.9719 1.526 1.915 2.213 2.438 2.604 2.724

As we see, in the limit �! 0 the fractal dimension d(�) grows toward the usual space dimension
3.
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It is very interesting to study the behavior of Pp at small � and �, i.e. at the stage which
determines the structure of the observable part of the Universe. One could expect to �nd a
dependence similar to the one given by eq. (13), i.e. Pp � exp

�
3

8V (�)

�
� exp

�
� 3

8V (�)

�
. Indeed,

this remains true for the dependence of Pp on �. Meanwhile, since there is no di�usion term at
� < �e, the solution at small � > �e should match the solution obtained by neglecting the �rst
(di�usion) term at � < �e. As a result, instead of the product of the Hartle-Hawking and the
tunneling solution for the theory �

4
�4 for small � and � (for �; � < ��1=8) we obtain

V(�; �; t) = ed(�)Hmaxt Pp(�; �) � ed(�)Hmaxt �
p

6�
�
�1 exp

 
� 3

8V (�)

!
: (23)

Thus, the square of the tunneling wave function is here, but the square of the Hartle-Hawking
wave function dropped away. The dependence of V(�; �; t) on � and � is extremely sharp. For
example, for the realistic value � � 10�13 one has Pp(�; �) � e10

13��4 �10
8

.

The factor ed(�)Hmaxt controls the speed of exponential expansion of the volume �lled by a given
�eld �. This speed does not depend on the �eld �, and has the same order of magnitude as the
speed of expansion at the Planck density. One should emphasize that the factor ed(�)Hmaxt gives
the rate of growth of the combined volume of all domains with a given �eld � (or of all domains
containing matter with a given density) not only at very large �, where quantum uctuations

are large, but at small � as well, and even after ination [25]. This result may seem absolutely
unexpected, since the volume of each particular inationary domain grows like e3H(�)t, and after
ination the law of expansion becomes completely di�erent. One should distinguish, however,
between the growth of each particular domain, accompanied by a decrease of density inside it,
and the growth of the total volume of all domains containing matter with a given (constant)
density. In the standard big bang theory the second possibility did not exist, since the energy
density was assumed to be the same in all parts of the Universe (\cosmological principle"), and
it was not constant in time.

The reason why there is a universal expansion rate e�1t can be understood as follows. Because
of the self-reproduction of the Universe there always exist many domains with � � �p, and their
combined volume grows almost as fast as e3H(�p)t. Then the �eld � inside some of these domains
decreases. The total volume of domains containing some small �eld � grows not only due to
expansion � e3H(�p)t, but mainly due to the unceasing process of expansion of domains with large
� and their subsequent rolling (or di�usion) towards small �.

The distribution Pp(�; �) =  1(�)�1(�) which we have obtained does not depend on time t.
However, in general relativity one may use many di�erent time parametrizations, and the same
physics can be described di�erently in di�erent `times'. One of the most natural choices of time
in the context of stochastic approach to ination is the time � = ln a(x;t)

a(x;0)
=
R
H(�(x; t); t) dt

[22, 27]. Here a (x; t) is a local value of the scale factor in the inationary universe. By using this
time variable, we were able to obtain not only numerical solutions to the stochastic equations,
but also simple asymptotic expressions describing these solutions. For example, for the theory
�
4
�4 both the eigenvalue �1 and the `fractal dimension' df (which in this case refers both to the

Planck boundary at �p and to the end of ination at �e) are given by df = �1 � 3� 1:1
p
�, and
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the stationary distribution is [25]

Pp(�; �) � exp
�
� 3

8V (�)

� � 1

V (�) + 0:4
� 1

1:4

�
� � exp

�
�� (3� �1)�

2
�

� exp
�
� 3

2��4

� � 4

��4 + 1:6
� 1

1:4

�
� � exp

�
�3:5

p
��2

�
: (24)

The �rst factor again coincides with the square of the tunneling wave function, and again there
is no trace of the Hartle-Hawking wave function. This expression is valid in the whole interval
from �e to �p and it correctly describes asymptotic behavior of Pp(�; �) both at � � �e and at
� � �p.

A similar investigation can be carried out for the theory V (�) = Vo e
��. The corresponding

solution is

Pp(�; �) � exp
�
� 3

8V (�)

� � 1

V (�)
� 1

�
�
� 1

V (�)
� 1

�
V �1=2(�) : (25)

This expression gives a rather good approximation for Pp(�; �) for all � and �.

The main result is that under certain conditions the properties of our Universe can be described
by a time-independent probability distribution, which we have found for theories with polynomial
and exponential e�ective potentials. Thus, ination solves many problems of the big bang theory
and ensures that this theory provides an excellent description of the local structure of the Universe.
However, after making all kinds of improvements of this theory, we are now winding up with a
model of a stationary Universe, in which the notion of the big bang loses its dominant position,
being removed to the inde�nite past.

3 Predictions in quantum cosmology

3.1 Moderate approach: comparing probabilities within the same

Universe

When inationary theory was �rst formulated, we did not know how much it was going to inuence
our understanding of the structure of the Universe. We were happy that ination provided an
easy explanation of the homogeneity of the Universe. However, we did not know that the same
theory simultaneously predicts that on the extremely large scale the Universe becomes entirely
inhomogeneous, and that this inhomogeneity is good, since it is one of the manifestations of the
process of self-reproduction of inationary Universe.

The new picture of the Universe which emerges now is very unusual, and we are still in the
process of learning how to ask proper questions in the context of the new cosmological paradigm.
Previously we assumed that we live in a Universe which has the same properties everywhere
(\cosmological principle"). Then one could make a guess about the most natural initial conditions
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in the Universe, and all the rest followed almost automatically. Now we learned that even if one
begins with a non-uniform Universe, later it becomes extremely homogeneous on a very large
scale. However, simultaneously it becomes absolutely non-uniform on a much greater scale. the
Universe becomes divided into di�erent exponentially large regions where the laws of low-energy
physics can be di�erent. In certain cases the relative fraction of volume of the Universe in a state
with given �elds or with a given density does not depend on time, whereas the total volume of
all parts of the Universe continues growing exponentially.

This change of the picture of the world is important by itself. However, it would be even
better if we could use it to make certain predictions based on this picture. In this situation the
problem of introduction of a proper measure of probability becomes most important. One of the
most natural choices of such measure is given by the probability distribution Pp(�; �; t). The
hypothesis behind this proposal is that we are typical, and therefore we live in those parts of the
Universe where most other people do. The total number of people which can live in domains
with given properties should be proportional to the total volume of these domains. There are two
versions of this hypothesis, the moderate and the radical ones. The moderate version is based on
investigation of Pp(�; �; t) [16, 25, 28]. If this distribution is stationary, then it seems reasonable
to use it as a measure of the total volume of domains with any particular properties at any given
moment of time t.

The �rst example of this approach is given by the consideration of the axion problem. In the
non-inationary cosmology it was shown that the axion mass should be greater than 10�5 eV in
order to avoid having too much energy stored in the axion �eld [29]. However, the derivation of
this constraint fails in inationary cosmology if one takes into account quantum uctuations of
the axion �eld and eternal production of domains where this �eld takes all its possible values.
Then it can be shown that life of our type can appear only in those domains where the axion
�eld is su�ciently small and under certain conditions discussed in [30] the standard constraint
ma > 10�5 eV disappears.

Another interesting example is given by the probability distribution for �nding the most
probable values of the e�ective gravitational constant in the Brans-Dicke inationary cosmology
[28]. We have shown there that ination in the Brans-Dicke theory leads to division of the
Universe into di�erent exponentially large domains with di�erent values of the gravitational
constant, and, correspondingly, with di�erent values of density perturbations. Then one can use
the probability distribution Pp(�; �; t) to �nd most probable values of the gravitational constant.
In this approach it is possible either to explain the anomalously large value of the Planck mass,
or at least relate it to certain small parameters in the theory, e.g. to the small anisotropy of the
microwave background radiation. Note, that the very language which we are using may sound
somewhat strange. Indeed, typically the purpose is to express the anisotropy of the microwave
background radiation via some fundamental parameters of the theory. In our case the Planck
mass is not fundamental, and its value is anomalously large in those domains where the microwave
background radiation is anomalously small.

In what follows I will briey describe some nonperturbative e�ects which may lead to a
considerable local deviation of density from the critical density of a at Universe [31].
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Let us consider all parts of inationary universe which contain a given �eld � at a given
moment of time t. One may wonder, what was the value of this �eld in those domains at the
moment t � H�1 ? The answer is simple: One should add to � the value of its classical drift
�� during the time H�1, �� = _�H�1. One should also add the amplitude of a quantum jump
��. The typical jump is given by �� = � H

2�
. At the last stages of ination this quantity is by

many orders of magnitude smaller than ��. However, in which sense jumps � H
2�

are typical?
If we consider any particular initial value of the �eld �, then the typical jump from this point
is indeed given by �H

2�
. However, if we are considering all domains with a given � and trying

to �nd all those domains from which the �eld � could originate back in time, the answer may
be quite di�erent. Indeed, the total volume of all domains with a given �eld � at any moment

of time t strongly depends on �: Pp(�) � �
p

6�
�
�1 � �10

8

, see eq. (23). This means that the
total volume of all domains which could jump towards the given �eld � from the value � + ��

will be enhanced by a large additional factor Pp(�+��)

Pp(�)
�
�
1 + ��

�

�p6�
�
�1
. On the other hand, the

probability of large jumps �� is suppressed by the Gaussian factor exp
�
�2�2��2

H2

�
. One can easily

verify that the product of these two factors has a sharp maximum at �� = �1� � H2� , and the width
of this maximum is of the order H

2�
. In other words, most of the domains of a given �eld � are

formed due to jumps which are greater than the \typical" ones by a factor �1��O(1).

Our part of the Universe in the inationary scenario with V (�) = �
4
�4 is formed at � � 5 (in

the units MP = 1), and the constant �1 � 2
p
6� � 8:68 for our choice of boundary conditions.

This means that our part of the Universe should be created as a result of a jump down which
is about �1� � 40 times greater than the standard jump. The standard jumps lead to density
perturbations of the amplitude �� � 5 � 10�5�c (in the normalization of [7]). Thus, according
to our nonperturbative analysis, we should live inside a region where density is smaller than
the critical density by about �� � 2 � 10�3�c. As we already mentioned, the probability of such
uctuations should be suppressed by exp

�
�2�2��2

H2

�
, which in our case gives the suppression factor

� exp(�103). It is well known that exponentially suppressed perturbations typically give rise
to spherically symmetric bubbles. Note also, that the Gaussian distribution suppressing the
amplitude of the perturbations refers to the amplitude of a perturbation in its maximum. It is
possible that we live not in the place corresponding to the maximum of the uctuation. However,
this could only happen if the nonperturbative jump down was even greater in the amplitude that
we expected. Meanwhile, as we already mentioned, the distribution of the amplitudes of such
jumps has width of only about H

2�
. This means that we should live very close to the center of

the giant uctuation, and the di�erence of energy densities between the place where we live and
the center of the \bubble" should be only about the same amplitude as the typical perturbative
uctuation �� � 5 � 10�5�c. In other words, we should live very close to the center of the nearly
perfect spherically symmetric bubble, which contains matter with a smaller energy density than
the matter outside it.

It is very tempting to interpret this e�ect in such a way that the Universe around us becomes
locally open. The true description of this e�ect is, of course, much more complicated; perhaps we
should see the Hubble constant decreasing at large distances. This e�ect is extremely unusual.
We became partially satis�ed by our understanding of this e�ect only after we con�rmed its
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existence by four di�erent methods, including computer simulations [31]. However, it may happen
that what we have found is simply a mathematical property of some particular hypersurfaces in
inationary universe, and it does not have any implications for the part of the Universe where
we live.

Indeed, it is quite legitimate to use the distributions like Pp for descriptions of the structure of
inationary universe. However, it is not quite clear whether one can use them to evaluate prob-
abilities. For example, instead of using the distribution Pp(�; �; t) one may use the distribution
Pp(�; �� ), where � � log a, and many of our result (though not all of them) will change dramat-
ically [25, 28]. Still another answer will be obtained if one uses some other cut-o� procedure, see
[32]. The source of this ambiguity can be easily understood. The total volume of all parts of
an eternally inating Universe is in�nite in the limit t ! 1 (or � ! 1). Therefore when we
are trying to compare volumes of domains with di�erent properties, we are comparing in�nities.
This leads to answers depending on the way we are making this comparison.

It is possible that eventually we will resolve this problem. Still it will not guarantee that
we are on the right track. Our use of Pp as a probability measure was based on two hidden
assumptions. The �rst assumption is that we are typical observers. The second assumption is
that the number of typical observers is directly proportional to the volume of the Universe. If this
is correct, then we should live in the place where most observers live, which should correspond
to a maximum of Pp.

However, is it absolutely clear that the probability for an observer to be born in a particular
part of the Universe is directly proportional to its volume, or one should take into account
something else? One cannot get any crop even from a very large �eld without having seeds �rst.
The idea that life appears automatically once there is enough space to be populated may be too
primitive. It is based on the assumption that one can describe emergence of life solely in terms
of physics. It is certainly a most economical approach, and one should try to go as far as possible
without invoking additional hypotheses. However, one should keep in mind that this approach
may happen to be incomplete, especially if consciousness has its own degrees of freedom [7, 33].

Another related question is whether we are actually typical? Does it make any sense for each
of us to calculate a posteriori what was the probability to be born Russian, Italian or Chinese?
Should we insist on our own mediocrity, or, vice versa, should we try to explain why are we so
special? After all, for a long time we thought that we had the aristocratic privilege to be the most
intelligent species in the Universe. This, of course, may be wrong. Still, before using probabilities
to calculate the likelihood of our existence in a particular part of the Universe, it may be a good
idea to learn more about ourselves. I would take a certain risk to make a conjecture that until
we understand what is our life and what is the nature of consciousness our understanding of
quantum cosmology will remain fundamentally incomplete.
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3.2 A more radical approach: comparing Universes with di�erent

coupling constants

Previously we compared volume of the parts of the Universe with some particular properties
within one Universe. A more ambiguous program is based on a combination of the baby Universe
theory and stochastic approach to ination. The idea is that the coupling constants may take
di�erent values in di�erent Universes, or, more precisely, in di�erent quantum states of the
Universe [34]. If this is the case, then perhaps we should live in those Universes where conditions
are better and the total volume suitable for life is greater [35]{[38].

The total volume is given by V(�; �; t) = ed(�)Hmax(�)tPp(�; �; t). The �rst term in this expres-
sion is especially important. If (and this is a big \if"!) one can compare the volumes of di�erent
Universes with di�erent coupling constants at the same time t, the greatest volume will be occu-
pied by the Universes with the largest product d(�)Hmax(�). For stationary Pp(�; �; t) = Pp(�; �)
the exponential growth of V(�; �; t) in the state with the largest d(�)Hmax(�) eventually beats
all anthropic considerations. This may lead to a very sharp prediction of the coupling constants
which maximize d(�)Hmax(�).

Unfortunately, this immediately leads to a trouble. For example, in our investigation of the

theory �
4
�4 we have found that Hmax = 2

q
2�
3
does not depend on �, whereas the fractal dimension

d(�) has its maximum d = 3 in the limit � = 0. This is a rather general conclusion which seems
to suggest that the inationary e�ective potential should be absolutely at. But then there will
be no density perturbations which are necessary for galaxy formation. One may try to avoid
the problem with density perturbations assuming that they will be produced by cosmic strings
[36, 37], but in the theory with absolutely at potentials there will be no reheating and no cosmic
strings. One may argue that this means that the potential should be almost at, i.e. that it
should be curved just enough to allow baryons and strings to be produced and life to appear.
In fact, in such a case strings are not necessary. For example, one may consider the hybrid
ination model [39]. In this model one can have good ination and su�ciently large density
perturbations without any need for cosmic strings even if the potential is extremely (though
not exactly) at. But the problem is that the gain in ed(�)Hmax(�)t eventually always beats the
anthropic considerations, which pushes us towards the models with exactly at potentials. If
the e�ective potential is exactly at, we have no reheating and no regular density perturbations,
but even in this case life may appear in an in�nite empty Universe with a very small but �nite
probability due to extremely improbable quantum uctuations. Even though such conditions
are extremely improbable, eventually we will be compensated by the inde�nitely large growth of
volume due to the term ed(�)Hmax(�)t. However, in such a scenario there is no reason for our part
of the Universe to be homogeneous on the scale 1028 cm, which is much greater than what is
needed for our existence. One may also argue that if quantum cosmology pushes us outside of
the limits of our normal existence, it probably puts us at the verge of being immediately extinct.

Another example is related to the cosmological constant problem. Adding it to the Lagrangian
also tends to increase d(�). Thus the considerations based on the investigation of the factor
ed(�)Hmax(�)t may push us towards very large values of the vacuum energy density [36]. Of course,
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one cannot go too far since our life cannot exist if the vacuum energy density is too large. However,
anthropic considerations allow vacuum energy density V0 two orders of magnitude greater than the
critical density � 10�29g�cm�3, i.e. two orders of magnitude greater than the present observational
constraints on V0 [40]. Moreover, as we just mentioned, the rapidly growing factor ed(�)Hmax(�)t

should beat all anthropic considerations and should push V0 even higher, which would be in a
de�nite contradiction with the observational data.

This indicates that something should be modi�ed either in the radical approach described in
this subsection or in our choice of the theories to which we applied this approach [38]. Each of
these possibilities can be true. First of all, it is not quite clear whether it makes any sense at all to
compare volume of di�erent Universes (rather than volume of di�erent parts of the same Universe)
at the same time. Then, in certain theories the probability distribution V(�; �; t) is not stationary
[28], so it cannot be represented as ed(�)Hmax(�)tPp(�; �). Finally, under certain conditions the
fastest growth of V(�; �; t) appears in the theories where the e�ective potential is not at and
the cosmological constant is not large [38]. For example, adding a positive cosmological constant
in the Starobinsky model decreases the rate of expansion. This pushes the cosmological constant
to zero [38]. Unfortunately, this cannot be considered as a possible solution of the cosmological
constant problem since the same mechanism may push the cosmological constant even further,
toward its negative values. To solve the cosmological constant problem it would be necessary to
�nd a mechanism which pushes it to zero from both sides.

It would be premature to make any �nal conclusions about the radical approach described
above. The idea to use stochastic approach to ination in order to understand our place in
the world is extremely attractive. However, this powerful weapon should be used with caution,
especially when one tries to extend its limits of applicability and use it in the context of the
baby Universe theory. A possible attitude towards this approach is to consider it as a kind of
\theoretical experiment." We may try to use probabilistic considerations in our trial-and-error
approach to quantum cosmology. If we get unreasonable results, this may serve as an indication
that we are using quantum cosmology incorrectly. However, if we solve some problems which
could not be solved in any other way, then we will have a reason to believe that we are moving
in the right direction. In our opinion, at the present moment we do not have su�cient reasons to
believe that the e�ective potential should be exactly at, that the density perturbations should
be produced by strings appearing after ination, and that the cosmological constant should be as
large as possible. On the other hand, it is not excluded that the stochastic approach to ination,
or some of its generalizations, will help us to solve the cosmological constant problem. This
possibility certainly deserves further investigation. We will return to the possibility of making
predictions and calculating probabilities in quantum cosmology in the next section, where we will
consider the model of an open inationary universe.

17



4 Ination with 
 6= 1

4.1 Ination and atness of the Universe

One of the most robust predictions of inationary cosmology is that the Universe after ination
becomes extremely at, which corresponds to 
 = 1. Here 
 = �

�c
, �c being the energy density of

a at Universe. There were many good reasons to believe that this prediction was quite generic.
The only way to avoid this conclusion is to assume that the Universe inated only by about
e60 times. Exact value of the number of e-foldings N depends on details of the theory and may
somewhat di�er from 60. It is important, however, that in any particular theory ination by
extra 2 or 3 e-foldings would make the Universe with 
 = 0:5 or with 
 = 1:5 almost exactly
at. Meanwhile, the typical number of e-foldings in chaotic ination scenario in the theory m2

2
�2

is not 60 but rather 1012.

One can construct models where ination leads to expansion of the Universe by the factor
e60. However, in most of such models small number of e-foldings simultaneously implies that
density perturbations are extremely large. It may be possible to overcome this obstacle by a
speci�c choice of the e�ective potential. However, this would be only a partial solution. If the
Universe does not inate long enough to become at, then by the same token it does not inate
long enough to become homogeneous and isotropic. Thus, the main reason why it is di�cult to
construct inationary models with 
 6= 1 is not the issue of �ne tuning of the parameters of the
models, which is necessary to obtain the Universe inating exactly e60 times, but the problem of
obtaining a homogeneous Universe after ination.

Fortunately, it is possible to solve this problem, both for a closed Universe [42] and for an open
one [43]{[48]. The main idea is to use the well known fact that the region of space created in the
process of a quantum tunneling tends to have a spherically symmetric shape, and homogeneous
interior, if the tunneling process is suppressed strongly enough. Then such bubbles of a new
phase tend to evolve (expand) in a spherically symmetric fashion. Thus, if one could associate
the whole visible part of the Universe with an interior of one such region, one would solve the
homogeneity problem, and then all other problems will be solved by the subsequent relatively
short stage of ination.

For a closed Universe the realization of this program is relatively straightforward [42, 47]. One
should consider the process of quantum creation of a closed inationary universe from \nothing."
If the probability of such a process is exponentially suppressed (and this is indeed the case if
ination is possible only at the energy density much smaller than the Planck density [12]), then
the Universe created that way will be rather homogeneous from the very beginning.

The situation with an open Universe is much more complicated. Indeed, an open Universe
is in�nite, and it may seem impossible to create an in�nite Universe by a tunneling process.
Fortunately, this is not the case: any bubble formed in the process of the false vacuum decay
looks from inside like an in�nite open Universe [49]. If this Universe continues inating inside
the bubble [43]{[48], then we obtain an open inationary Universe.

18



These possibilities became a subject of an active investigation only very recently, and there
are still many questions to be addressed. First of all, the bubbles created by tunneling are not
absolutely uniform even if the probability of tunneling is very small. This may easily spoil the
whole scenario since in the end of the day we need to explain why the microwave background
radiation is isotropic with an accuracy of about 10�5. Previously we did not care much about
initial homogeneities, but if the stage of ination is short, we will the see original inhomogeneities
imprinted in the perturbations of the microwave background radiation.

The second problem is to construct realistic inationary models where all these ideas could
be realized in a natural way. Whereas for the closed Universe this problem can be easily solved
[42, 47], for an open Universe we again meet complications. It would be very nice to to obtain
an open Universe in a theory of just one scalar �eld [45]. However, in practice it is not very
easy to obtain a satisfactory model of this type. Typically one is forced either to introduce
very complicated e�ective potentials, or consider theories with nonminimal kinetic terms for the
inaton �eld [46]. This makes the models not only �ne-tuned, but also rather complicated. It is
very good to know that the models of such type in principle can be constructed, but it is also
very tempting to �nd a more natural realization of the inationary universe scenario which would
give ination with 
 < 1.

This goal can be achieved if one considers models of two scalar �elds [47]. One of them may
be the standard inaton �eld � with a relatively small mass, another may be, e.g., the scalar �eld
responsible for the symmetry breaking in GUTs. The presence of two scalar �elds allows one
to obtain the required bending of the inaton potential by simply changing the de�nition of the
inaton �eld in the process of ination. At the �rst stage the role of the inaton is played by a
heavy �eld with a steep barrier in its potential, while on the second stage the role of the inaton
is played by a light �eld, rolling in a at direction \orthogonal" to the direction of quantum
tunneling. This change of the direction of evolution in the space of scalar �elds removes the
naturalness constraints for the form of the potential, which are present in the case of one �eld.

Inationary models of this type are quite simple, yet they have many interesting features. In
these models the Universe consists of in�nitely many expanding bubbles immersed into exponen-
tially expanding false vacuum state. Each of these bubbles inside looks like an open Universe, but
the values of 
 in these Universes may take any value from 1 to 0. In some of these models the
situation is even more complicated: Interior of each bubble looks like an in�nite Universe with
an e�ective value of 
 slowly decreasing to 
 = 0 at an exponentially large distance from the
center of the bubble. We will call such Universes quasiopen. Thus, rather unexpectedly, we are
obtaining a large variety of interesting and previously unexplored possibilities. Our discussion of
these possibilities will follow our recent paper with Arthur Mezhlumian [48].

4.2 Tunneling probability and spherical symmetry

Typically it is assumed that the bubbles containing open Universes are exactly spherically sym-
metric (or, to be more accurate, O(3; 1)-symmetric [49]). Meanwhile in realistic situations this
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condition may be violated for several reasons. First of all, the bubble may be formed not quite
symmetric. Then its shape may change even further due to growth of its initial inhomogeneities
and due to quantum uctuations which appear during the bubble wall expansion. As we will
see, this may cause a lot of problems if one wishes to maintain the degree of anisotropy of the
microwave background radiation inside the bubble at the level of 10�5.

First of all, let us consider the issue of symmetry of a bubble at the moment of its formation.
For simplicity we will investigate the models where tunneling can be described in the thin wall
approximation. We will neglect gravitational e�ects, which is possible as far as the initial radius
r of the bubble is much smaller than H�1. In this approximation (which works rather well for
the models to be discussed) euclidean action of the O(4)-symmetric instanton describing bubble
formation is given by

S = � �
2
�2r4 + 2�2r3s : (26)

Here r is the radius of the bubble at the moment of its formation, � is the di�erence of V (�)
between the false vacuum �initial and the true vacuum ��nal, and s is the surface tension,

s =
Z ��nal

�initial

q
2(V (�)� V (��nal)) d� : (27)

The radius of the bubble can be obtained from the extremum of (26) with respect to r:

r =
3s

�
: (28)

Let us check how the action S will change if one consider a bubble of a radius r + �r. Since
the �rst derivative of S at its extremum vanishes, the change will be determined by its second
derivative,

�S =
1

2
S00(�r)2 = 9�2

s2

�
(�r)2 : (29)

Now we should remember that all trajectories which have an action di�erent from the action at
extremum by no more than 1 are quite legitimate. Thus the typical deviation of the radius of the
bubble from its classical value (28) can be estimated from the condition �S � 1, which gives

j�rj �
p
�

3� s
: (30)

Note, that even though we considered spherically symmetric perturbations, our estimate is based
on corrections proportional to (�r)2, and therefore it should remain valid for perturbations which
have an amplitude �r, but change their sign in di�erent parts of the bubble surface. Thus,
eq. (30) gives an estimate of a typical degree of asymmetry of the bubble at the moment of its
creation:

A(r) � j�rj
r

� �
p
�

3� s2
: (31)

This simple estimate exactly coincides with the corresponding result obtained by Garriga and
Vilenkin [52] in their study of quantum uctuations of bubble walls. It was shown in [52] that
when an empty bubble begins expanding, the typical deviation �r remains constant. Therefore
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the asymmetry given by the ratio j�rj
r

gradually vanishes. This is a pretty general result: Waves
produced by a brick falling to a pond do not have the shape of a brick, but gradually become
circles.

However, in our case the situation is somewhat more complicated. The wavefront produced by
a brick in inationary background preserves the shape of the brick if its size is much greater than
H�1. Indeed, the wavefront moves with the speed approaching the speed of light, whereas the
distance between di�erent parts of a region with initial size greater than H�1 grows with a much
greater (and ever increasing) speed. This means that ination stretches the wavefront without
changing its shape on scale much greater than H�1. Therefore during ination which continues
inside the bubble the symmetrization of its shape occurs only in the very beginning, until the
radius of the bubble approaches H�1. At this �rst stage expansion of the bubble occurs mainly
due to the motion of the walls rather than due to inationary stretching of the Universe, and our
estimate of the bubble wall asymmetry as well as the results obtained by Garriga and Vilenkin
for the empty bubble remain valid. At the moment when the radius of the bubble becomes equal
to H�1 its asymmetry becomes

A(H�1) � j�rjH �
p
�H

3� s
; (32)

and the subsequent expansion of the bubble does not change this value very much. Note that the
Hubble constant here is determined by the vacuum energy after the tunneling, which may di�er
from the initial energy density �.

The deviation of the shape of the bubble from spherical symmetry implies that the beginning
of the second stage of ination inside the bubble will be not exactly synchronous, with the delay
time �t � �r. This, as usual, may lead to adiabatic density perturbations on the horizon scale
of the order of H�t, which coincides with the bubble asymmetry A after its size becomes greater
than H�1, see Eq. (32).

To estimate this contribution to density perturbations, let us consider again the simplest
model with the e�ective potential

V (�) =
m2

2
�2 � �

3
�3 +

�

4
�4 : (33)

Now we will consider it in the limit where the two minima of this potential have almost the same
depth, which is necessary for validity of the thin wall approximation. In this case 2�2 = 9M2�,

and the e�ective potential (33) looks approximately like �
4
�2(�� �0)2, where �0 = 2�

3�
=
q

2
�
M is

the position of the local minimum of the e�ective potential. The surface tension in this model is

given by s =
q

�
2

�3
0

6
= M3

3�
[53]. We will also introduce a phenomenological parameter �, such that

�M
4

16�
= �. The smallness of this parameter controls applicability of the thin-wall approximation,

since the value of the e�ective potential near the top of the potential barrier at � = �0=2 is given
by M4

16�
. Then our estimate of density perturbations associated with the bubble wall (32) gives

��

�

�����
bubble

� A(H�1) �
p
��H

4�M
: (34)

21



Here H is the value of the Hubble constant at the beginning of ination inside the bubble.

In order to have ��

�

���
bubble

<� 5 � 10�5 (the number 5 � 10�5 corresponds to the amplitude of

density perturbations in the COBE normalization) one should have

��

�

�����
bubble

�
p
��H

4�M
<� 5� 10�5 : (35)

For H � M perturbations produced by the bubble walls may be su�ciently small even if the
coupling constants are relatively large and the bubbles at the moment of their formation are very
inhomogeneous.

There is a long way from our simple estimates to the full theory of anisotropies of cosmic
microwave background induced by uctuations of the domain wall. In particular, the signi�cance
of this e�ect will clearly depend on the value of 
 [55]. The constraint (35) may appear only if
one can \see" the scale at which the bubble walls have imprinted their uctuations. If ination is
long enough, this scale becomes exponentially large, we do not see the uctuations due to bubble
walls, but then we return to the standard inationary scenario of a at inationary universe.
However, for 
� 1 ination is short, and it does not preclude us from seeing perturbations in a
vicinity of the bubble walls. In such a case one should take the constraint (35) very seriously.

4.3 The simplest model of a (quasi)open inationary Universe

In this section we will explore an extremely simple model of two scalar �elds, where the Universe
after ination becomes open (or quasiopen, see below) in a very natural way [47].

Consider a model of two noninteracting scalar �elds, � and �, with the e�ective potential

V (�; �) =
m2

2
�2 + V (�) : (36)

Here � is a weakly interacting inaton �eld, and �, for example, can be the �eld responsible for
the symmetry breaking in GUTs. We will assume that V (�) has a local minimum at � = 0,
and a global minimum at �0 6= 0, just as in the old inationary theory. For de�niteness, we will
assume that this potential is given by M2

2
�2��M�3+ �

4
�4+V (0), with V (0) � M4

4�
, but it is not

essential; no �ne tuning of the shape of this potential will be required.

Note that so far we did not make any unreasonable complications to the standard chaotic
ination scenario; at large � ination is driven by the �eld �, and the GUT potential is necessary
in the theory anyway. In order to obtain density perturbations of the necessary amplitude the
mass m of the scalar �eld � should be of the order of 10�6MP � 1013 GeV [7].

Ination begins at V (�; �) � M4
P. At this stage uctuations of both �elds are very strong,

and the Universe enters the stage of self-reproduction, which �nishes for the �eld � only when

it becomes smaller than MP

q
MP

m
and the energy density drops down to mM3

P � 10�6M4
P [7].
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Quantum uctuations of the �eld � in some parts of the Universe put it directly to the absolute
minimum of V (�), but in some other parts the scalar �eld � appears in the local minimum of
V (�) at � = 0. We will follow evolution of such domains. Since the energy density in such
domains will be greater, their volume will grow with a greater speed, and therefore they will be
especially important for us.

One may worry that all domains with � = 0 will tunnel to the minimum of V (�) at the
stage when the �eld � was very large and quantum uctuations of the both �elds were large too.
This may happen if the Hubble constant induced by the scalar �eld � is much greater than the
curvature of the potential V (�):

m�

MP

>� M : (37)

This decay can be easily suppressed if one introduces a small interaction g2�2�2 between
these two �elds, which stabilizes the state with � = 0 at large �. Another possibility is to add
a nonminimal interaction with gravity of the form � �

2
R�2, which makes ination impossible for

� > MP

8��
. In this case the condition (37) will never be satis�ed. However, there is a much simpler

answer to this worry. If the e�ective potential of the �eld � is so large that the �eld � can easily
jump to the true minimum of V (�), then the Universe becomes divided into in�nitely many
domains with all possible values of � distributed in the following way [22, 7]:

P (� = 0)

P (� = �0)
� exp

 
3M4

P

8V (�; 0)
� 3M4

P

8V (�; �)

!
= exp

 
3M4

P

4(m2�2 + 2V (0))
� 3M4

P

4m2�2

!
: (38)

One can easily check that at the moment when the �eld � decreases to MMP

m
and the condition

(37) becomes violated, we will have

P (0)

P (�0)
� exp

�
�C
�

�
; (39)

where C is some constant, C = O(1). After this moment the probability of the false vacuum decay
typically becomes much smaller. Thus the fraction of space which survives in the false vacuum
state � = 0 until this time typically is very small, but �nite (and calculable). It is important,
that these rare domains with � = 0 eventually will dominate the volume of the Universe since if
the probability of the false vacuum decay is small enough, the volume of the domains in the false
vacuum will continue growing exponentially without end.

The main idea of our scenario can be explained as follows. Because the �elds � and � do
not interact with each other, and the dependence of the probability of tunneling on the vacuum
energy at the GUT scale is negligibly small [49], tunneling to the minimum of V (�) may occur
with approximately equal probability at all su�ciently small values of the �eld � (see, however,
below). The parameters of the bubbles of the �eld � are determined by the mass scale M
corresponding to the e�ective potential V (�). This mass scale in our model is much greater than
m. Thus the duration of tunneling in the Euclidean \time" is much smaller than m�1. Therefore
the �eld � practically does not change its value during the tunneling. If the probability of decay
at a given � is small enough, then it does not destroy the whole vacuum state � = 0 [50]; the
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bubbles of the new phase are produced all the way when the �eld � rolls down to � = 0. In this
process the Universe becomes �lled with (nonoverlapping) bubbles immersed in the false vacuum
state with � = 0. Interior of each of these bubbles represents an open Universe. However, these
bubbles contain di�erent values of the �eld �, depending on the value of this �eld at the moment
when the bubble formation occurred. If the �eld � inside a bubble is smaller than 3MP, then the
Universe inside this bubble will have a vanishingly small 
, at the age 1010 years after the end
of ination it will be practically empty, and life of our type would not exist there. If the �eld
� is much greater than 3MP, the Universe inside the bubble will be almost exactly at, 
 = 1,
as in the simplest version of the chaotic ination scenario. It is important, however, that in an

eternally existing self-reproducing Universe there will be in�nitely many Universes containing any

particular value of 
, from 
 = 0 to 
 = 1, and one does not need any �ne tuning of the e�ective
potential to obtain a Universe with, say, 0:2 < 
 < 0:3

Of course, one can argue that we did not solve the problem of �ne tuning, we just transformed
it into the fact that only a very small percentage of all Universes will have 0:2 < 
 < 0:3. However,
�rst of all, we achieved our goal in a very simple theory, which does not require any arti�cial
potential bending and nonminimal kinetic terms. Then, there may be some reasons why it is
preferable for us to live in a Universe with a small (but not vanishingly small) 
.

The simplest way to approach this problem is to �nd how the probability for the bubble
production depends on �. As we already pointed out, for small � this dependence is not very
strong. On the other hand, at large � the probability rapidly grows and becomes quite large
at � > MMP

m
. This may suggest that the bubble production typically occurs at � > MMP

m
, and

then for M
m
� 3 we typically obtain at Universes, 
 = 1. This is another manifestation of the

problem of premature decay of the state � = 0 which we discussed above. Moreover, even if
the probability to produce the Universes with di�erent � were entirely �-independent, one could
argue that the main volume of the habitable parts of the Universe is contained in the bubbles
with 
 = 1, since the interior of each such bubble inated longer. Indeed, the total volume of
each bubble created in a state with the �eld � during ination in our model grows by the factor
of exp 6��2

M2

P

[7]. It seems clear that the bubbles with greater � will give the largest contribution

to the total volume of the Universe after ination. This would be the simplest argument in favor
of the standard prediction 
 = 1 even in our class of models.

However, there exist several ways of resolving this problem: involving coupling g2�2�2, which
stabilizes the state � = 0 at large �, or adding nonminimal interaction with gravity of the form
� �

2
R�2. In either way one can easily suppress production of the Universes with 
 = 1. Then the

maximum of probability will correspond to some value 
 < 1, which can be made equal to any
given number from 1 to 0 by changing the parameters g2 and �.

For example, let us add to the Lagrangian the term � �

2
R�2. This term makes ination

impossible for � > �c =
MPp
8��

. If initial value of the �eld � is much smaller than �c, the size of

the Universe during ination grows exp 2��2

M2

P

times, and the volume grows exp 6��2

M2

P

times, as in the

theory m2

2
�2 with � = 0. For initial � approaching �c these expressions somewhat change, but in

order to get a very rough estimate of the increase of the size of the Universe in this model (which
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is su�cient to get an illustration of our main idea) one can still use the old expression exp 2��2

M2

P

.

This expression reaches its maximum near � = �c, at which point the e�ective gravitational
constant becomes in�nitely large and inationary regime ceases to exist [54, 38]. Thus, one may
argue that in this case the main part of the volume of the Universe will appear from the bubbles
with initial value of the �eld � close to �c. For � � 4:4 � 10�3 one has �c � 3MP. In this case
one would have typical Universes expanding much more than e60 times, and therefore 
 � 1. For
� � 4:4�10�3 one has �c � 3MP, and therefore one would have 
� 1 in all inationary bubbles.
It is clear that by choosing particular values of the constant � in the range of � � 4:4� 10�3 one
can obtain the distribution of the Universes with the maximum of the distribution concentrated
near any desirable value of 
 < 1. Note that the position of the peak of the distribution is very
sensitive to the value of �: to have the peak concentrated in the region 0:2 < 
 < 0:3 one would
have to �x � (i.e. �c) with an accuracy of few percent. Thus, in this approach to the calculation
of probabilities to live in a Universe with a given value of 
 we still have the problem of �ne
tuning.

However, calculation of probabilities in the context of the theory of a self-reproducing Universe
is a very ambiguous process, and it is even not quite clear that this process makes any sense at
all. For example, we may formulate the problem in a di�erent way. Consider a domain of the
false vacuum with � = 0 and � = �1. After some evolution it produces one or many bubbles
with � = �0 and the �eld � which after some time becomes equal to �2. One may argue that the
most e�cient way this process may go is the way which in the end produces the greater volume.
Indeed, for the inhabitants of a bubble it does not matter how much time did it take for this
process to occur. The total number of observers produced by this process will depend on the
total volume of the Universe at the hypersurface of a given density, i.e. on the hypersurface of a
given �. If the domain instantaneously tunnels to the state �0 and �1, and then the �eld � in this
domain slowly rolls from �1 to �2, then the volume of this domain grows exp

�
2�
M2

P

(�21��22)
�
times

[7]. Meanwhile, if the tunneling takes a long time, then the �eld � rolls down extremely slowly
being in the false vacuum state with � = 0. In this state the Universe expands much faster than
in the state with � = �0. Since it expands much faster, and it takes the �eld much longer to roll
from �1 to �2, the trajectories of this kind bring us much greater volume. This may serve as an
argument that most of the volume is produced by the bubbles created at a very small �, which
leads to the Universes with very small 
.

One may use another set of considerations, studying all trajectories beginning at �1; t1 and
ending at �2; t2. This will bring us another answer, or, to be more precise, another set of answers,
which will depend on the choice of the time parametrization [25]. Still another answer will be
obtained by the method recently proposed by Vilenkin, who suggested to introduce a particular
cuto� procedure which (almost) completely eliminates dependence of the �nal answer on the time
parametrization [32]. A more radical possibility would be to integrate over all time parametriza-
tions. This task is very complicated, but it would completely eliminate dependence of the �nal
answer on the time parametrization.

There is a very deep reason why the calculation of the probability to obtain a Universe with
a given 
 is so ambiguous. We have discussed this reason in Sect. 3.1 in general terms; let us
see how the situation looks in application to the open Universe scenario. For those who lives
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inside a bubble there is be no way to say at which stage (at which time from the point of view
of an external observer) this bubble was produced. Therefore one should compare all of these
bubbles produced at all possible times. The self-reproducing Universe should exist for inde�nitely
long time, and therefore it should contain in�nitely many bubbles with all possible values of 
.
Comparing in�nities is a very ambiguous task, which gives results depending on the procedure
of comparison. For example, one can consider an in�nitely large box of apples and an in�nitely
large box of oranges. One may pick up one apple and one orange, then one apple and one orange,
over and over again, and conclude that there is an equal number of apples and oranges. However,
one may also pick up one apple and two oranges, and then one apple and two oranges again, and
conclude that there is twice as many oranges as apples. The same situation happens when one
tries to compare the number of bubbles with di�erent values of 
. If we would know how to solve
the problem of measure in quantum cosmology, perhaps we would be able to obtain something
similar to an open Universe in the trivial ��4 theory without any �rst order phase transitions [31],
see Sect. 3.1. In the meantime, it is already encouraging that in our scenario there are in�nitely
many inationary universes with all possible value of 
 < 1. We can hardly live in the empty
bubbles with 
 = 0. As for the choice between the bubbles with di�erent nonvanishing values
of 
 < 1, it is quite possible that eventually we will �nd out an unambiguous way of predicting
the most probable value of 
, and we are going to continue our work in this direction. However,
as we already discussed in the previous section, it might also happen that this question is as
meaningless as the question whether it is more probable to be born as a Chinese rather than as
an Italian. It is quite conceivable that the only way to �nd out in which of the bubbles do we
live is to make observations.

Some words of caution are in order here. The bubbles produced in our simple model are not
exactly open Universes. Indeed, in the models discussed in [49]{[45] the time of reheating (and
the temperature of the Universe after the reheating) was synchronized with the value of the scalar
�eld inside the bubble. In our case the situation is very similar, but not exactly. Suppose that
the Hubble constant induced by V (0) is much greater than the Hubble constant related to the
energy density of the scalar �eld �. Then the speed of rolling of the scalar �eld � sharply increases
inside the bubble. Thus, in our case the �eld � synchronizes the motion of the �eld �, and then
the hypersurface of a constant �eld � determines the hypersurface of a constant temperature.
In the models where the rolling of the �eld � can occur only inside the bubble (we will discuss
such a model shortly) the synchronization is precise, and everything goes as in the models of
refs. [49]{[45]. However, in our simple model the scalar �eld � moves down outside the bubble as
well, even though it does it very slowly. Thus, synchronization of motion of the �elds � and � is
not precise; hypersurface of a constant � ceases to be a hypersurface of a constant density. For
example, suppose that the �eld � has taken some value �0 near the bubble wall when the bubble
was just formed. Then the bubble expands, and during this time the �eld � outside the wall
decreases, as exp

�
�m2t

3H1

�
, where H1 � H(� = � = 0) is the Hubble constant at the �rst stage of

ination, H1 �
r

8�V (0)

3M2

P

. At the moment when the bubble expands e60 times, the �eld � in the

region just reached by the bubble wall decreases to �o exp
�
�20m2

H2

1

�
from its original value �0. the

Universe inside the bubble is a homogeneous open Universe only if this change is negligibly small.
This may not be a real problem. Indeed, let us assume that V (0) = ~M4, where ~M = 1017 GeV.
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(Typically the energy density scale ~M is related to the particle mass as follows: ~M � ��1=4M .)
In this case H1 = 1:7� 1015 GeV, and for m = 1013 GeV one obtains 20m2

H2

1

� 10�4. In such a case

a typical degree of distortion of the picture of a homogeneous open Universe is very small.

Still this issue requires careful investigation. When the bubble wall continues expanding
even further, the scalar �eld outside of it eventually drops down to zero. Then there will be no
new matter created near the wall. Instead of in�nitely large homogeneous open Universes we are
obtaining spherically symmetric islands of a size much greater than the size of the observable part
of our Universe. We do not know whether this unusual picture is an advantage or a disadvantage
of our model. Is it possible to consider di�erent parts of the same exponentially large island as
domains of di�erent \e�ective" 
? Can we attribute some part of the dipole anisotropy of the
microwave background radiation to the possibility that we live somewhere outside of the center
of such island? In any case, as we already mentioned, in the limit m2 � H2

1 we do not expect
that the small deviations of the geometry of space inside the bubble from the geometry of an
open Universe can do much harm to our model.

Our model admits many generalizations, and details of the scenario which we just discussed
depend on the values of parameters. Let us forget for a moment about all complicated processes
which occur when the �eld � is rolling down to � = 0, since this part of the picture depends on the
validity of our ideas about initial conditions. For example, there may be no self-reproduction of
inationary domains with large � if one considers an e�ective potential of the �eld � which is very
curved at large �. However, there will be self-reproduction of the Universe in a state � = � = 0,
as in the old ination scenario. Then the main portion of the volume of the Universe will be
determined by the processes which occur when the �elds � and � stay at the local minimum of
the e�ective potential, � = � = 0. For de�niteness we will assume here that V (0) = ~M4, where

~M is the stringy scale, ~M � 1017�1018 GeV. Then the Hubble constant H1 =
r

8�V (0)
3M2

P

�
q

8�
3

~M2

MP

created by the energy density V (0) is much greater than m � 1013 GeV. In such a case the scalar
�eld � will not stay exactly at � = 0. It will be relatively homogeneous on the horizon scale H�1

1 ,
but otherwise it will be chaotically distributed with the dispersion h�2i = 3H4

8�2m2 [7]. This means
that the �eld � inside each of the bubbles produced by the decay of the false vacuum can take
any value � with the probability

P � exp

 
� �2

2h�2i

!
� exp

 
�3m2�2M4

P

16 ~M8

!
: (40)

One can check that for ~M � 4:3�1017 GeV the typical value of the �eld � inside the bubbles will
be � 3 � 1019 GeV. Thus, for ~M > 4:3 � 1017 GeV most of the Universes produced during the
vacuum decay will be at, for ~M < 4:3 � 1017 GeV most of them will be open. It is interesting
that in this version of our model the percentage of open Universes is determined by the stringy
scale (or by the GUT scale). However, since the process of bubble production in this scenario goes
without end, the total number of Universes with any particular value of 
 < 1 will be in�nitely
large for any value of ~M . Thus this model shows us is the simplest way to resurrect some of
the ideas of the old inationary theory with the help of chaotic ination, and simultaneously to
obtain inationary Universe with 
 < 1.
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Note that this version of our model will not su�er for the problem of incomplete synchroniza-
tion. Indeed, the average value of the �eld � in the false vacuum outside the bubble will remain
constant until the bubble triggers its decrease. However, this model, just as its previous version,
may su�er from another problem. The Hubble constant H1 before the tunneling in this model
was much greater than the Hubble constant H2 at the beginning of the second stage of ination.
Therefore the uctuations of the scalar �eld before the tunneling were very large, �� � H1

2�
, much

greater than the uctuations generated after the tunneling, �� � H2

2�
. This may lead to very

large density perturbations on the scale comparable to the size of the bubble. For the models
with 
 = 1 this e�ect would not cause any problems since such perturbations would be far away
over the present particle horizon, but for small 
 this may lead to unacceptable anisotropy of the
microwave background radiation.

Fortunately, this may not be a real di�culty. A possible solution is very similar to the bubble
symmetrization described in the previous section.

Indeed, let us consider more carefully how the long wave perturbations produced outside the
bubble may penetrate into it. At the moment when the bubble is formed, it has a size (28),
which is smaller than H�1

1 [49]. Then the bubble walls begin moving with the speed gradually
approaching the speed of light. At this stage the comoving size of the bubble (from the point of
view of the original coordinate system in the false vacuum) grows like

r(t) =
Z t

0
dte�H1t = H�1

1 (1 � e�H1t) : (41)

During this time the uctuations of the scalar �eld � of the amplitude H1

2�
and of the wavelength

H�1
1 , which previously were outside the bubble, gradually become covered by it. When these

perturbations are outside the bubble, ination with the Hubble constant H1 prevents them from
oscillating and moving. However, once these perturbations penetrate inside the bubble, their
amplitude becomes decreasing [56, 57]. Indeed, since the wavelength of the perturbations is
� H�1

1 � H�1
2 � m�1, these perturbations move inside the bubbles as relativistic particles, their

wavelength grow as a(t), and their amplitude decreases just like an amplitude of electromagnetic
�eld, �� � a�1(t), where a is the scale factor of the Universe inside a bubble [56]. This process
continues until the wavelength of each perturbation reaches H�1

2 (already at the second stage
of ination). During this time the wavelength grows H1

H2

times, and the amplitude decreases
H2

H1

times, to become the standard amplitude of perturbations produced at the second stage of

ination: H2

H1

H1

2�
= H2

2�
.

In fact, one may argue that this computation was too naive, and that these perturbations
should be neglected altogether. Typically we treat long wave perturbations in inationary uni-
verse like classical wave for the reason that the waves with the wavelength much greater than
the horizon can be interpreted as states with extremely large occupation numbers [7]. However,
when the new born perturbations (i.e. uctuations which did not acquire an exponentially large
wavelength yet) enter the bubble (i.e. under the horizon), they e�ectively return to the realm of
quantum uctuations again. Then one may argue that one should simply forget about the waves
with the wavelengths small enough to �t into the bubble, and consider perturbations created at
the second stage of ination not as a result of stretching of these waves, but as a new process of
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creation of perturbations of an amplitude H2

2�
.

One may worry that perturbations which had wavelengths somewhat greater than H�1
1 at the

moment of the bubble formation cannot completely penetrate into the bubble. If, for example,
the �eld � di�ers from some constant by +H1

2�
at the distance H�1

1 to the left of the bubble at the
moment of its formation, and by �H1

2�
at the distance H�1

1 to the right of the bubble, then this
di�erence remains frozen independently of all processes inside the bubble. This may suggest that
there is some unavoidable asymmetry of the distribution of the �eld inside the bubble. However,
the �eld inside the bubble will not be distributed like a straight line slowly rising from �H1

2�
to

+H1

2�
. Inside the bubble the �eld will be almost homogeneous; the inhomogeneity �� � �H1

2�
will

be concentrated only in a small vicinity near the bubble wall.

Finally we should verify that this scenario leads to bubbles which are symmetric enough, see
eq. (35). Fortunately, here we do not have any problems. One can easily check that for our
model with m � 1013 GeV and ~M � ��1=4M > 1017GeV the condition (35) can be satis�ed even
for not very small values of the coupling constant �.

The arguments presented above should be con�rmed by a more detailed investigation of the
vacuum structure inside the expanding bubble in our scenario. If, as we hope, the result of the
investigation will be positive, we will have an extremely simple model of an open inationary
universe. In the meantime, it would be nice to have a model where we do not have any problems
at all with synchronization and with large uctuations on the scalar �eld in the false vacuum.
We will consider such a model in the next section.

4.4 Hybrid ination and natural ination with 
 < 1

The model to be discussed below is a version of the hybrid ination scenario [39], which is a slight
generalization (and a simpli�cation) of our previous model (36):

V (�; �) =
g2

2
�2�2 + V (�) : (42)

We eliminated the massive term of the �eld � and added explicitly the interaction g2

2
�2�2, which,

as we have mentioned already, can be useful (though not necessary) for stabilization of the state
� = 0 at large �. Note that in this model the line � = 0 is a at direction in the (�; �) plane.
At large � the only minimum of the e�ective potential with respect to � is at the line � = 0. To
give a particular example, one can take V (�) = M2

2
�2��M�3+ �

4
�4+ V0. Here V0 is a constant

which is added to ensure that V (�; �) = 0 at the absolute minimum of V (�; �). In this case the
minimum of the potential V (�; �) at � 6= 0 is deeper than the minimum at � = 0 only for � < �c,

where �c =
M
g

q
2�2

�
� 1. This minimum for � = �c appears at � = �c =

2�M
�

.

The bubble formation becomes possible only for � < �c. After the tunneling the �eld �

acquires an e�ective mass m = g� and begins to move towards � = 0, which provides the
mechanism for the second stage of ination inside the bubble. In this scenario evolution of the
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scalar �eld � is exactly synchronized with the evolution of the �eld �, and the Universe inside
the bubble appears to be open.

E�ective mass of the �eld � at the minimum of V (�; �) with � = �c, � = �c = 2�M
�

is

m = g�c =
2g�M
�

. With a decrease of the �eld � its e�ective mass at the minimum of V (�; �)
will grow, but not signi�cantly. For simplicity, we will consider the case � = �2. In this case it
can be shown that V (0) = 2:77 M4

�
, and the Hubble constant before the phase transition is given

by 4:8 M2p
�MP

. One should check what is necessary to avoid too large density perturbations (35).

However, one should take into account that the mass M in (35) corresponds to the curvature
of the e�ective potential near � = �c rather than at � = 0. In our case this implies that one
should use

p
2M instead of M in this equation. Then one obtains the following constraint on

the mass M : M
p
� <� 2 � 1015 GeV. Note that the thin wall approximation (requiring � � 1)

breaks down far away from � = �c. Therefore in general eq. (35) should be somewhat improved.
However for � � �c it works quite well. To be on a safe side, we will take M = 5 � 1014 GeV.
Other parameters may vary; one may consider, e.g., the theory with g � 10�5, which gives
�c = M

g
� 5 � 1019 GeV � 4MP. The e�ective mass m after the phase transition is equal

to 2gMp
�

at � = �c, and then it grows by only 25% when the �eld � changes all the way down
from �c to � = 0. As we already mentioned, in order to obtain the proper amplitude of density
perturbations produced by ination inside the bubble one should have m � 1013 GeV. This
corresponds to � = �2 = 10�6.

The bubble formation becomes possible only for � < �c. If it happens in the interval 4MP >

� > 3MP, we obtain a at Universe. If it happens at � < 3MP, we obtain an open Universe.
Depending on the initial value of the �eld �, we can obtain all possible values of 
, from 
 = 1
to 
 = 0. The value of the Hubble constant at the minimum with � 6= 0 at � = 3MP in our
model does not di�er much from the value of the Hubble constant before the bubble formation.
Therefore we do not expect any speci�c problems with the large scale density perturbations in
this model. Note also that the probability of tunneling at large � is very small since the depth of
the minimum at � � �c, � � �c does not di�er much from the depth of the minimum at � = 0,
and there is no tunneling at all for � > �c. Therefore the number of at Universes produced by
this mechanism will be strongly suppressed as compared with the number of open Universes, the
degree of this suppression being very sensitive to the value of �c. Meanwhile, life of our type is
impossible in empty Universes with 
� 1. This may provide us with a tentative explanation of
the small value of 
 in the context of our model.

Another model of ination with 
 < 1 is the based on a certain modi�cation of the \natural
ination" scenario [41]. The main idea is to take the e�ective potential of the \natural ination"
model, which looks like a tilted Mexican hat, and make a deep hole it its center at � = 0 [48]. In
the beginning ination occurs near � = 0, but then the bubbles with � 6= 0 appear. Depending
on the phase of the complex scalar �eld � inside the bubble, the next stage of ination, which
occurs just as in the old version of the \natural ination" scenario, leads to formation of the
Universes with all possible values of 
.

A detailed discussion of this scenario can be found in [48]; we will not repeat it here. What is
most important for us is that there exist several rather simple models of an open inationary uni-
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verse. Inationary models with 
 = 1 admittedly are somewhat simpler. Therefore we still hope
that several years later we will know that our Universe is at, which will be a strong experimental
evidence in favor of inationary cosmology in its simplest form. However, if observational data
will show, beyond any reasonable doubt, that 
 6= 1, it will not imply that inationary theory
is wrong. Indeed, now we know that there is a large class of internally consistent cosmological
models which may describe creation of large homogeneous Universes with all possible values of

, and so far all of these models are based on inationary cosmology.

5 Reheating after ination

The theory of reheating of the Universe after ination is the most important application of
the quantum theory of particle creation, since almost all matter constituting the Universe at
the subsequent radiation-dominated stage was created during this process [7]. At the stage of
ination all energy was concentrated in a classical slowly moving inaton �eld �. Soon after the
end of ination this �eld began to oscillate near the minimum of its e�ective potential. Gradually
it produced many elementary particles, they interacted with each other and came to a state of
thermal equilibrium with some temperature Tr, which was called the reheating temperature.

An elementary theory of reheating was �rst developed in [58] for the new inationary scenario.
Independently a theory of reheating in the R2 ination was constructed in [59]. Various aspects
of this theory were further elaborated by many authors, see e.g. [62, 63]. Still, a general scenario
of reheating was absent. In particular, reheating in the chaotic ination theory remained almost
unexplored. The present section contains results obtained recently in our work with Kofman and
Starobinsky [60]. We have found that the process of reheating typically consists of three di�erent
stages. At the �rst stage, which cannot be described by the elementary theory of reheating,
the classical coherently oscillating inaton �eld � decays into massive bosons (in particular, into
�-particles) due to parametric resonance. In many models the resonance is very broad, and the
process occurs extremely rapidly (explosively). Because of the Pauli exclusion principle, there
is no explosive creation of fermions. To distinguish this stage from the stage of particle decay
and thermalization, we will call it pre-heating. Bosons produced at that stage are far away from
thermal equilibrium and typically have enormously large occupation numbers. The second stage
is the decay of previously produced particles. This stage typically can be described by methods
developed in [58]. However, these methods should be applied not to the decay of the original
homogeneous inaton �eld, but to the decay of particles and �elds produced at the stage of
explosive reheating. This considerably changes many features of the process, including the �nal
value of the reheating temperature. The third stage is the stage of thermalization, which can be
described by standard methods, see e.g. [7, 58]; we will not consider it here. Sometimes this stage
may occur simultaneously with the second one. In our investigation we have used the formalism of
the time-dependent Bogoliubov transformations to �nd the density of created particles, n~k(t). A
detailed description of this theory will be given in [61]; here we will outline our main conclusions
using a simple semiclassical approach.

31



We will consider a simple chaotic ination scenario describing the classical inaton scalar �eld
� with the e�ective potential V (�) = �1

2
m2
��

2 + �
4
�4. Minus sign corresponds to spontaneous

symmetry breaking � ! � + � with generation of a classical scalar �eld � =
m�p
�
. The �eld �

after ination may decay into bosons � and fermions  due to the interaction terms �1
2
g2�2�2

and �h �  �. Here �, g and h are small coupling constants. In case of spontaneous symmetry
breaking, the term �1

2
g2�2�2 gives rise to the term �g2���2. We will assume for simplicity

that the bare masses of the �elds � and  are very small, so that one can write m�(�) = g�,
m (�) = jh�j.

Let us briey recall the elementary theory of reheating [7]. At � > MP, we have a stage of
ination. This stage is supported by the friction-like term 3H _� in the equation of motion for
the scalar �eld. Here H � _a=a is the Hubble parameter, a(t) is the scale factor of the Universe.
However, with a decrease of the �eld � this term becomes less and less important, and ination
ends at � <� MP=2. After that the �eld � begins oscillating near the minimum of V (�). The
amplitude of the oscillations gradually decreases because of expansion of the Universe, and also
because of the energy transfer to particles created by the oscillating �eld. Elementary theory
of reheating is based on the assumption that the classical oscillating scalar �eld �(t) can be
represented as a collection of scalar particles at rest. Then the rate of decrease of the energy of
oscillations coincides with the decay rate of �-particles. The rates of the processes �! �� and
�!   (for m� � 2m�; 2m ) are given by

�(�! ��) =
g4�2

8�m�

; �(�!   ) =
h2m�

8�
: (43)

Reheating completes when the rate of expansion of the Universe given by the Hubble constant

H =
r

8��
3M2

P

� t�1 becomes smaller than the total decay rate � = �(�! ��) + �(�!   ). The

reheating temperature can be estimated by Tr ' 0:1
p
�MP .

It is interesting to note that in accordance with the elementary theory of reheating the ampli-
tude squared of the oscillating scalar �eld decays exponentially, as e��t. Phenomenologically, this
can be described by adding the term � _� to the equation of motion of the scalar �eld. Unfortu-
nately, many authors took this prescription too seriously and investigated the possibility that the
term � _�, just like the term 3H _�, can support ination. We should emphasize [60], that adding
the term � _� to the equation of motion is justi�ed only at the stage of oscillations (i.e. after the
end of ination), and only for the description of the amplitude of oscillations of the scalar �eld,
rather than for the description of the scalar �eld itself. Moreover, even at the stage of oscillations
this description becomes incorrect as soon as the resonance e�ects become important.

As we already mentioned, elementary theory of reheating can provide a qualitatively correct
description of particle decay at the last stages of reheating. Moreover, this theory is always
applicable if the inaton �eld can decay into fermions only, with a small coupling constant
h2 � m�=MP. However, typically this theory is inapplicable to the description of the �rst stages
of reheating, which makes the whole process quite di�erent. In what follows we will develop the
theory of the �rst stages of reheating. We will begin with the theory of a massive scalar �eld �
decaying into particles �, then we consider the theory �

4
�4, and �nally we will discuss reheating

in the theories with spontaneous symmetry breaking.
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We begin with the investigation of the simplest inationary model with the e�ective potential
m2

�

2
�2. Suppose that this �eld only interacts with a light scalar �eld � (m� � m�) due to the term

�1
2
g2�2�2. The equation for quantum uctuations of the �eld � with the physical momentum

~k=a(t) has the following form:

��k + 3H _�k +

 
k2

a2(t)
+ g2�2 sin2(m�t)

!
�k = 0 ; (44)

where k =
q
~k2, and � stands for the amplitude of oscillations of the �eld �. As we shall

see, the main contribution to �-particle production is given by excitations of the �eld � with
k=a � m�, which is much greater than H at the stage of oscillations. Therefore, in the �rst
approximation we may neglect the expansion of the Universe, taking a(t) as a constant and
omitting the term 3H _�k in (44). Then the equation (44) describes an oscillator with a variable
frequency 
2

k(t) = k2a�2 + g2�2 sin2(m�t). Particle production occurs due to a nonadiabatic
change of this frequency. Equation (44) can be reduced to the well-known Mathieu equation:

�00k + (A(k)� 2q cos 2z)�k = 0 ; (45)

where A(k) = k2

m2

�
a2

+ 2q, q = g2�2

4m2

�

, z = m�t, prime denotes di�erentiation with respect to

z. An important property of solutions of the equation (45) is the existence of an exponential

instability �k / exp(�(n)k z) within the set of resonance bands of frequencies �k(n) labeled by
an integer index n. This instability corresponds to exponential growth of occupation numbers
of quantum uctuations n~k(t) / exp(2�(n)k m�t) that may be interpreted as particle production.
As one can show, near the line A = 2q there are regions in the �rst, the second and the higher
instability bands where the unstable modes grow extremely rapidly, with �k � 0:2. We will show
analytically in [61] that for q � 1 typically �k � ln 3

2�
� 0:175 in the instability bands along the

line A = 2q, but its maximal value is ln(1+
p
2)

�
� 0:28. Creation of particles in the regime of a

broad resonance (q > 1) with 2��k = O(1) is very di�erent from that in the usually considered
case of a narrow resonance (q � 1), where 2��k � 1. In particular, it proceeds during a tiny
part of each oscillation of the �eld � when 1 � cos z � q�1 and the induced e�ective mass of
the �eld � (which is determined by the condition m2

� = g2�2=2) is less than m�. As a result,
the number of particles grows exponentially within just a few oscillations of the �eld �. This
leads to an extremely rapid (explosive) decay of the classical scalar �eld �. This regime occurs
only if q >� ��1, i.e. for g� >� m�, so that m� � gMP is the necessary condition for it. One
can show that a typical energy E of a particle produced at this stage is determined by equation

A� 2q � pq, and is given by E �
q
gm�MP [61].

Creation of �-particles leads to the two main e�ects: transfer of the energy from the homo-
geneous �eld �(t) to these particles and generation of the contribution to the e�ective mass of
the � �eld: m2

�;eff = m2
� + g2h�2iren. The last term in the latter expression quickly becomes

larger than m2
�. One should take both these e�ects into account when calculating backreaction

of created particles on the process. As a result, the stage of the broad resonance creation ends
up within the short time t � m�1

� ln(m�=g
5MP), when �2 � h�2i and q = g2�2

4m2

�;eff

becomes

smaller than 1. At this time the energy density of produced particles � E2h�2i � gm�MP�2
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is of the same order as the original energy density � m2
�M

2
P of the scalar �eld � at the end of

ination. This gives the amplitude of oscillations at the end of the stage of the broad resonance
particle creation: �2 � h�2i � g�1m�MP � M2

P. Since E � m�, the e�ective equation of
state of the whole system becomes p � �=3. Thus, explosive creation practically eliminates a
prolonged intermediate matter-dominated stage after the end of ination which was thought to
be characteristic to many inationary models. However, this does not mean that the process of
reheating has been completed. Instead of �-particles in the thermal equilibrium with a typical
energy E � T � (mMP)1=2, one has particles with a much smaller energy � (gm�MP)1=2, but
with extremely large mean occupation numbers nk � g�2 � 1.

After that the Universe expands as a(t) /
p
t, and the scalar �eld � continues its decay in

the regime of the narrow resonance creation q � �2

4h�2i � 1. As a result, � decreases rather

slowly, � / t�3=4. This regime is very important because it makes the energy of the � �eld
much smaller than that of the �-particles. One can show that the decay �nally stops when
the amplitude of oscillations � becomes smaller than g�1m� [61]. This happens at the moment
t � m�1

� (gMP=m�)1=3 (in the case m < g7MP decay ends somewhat later, in the perturbative
regime). The physical reason why the decay stops is rather general: decay of the particles � in
our model occurs due to its interaction with another �-particle (interaction term is quadratic
in � and in �). When the �eld � (or the number of �-particles) becomes small, this process is
ine�cient. The scalar �eld can decay completely only if a single scalar �-particle can decay into
other particles, due to the processes �! �� or �!   , see eq. (43). If there is no spontaneous
symmetry breaking and no interactions with fermions in our model, such processes are impossible.

At later stages the energy of oscillations of the inaton �eld decreases as a�3(t), i.e. more
slowly than the decrease of energy of hot ultrarelativistic matter / a�4(t). Therefore, the relative
contribution of the �eld �(t) to the total energy density of the Universe rapidly grows. This gives
rise to an unexpected possibility that the inaton �eld by itself, or other scalar �elds can be cold
dark matter candidates, even if they strongly interact with each other. However, this possibility
requires a certain degree of �ne tuning; a more immediate application of our result is that it
allows one to rule out a wide class of inationary models which do not contain interaction terms
of the type of g2���2 or h� �  .

So far we have not considered the term �
4
�4 in the e�ective potential. Meanwhile this term

leads to production of �-particles, which in some cases appears to be the leading e�ect. Let

us study the �-particle production in the theory with V (�) =
m2

�

2
�2 + �

4
�4 with m2

� � �M2
P.

In this case the e�ective potential of the �eld � soon after the end of ination at � � MP is
dominated by the term �

4
�4. Oscillations of the �eld � in this theory are not sinusoidal, they

are given by elliptic functions, but with a good accuracy one can write �(t) � �sin(c
p
�
R
�dt),

where c = �2(3=4)p
�

� 0:85. the Universe at that time expands as at the radiation-dominated stage:

a(t) /
p
t. If one neglects the feedback of created �-particles on the homogeneous �eld �(t), then

its amplitude �(t) / a�1(t), so that a� = const. Using a conformal time �, exact equation for
quantum uctuations �� of the �eld � can be reduced to the Lame equation. The results remain
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essentially the same if we use an approximate equation

d2(��k)

d�2
+
h
k2 + 3�a2�2 sin2(c

p
�a��)

i
��k = 0; � =

Z
dt

a(t)
=

2t

a(t)
; (46)

which leads to the Mathieu equation with A = k2

c2�a2�2 +
3
2c2
� k2

c2�a2�2 +2:08, and q = 3
4c2
� 1:04.

Looking at the instability chart, we see that the resonance occurs in the second band, for k2 �
3�a2�2. The maximal value of the coe�cient �k in this band for q � 1 approximately equals to
0:07. As long as the backreaction of created particles is small, expansion of the Universe does not
shift uctuations away from the resonance band, and the number of produced particles grows as

exp(2c�k
p
�a��) � exp(

p
��t
5

).

After the time interval � M�1
P ��1=2j ln �j, backreaction of created particles becomes signi�-

cant. The growth of the uctuations h�2i gives rise to a contribution 3�h�2i to the e�ective mass
squared of the �eld �, both in the equation for �(t) and in Eq. (46) for inhomogeneous modes.
The stage of explosive reheating ends when h�2i becomes greater than �2. After that, �2 � h�2i
and the e�ective frequency of oscillations is determined by the term

q
3�h�2i. The corresponding

process is described by Eq. (45) with A(k) = 1+2q+ k2

3�a2h�2i, q =
�2

4h�2i . In this regime q� 1, and
particle creation occurs in the narrow resonance regime in the second band with A � 4. Decay
of the �eld in this regime is extremely slow: one can show [61] that the amplitude � decreases
only by a factor t1=12 faster that it would decrease without any decay, due to the expansion of the
Universe only, i.e., � / t�7=12. Reheating stops altogether when the presence of non-zero mass

m� though still small as compared to
q
3�h�2i appears enough for the expansion of the Universe

to drive a mode away from the narrow resonance. It happens when the amplitude � drops up to
a value � m�=

p
�.

In addition to this process, the �eld � may decay to �-particles. This is the leading process
for g2 � �. The equation for �k quanta has the same form as eq. (46) with the obvious change
�! g2=3. Initially parametric resonance is broad. The values of the parameter �k along the line
A = 2q do not change monotonically, but typically for q� 1 they are 3 to 4 times greater than the
parameter �k for the decay of the �eld � into its own quanta. Therefore, this pre-heating process
is very e�cient. It ends at the moment t � M�1

P ��1=2 ln(�=g10) when �2 � h�2i � g�1
p
�M2

P.
The typical energy of created �-particles is E � (g2�)1=4MP. The following evolution is essentially
the same as that described above for the case of a massive scalar �eld decaying into �-particles.

Finally, let us consider the case with symmetry breaking. In the beginning, when the ampli-
tude of oscillations is much greater than �, the theory of decay of the inaton �eld is the same as
in the case considered above. The most important part of pre-heating occurs at this stage. When
the amplitude of the oscillations becomes smaller than m�=

p
� and the �eld begins oscillating

near the minimum of the e�ective potential at � = �, particle production due to the narrow
parametric resonance typically becomes very weak. The main reason for this is related to the
backreaction of particles created at the preceding stage of pre-heating on the rate of expansion
of the Universe and on the shape of the e�ective potential [61]. A rather interesting e�ect which
makes investigation of this regime especially complicated is a temporary (non-thermal) symmetry
restoration which occurs because of the interaction of the �eld � with its uctuations < �2 >.
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Importance of spontaneous symmetry breaking for the theory of reheating should not be under-
estimated, since it gives rise to the interaction term g2���2 which is linear in �. Such terms are
necessary for a complete decay of the inaton �eld in accordance with the perturbation theory
(43).

In this section we presented the new theory of reheating developed in [60], where we performed
an investigation of reheating with an account of expansion of the Universe and of the backreaction
of created particles, both in the broad resonance regime and in the narrow resonance case. As a
result of this investigation, we obtained equations for the power-law decrease of the amplitude of
an oscillating scalar �eld with an account taken of all of these e�ects. During the last year there
appeared many other papers on the theory of reheating [64]{[68], which made the physical picture
of reheating even more clear. Unfortunately, it is not easy to compare the results obtained in
[64]{[68] with the results of our work [60]. For example, a very thorough investigation of reheating
in the narrow resonance regime without a complete account of backreaction was performed in
[64, 67, 68], and their results in this approximation agree with the corresponding results of
[60]. However, as we have seen, at the �rst, most e�cient stages of reheating the resonance is
broad, and when it becomes narrow a complete account of backreaction becomes necessary [60].
Backreaction was studied in a very detailed way in ref. [65], but their investigation was performed
neglecting expansion of the Universe, which was an important part of our work. That is why in
this review we concentrated on the results obtained in [60]. However, to obtain a complete theory
of reheating a much more detailed investigation will be necessary, and in this respect many of
the results obtained in [64]{[68] should be very useful.

We should emphasize that the stage of parametric resonance is just the �rst stage of the
process. If one naively takes the energy density at the end of explosive reheating and assumes
that this energy density instantaneously transfers to heat, one may overestimate the reheating
temperature by many orders of magnitude. Indeed, after the stage of explosive reheating the
bose-particles created at this stage have enormously large occupation numbers, and they should
further decay into the usual elementary particles. This may take a lot of time, during which the
energy density of the Universe may decrease dramatically. To �nd the reheating temperature one
should investigate the subsequent decay of the particles created at the stage of explosive reheating.
This decay can be described by the old perturbative methods developed in [58]. Note, however,
that now this theory should be applied not to the decay of the original large and homogeneous
oscillating inaton �eld, but to the decay of particles produced at the stage of pre-heating, as well
as to the decay of small remnants of the classical inaton �eld. This makes a lot of di�erence,
since typically coupling constants of interaction of the inaton �eld with matter are extremely
small, whereas coupling constants involved in the decay of other bosons can be much greater. As
a result, the reheating temperature can be much higher than the typical temperature Tr <� 109

GeV which could be obtained neglecting the stage of parametric resonance [61]. In addition,
one should make a careful study of the process of establishing of thermal equilibrium [66]. On
the other hand, such processes as baryon creation after ination occur best of all outside the
state of thermal equilibrium. Therefore, the stage of explosive reheating (pre-heating), which
produces �elds and particles outside of the state of thermal equilibrium, may play an extremely
important role in the cosmological theory. Another consequence of the resonance e�ects is an
almost instantaneous change of equation of state from the vacuum-like one to the equation of
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state of relativistic matter p = �=3. This may be important for investigation of the primordial
black hole formation, which could appear from growing density perturbations if equation of state
after ination for a long time was p = 0.

A rather nontrivial example of reheating appears in inationary models based on supergravity,
see e.g. [69]{[72]. The leading mode of the single-inaton decay in such models often involves
creation of a gravitino, which is a fermion. This does not necessarily mean that the �rst explosive
stage cannot be realized in such models. Indeed, just as in the theory �

4
�4, at the �rst stage the

homogeneous classical oscillating inaton �eld � may decay into decoherent waves or particles
of the same �eld �. However, this will be just a �rst stage of reheating, after which one should
consider decay of the inaton particles by the usual perturbative methods. In such a situation
one does not expect any deviations of the reheating temperature from its value obtained by
perturbative methods [58], [69]{[72].

One should note also that in certain models the oscillations of the scalar �eld from the very
beginning occur in the region where the conditions for the explosive reheating formulated in [60]
are not satis�ed. Such a situation occurs, e.g., in \natural ination" [73], where the change of the
e�ective mass of the inaton �eld during its oscillations is relatively small, and the conditions of
existence of narrow resonance in expanding Universe derived in [60] are violated.

Let us briey summarize our results:

1. In many models where decay of the inaton �eld can occur in the purely bosonic sector
the �rst stages of reheating occur due to parametric resonance. This process (pre-heating) is
extremely e�cient even if the corresponding coupling constants are very small. However, there is
no explosive reheating in the models where decay of the inaton �eld is necessarily accompanied
by fermion production.

2. The stage of explosive reheating due to a broad resonance typically is very short. Later the
resonance becomes narrow, and �nally the stage of pre-heating �nishes altogether. Interactions
of particles produced at this stage, their decay into other particles and subsequent thermaliza-
tion typically require much more time that the stage of pre-heating, since these processes are
suppressed by the small values of coupling constants.

3. The last stages of reheating typically can be described by the elementary theory of reheating
[58]. However, this theory should be applied not to the original inaton �eld, but to the products
of its decay formed at the stage of explosive reheating. In some models it changes the �nal value
of the reheating temperature.

4. Existence of the intermediate stage between the end of explosive reheating and the begin-
ning of thermal equilibrium may have important implications for the theory of baryogenesis.

5. Reheating never completes in the theories where a single �-particle cannot decay into other
particles. This implies that reheating completes only if the theory contains interaction terms like
���2 of � �  . In most cases the theories where reheating never completes contradict observational
data. On the other hand, this result suggests an interesting possibility that the classical scalar
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�elds (maybe even the inaton �eld itself) may be responsible for the dark matter of the Universe
even if they strongly interact with other matter �elds.

6 Conclusions

Inationary theory is already more than 15 years old, and its main principles seem to be well
understood. Nevertheless, it is young enough to bring us many new surprises. Originally we
expected that ination was a short intermediate stage after the hot big bang. Now it seems that
the standard big bang theory is only a part of inationary cosmology which describes local (but
not global) properties of the self-reproducing inationary universe. Even though each part of the
Universe expands (or collapses), the Universe as a whole may be stationary. One of the main
purposes of inationary cosmology was to solve the primordial monopole problem by expanding
the distance between the monopoles. Recently we learned that the monopoles themselves may
expand exponentially and become as large as a universe [74]. On the other hand, we learned
that an in�nitely large open inationary universe may �t into an interior of a single bubble of a
�nite size produced during the false vacuum decay. This demonstrated that even though 
 = 1
remains one of the rather robust predictions of inationary cosmology, it will be impossible to kill
ination by proving that our universe is open. The process of creation of matter after ination also
happened to be extremely interesting and complicated, involving investigation of nonperturbative
resonance e�ects in an expanding universe. Rapid development of the inationary theory is a very
good sign indicating that we are moving fast towards a complete cosmological theory { assuming,
as we all hope, that we have chosen the right direction.
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