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Abstract. This paper explores in some detail a recent proposal (the Rieffel induction/refined
algebraic quantization scheme) for the quantization of constrained gauge systems. Below, the
focus is on systems with a single constraint and, in this context, on the uniqueness of the
construction. While in general the results depend heavily on the choices made for certain auxiliary
structures, an additional physical argument leads to a unique result for typical cases. We also
discuss the ‘superselection laws’ that result from this scheme and how their existence also depends
on the choice of auxiliary structures. Again, when these structures are chosen in a physically
motivated way, the resulting superselection laws are physically reasonable.

1. Introduction
Canonical quantization of gauge systems has been a subject of much discussion since

the basic outline was first given by Dirac [5]. This formalism has been especially popular
in the gravitational physics community as, for Einstein’s general theory of relativity on
a spatially compact universe, the Hamiltonian consists only of constraints. In addition,
the nature of the gauge transformations associated with gravity make gauge fixing tech-
niques extremely difficult to apply and perturbative nonrenormalizability has frustrated
attempts at covariant path integral quantization. Thus, Dirac style canonical quantization
remains at the forefront of quantum gravity research [2,10,11].

Despite this interest, certain basic issues have remained unresolved for the general
case. Recall that the essential idea of Dirac’s approach is to turn the classical constraints
Ci into linear operators Ĉi and to consider ‘physical states ψphys’ that are annihilated
by the constraints; i.e., such that Ĉiψphys = 0. However, the questions of on which linear
space the constraints should act and of just how an inner product is to be imposed on
the solutions to define a Hilbert space do not yet have widely accepted answers.

Recently, a resolution to these issues has been proposed. In fact, what is essentially the
same resolution has been independently suggested twice under the names of the ‘Rieffel
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induction procedure’ [12] and the ‘refined algebraic quantization scheme’ [1]. This method
has been successfully used to quantize linearized gravity on symmetric backgrounds [8,9],
minisuperspace models for gravity [16,17], and the free Maxwell field [13]. As might be
expected, these methods proceed by introducing additional structures beyond what is
present in the original Dirac approach. These techniques and additional structures will
be explored further here in the particular context of systems with a single constraint.

We begin with a review of the Rieffel/refined algebraic procedure in section 2. Here,
we use the language and notation of [1] as it is more closely related to that of Dirac [5]
and therefore more familiar. We will also refer to the scheme as the ‘refined algebraic
proposal’ in the text.

Sections 3 and 4 contain the main results of this paper. In section 3 we show how, for
typical systems with a single constraint, a physical argument determines a unique imple-
mentation of the Rieffel/refined algebraic scheme. In section 4 we discuss superselection
laws on the physical Hilbert space and how their existence may depend on the choice of
auxiliary structures. We give two examples. In the first, the use of an ‘incorrect’ struc-
ture leads to spurious superselection laws. This example also illustrates the fact that the
physical Hilbert space can depend strongly on the choice of this structure. In the second,
the use of a physically motivated auxiliary structure produces superselection laws, but
this time a similar feature exists in the classical theory. Thus, for this second case we
take the superselection laws to be physically meaningful. Appendices A and B contain
proofs of technical results which are not of direct relevance to the main discussion but
which are mentioned in the text.

2. The Refined Algebraic Approach
In this section, we review the refined algebraic quantization scheme presented in [1]

(which is essentially equivalent to the Rieffel induction procedure of [12]) for systems with
gauge symmetries. The starting point is a constrained classical system with phase space
Γ and, as usual, the nondegenerate symplectic form ω on Γ defines a Poisson Bracket on
smooth functions Γ → C. The constraints Ci are required to be first class; that is, the
Poisson bracket of two constraints is a sum of constraints (possibly weighted by smooth
phase space functions), as is the Poisson bracket of any constraint with the Hamiltonian.
As a result, the constraint surface is preserved under time evolution.

The refined algebraic proposal quantizes this system in a series of steps based on
those of the original algebraic quantization program [2,3]. The first four steps below have
nothing to do with constrained systems but simply quantize the system obtained by
ignoring the constraints. They follow the unconstrained prescription of [2,3] exactly but
we repeat them here for completeness and to fix our notation.

Step 1. Select a subspace S of the vector space of all smooth, complex-valued functions on Γ
subject to the following conditions:

a) S should be large enough so that any sufficiently regular function on the phase
space can be obtained as (possibly a suitable limit of) a sum of products of elements
in S.

b) S should be closed under Poisson brackets, i.e. for all functions F,G in S, their
Poisson bracket {F,G} should also be an element of S.

c) Finally, S should be closed under complex conjugation; i.e. for all F in S, the
complex conjugate F ∗ should be a function in S.
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The idea is that each function in S is to be regarded as an elementary classical variable
which is to have an unambiguous quantum analog.

Step 2. Associate with each element F in S an abstract operator F̂ . Construct the free as-
sociative algebra generated by these elementary quantum operators. Impose on it the
canonical commutation relations, [F̂ , Ĝ] = ih̄ ̂{F,G}, and, if necessary, also a set of
(anti-commutation) relations that captures the algebraic identities satisfied by the
elementary classical variables. Denote the resulting algebra by Baux.

Step 3. On this algebra, introduce an involution1 operation ? by requiring that if two elemen-
tary classical variables F and G are related by F ∗ = G, then F̂ ? = Ĝ in Baux. Denote
the resulting ?-algebra by B(?)

aux.

Step 4. Construct a linear ?-representationR of the abstract algebra B(?)
aux via linear operators

on an auxiliary Hilbert space Haux, i.e. such that

R(Â?) = R(Â)†

for all Â in B(?), where † denotes Hermitian conjugation with respect to the inner
product in Haux.

The remaining steps introduce the constraints and address the questions raised in the
introduction. That is, they first use the space Haux to provide a home for the constraints
and for the linear space on which they act, and then construct the physical Hilbert space
from the corresponding solutions.

Step 5a. Represent the constraints Ci as self-adjoint operators Ĉi (or, their exponentiated
action, representing the finite gauge transformations, as unitary operators Ûi) on
Haux.

We will now look for solutions of the constraints in terms of generalized eigenvectors
of Ĉi which will lie in the topological dual Φ′ of some dense subspace Φ ⊂ Haux (see
also Ref. [6,7]). Since Φ and Φ′ will be used to build the physical Hilbert space, we will
consider only physical operators that are well behaved with respect to Φ.

Step 5b. Choose a suitable dense subspace Φ ⊂ Haux which is left invariant by the constraints
Ĉi and let B(?)

phys be the ?-algebra of operators on Haux which commute with the

constraints Ĉi and such that, for A ∈ B(?)
phys, both A and A† are defined on Φ and

map Φ to itself.

As an example in section 4 will illustrate, some physical input is in general required
to choose the space Φ. Some factors governing this choice are that it must be sufficiently
large so that B(?)

phys contains ‘enough’ physically interesting operators while it must also
be be sufficiently small that its topological dual Φ′ contains enough physical states.

The main idea in the last few steps is that, while the classical reality conditions
should determine the inner product, we should not need to explicitly display a complete
set of classical observables (i.e., functions which Poisson commute with the constraints)
to achieve this goal. Instead, we use a complete set of functions (S) on the unconstrained
phase space, noting that the reality properties of such functions will determine the reality

1 Recall that an involution on Baux is an anti-linear map ? from Baux to itself satisfying the
following three conditions for all A and B in Baux: i) (A + λB)? = A? + λ∗B?, where λ is any
complex number; ii) (AB)? = B?A?; and iii) (A?)? = A.
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properties of the observables. The reality conditions of operators in B(?)
aux are then imple-

mented on the auxiliary Hilbert space Haux. The physical Hilbert space Hphys is to be
constructed in such a way that any adjointness relations involving only observables (i.e.,
A = B†, for A,B observables) will in turn descend from Haux to Hphys (so that A = B†

on Hphys as well). In this way, we will say that the reality conditions are implemented
on Hphys.

We now wish to construct the physical Hilbert space Hphys, which will in general not
be a subspace of Haux. The key idea is to find an appropriate map η : Φ → Φ′ such that
η(φ) is a solution of the constraints for all φ ∈ Φ. (Note that the natural class of maps
from Φ to Φ′ is anti-linear (e.g., the adjoint map)). We proceed as follows.

Step 5c. Find an anti-linear map η from Φ to the topological dual Φ′ that satisfies:

(i) For every φ1 ∈ Φ, η(φ1) is a solution of the constraints; i.e.,

0 =
(
Ĉi(ηφ1)

)
[φ2] := (ηφ1)[Ĉiφ2]

for any φ2 ∈ Φ. Here, the square brackets denote the natural action of Φ′ on Φ.

(ii) η is real and positive in the sense that, for all φ1, φ2 ∈ Φ,

(ηφ1)[φ2] = ((ηφ2)[φ1])∗ and

(ηφ1)[φ1] ≥ 0

.

(iii) η commutes with the action of any A ∈ B(?)
phys in the sense that

(ηφ1)[Aφ2] = ((ηA†φ1))[φ2]

for all φ1, φ2 ∈ Φ. The r.h.s. defines the so-called dual action of A on Φ′ so that we
may write this as ηAφ = Aηφ.

In analogy with [12] we call η the rigging map. (The appearance of the adjoint on the
r.h.s. of the above equation corresponds to the anti-linearity of η.)

Step 5d. The vectors ηφ span a space Vphys of solutions of the constraints. We introduce an
inner product on Vphys through

〈ηφ1, ηφ2〉phys = (ηφ2)[φ1]

The requirement (iii) guarantees that this inner product is well defined and that it
is Hermitian and positive definite so that the corresponding completion of Vphys is a
‘physical’ Hilbert space Hphys. (Note that the positions of φ1 and φ2 must be opposite
on the two sides of this definition due to the anti-linear nature of η.)

At this point, the reader may fear that this list of conditions on η will never be
met in practice. That the new step 5 may actually simplify the quantization program
follows from the observation of [8,9] (and [15,16] for the case when the Poisson algebra
of constraints is Abelian) that natural candidates for such a map exist.

The last step is to represent physical operators on Vphys. This is straightforward
because the framework provided by step 5 guarantees that Hphys carries an (anti) ?-
representation (see below) of B(?)

phys as follows:
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Step 6. Operators in A ∈ B(?)
phys have a natural action (induced by duality) on Φ′ that leaves

Vphys invariant. Use this fact to induce densely defined operators Aphys on Hphys

through
Aphys (ηφ) = η(Aφ).

This leads to an anti- ?-representation of B(?)
phys on Hphys as the map A 7→ Aphys from

B(?)
phys to the operators on Hphys is an anti-linear ?-homomorphism where ? acts on the

operator Aphys in the sense of conjugation of quadratic forms on the dense domain Φ
(〈φ,A?ψ〉 ≡ 〈ψ,Aφ〉∗). In this way, the reality properties of the physical operators B(?)

phys

on Haux descend to the physical Hilbert space.
In addition, consider any C∗ algebra with unit BC∗ which is a subalgebra of B(?)

phys.
Since the physical expectation value η(Aφ)[φ] defines a positive functional on BC∗ (i.e.,
η(A†Aφ)[φ] ≥ 0), it follows that for A ∈ BC∗ we have

η(A†Aφ)[φ] ≤ ||A||2η(φ)[φ]

so that Aphys is a bounded operator on Hphys with norm not larger than that of A on
Haux (||A||phys ≤ ||A||). Thus, for such bounded operators, any relations of the form
A = B† on Haux also hold as the adjointness relations Aphys = B†phys on Hphys. From
this it follows that if A is self-adjoint on Haux and if a sufficiently large class of bounded
functionals of A map Φ to itself, then B(?)

phys determines a (unique) self-adjoint extension
of Aphys on Hphys.

Let us consider for a moment the case where there is only one constraint. Note that
when this constraint has purely discrete spectrum, there is a natural choice for the map η
as follows. Let Π0 be the projection onto the eigenspace of the constraint with eigenvalue
zero. Then if we take Φ = Haux, the rigging map η given by

η|ψ〉 = 〈ψ|Π0

fulfills all the requirements of step 5c. This case is simple and easy to deal with, so that
we shall focus on the complimentary case (where the spectrum is purely continuous) in
the next section. Section 4 will describe what happens when both continuous and discrete
spectra are present.

3. A Unique Prescription
While the framework described in section 2 sets the stage for quantizing constrained

systems, it does not provide the complete script. There are in fact three inputs that need
to be provided in order to proceed. The first is the auxiliary space Haux itself, but the
dense subspace Φ ⊂ Haux and the rigging map η : Φ → Φ′ must also be given. As such,
it is natural to ask to what extent the above prescription is unique and to what extent it
depends on the choice of these inputs. In general, the answer is that the final formulation
depends a great deal on the inputs, as different choices can even lead to physical Hilbert
spaces of different dimensions! This will be illustrated by an example in the next section.

Below, we confine ourselves to the case of a single constraint Ĉ of the typical kind
that arises in finite dimensional models. The two main types of constrained systems are
the ‘classic’ gauge systems in which the constraint is a vector field (whose orbits are
closed subsets of the configuration space) on some configuration space and the ‘time
reparametrization invariant systems’ in which the constraint is essentially the same as
some Hamiltonian of nonrelativistic quantum mechanics (but typically with both positive
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and negative kinetic terms). For such cases, physical reasoning will lead to a preferred
choice of the dense subspace Φ such that the rigging map is then unique up to scale. As
we consider constraints with continuous spectrum, we shall assume that the configuration
space is noncompact. We argue as follows.

An important element of classical symplectic mechanics is that the algebra of observ-
ables is taken to be the set of smooth functions on the phase space (as in step 1 of the
refined algebraic program). It is this definition, for example, that allows us to talk about
the (local) symplectomorphism ‘generated by an observable A.’ As such, the topology
and differential structure of the phase space play a key role and we would like to encode
them in our quantum formulation. Consider the case where the classical phase space is
T ∗Rn and the auxiliary Hilbert space used in the refined quantization program is L2(Rn).
Recall that one characterization of the Schwarz space S ⊂ Haux is as the set of all states
|ψ〉 for which both 〈x|ψ〉 and 〈p|ψ〉 are smooth L2 functions of x and p, where 〈x| and 〈p|
are the usual position and momentum generalized eigenstates. Thus, this set of states can
be said to encode the differential structure of the classical phase space and is a natural
choice for the subspace Φ of step 5b. The algebra B(?)

phys of operators that preserve this
space contains all suitably smooth and rapidly decreasing combinations of x and p, in
good analogy with the classical algebra of observables. Thus, we take Φ = S.

We will now show how a rigging map η can be defined using this choice and that this
map is unique (given Φ = S). Unfortunately, rigorous results are known to the author
only when certain additional assumptions are placed on the constraints (which will be
described below), but it is reasonable to conjecture that similar results hold in the general
case.

The result we need for our system is the following:

Property A: There exists a set of generalized states 〈c, k| for c ∈ DC , DC an
open subset of R containing 0, and k ∈ DK , DK an open subset of Rn−1, satisfying
〈c, k|Ĉ = 〈c, k|c and 〈c, k|c′, k′〉 = δ(c− c′)δ(k− k′) and which are complete on the closed
subspace of Haux corresponding to the open spectral interval DC of Ĉ. The 〈c, k| are
elements of the (algebraic) dual Sdual to S and the map Fk : c 7→ 〈c, k| is continuous
with respect to the pointwise convergence topology on Sdual. Furthermore, the map F :
DC × S → L2(DK , d

n−1k) given by F : (c, |ψ〉) 7→ |ψ〉c such that 〈k|ψ〉c = 〈c, k|ψ〉 is
well-defined and smooth.

Such a result is easy to derive when the constraint is a vector field with sufficiently
regular orbits by simply introducing coordinates in the space of orbits. For the case of
a Hamiltonian constraint, we will need to say something more about the form of the
Hamiltonian. Results are known for the following special cases:

1. The massive free particle: Property A may be checked directly using the momentum
eigenstates.

2. The so-called separable semi-bound cases (see [17]): It follows from the integral rep-
resentation 5.14 of [17] that, when a scattering operator exists for the ‘transverse’
Hamiltonian H1, there is a complete set of orthogonal and appropriately normalized
generalized eigenstates 〈c, k| satisfying Property A.

3. When the constraint is of the form H =
∑

i p
2
i + V (q)−E and V ∈ L1: By extending

Lemma IV.28 of [20] from C∞0 (Rn) to S, Property A reduces to the requirement that
H have purely continuous spectrum.
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Unfortunately, the literature contains less helpful results than one would like. This is
largely due to the fact that Hamiltonian constraints tend not to have positive definite ki-
netic terms, while the literature is primarily concerned with the Hamiltonians of particles
moving on a Riemannian space. Nevertheless, case 2 above contains nontrivial cosmolog-
ical models and we suspect that Property A in fact holds in more general situations. We
will therefore assume that our system has Property A without further justification.

Now, for |φ〉 ∈ S, let φ(c, k) be the function 〈c, k|ψ〉. Using Property A, we can
construct the rigging map η0 through

(η0φ1)[φ2] =
∫
dc δ(c)

∫
dk φ∗1(c, k)φ2(c, k)

which clearly satisfies the criteria of step 5c. Note that the action of the delta function
is well defined since φ1 and φ2 are continuous in c by property A.

We will now see that this is the unique map (up to an overall scale) that satisfies 5c.
To do so, consider some generic rigging map η. Since η must commute with the constraint,
but has only solutions of the constraint in its image, it is clear that η must annihilate
the the space D ⊂ S of states which are in the domain of Ĉ−1 and which are mapped
into S by Ĉ−1. This is the space of smooth φ(c, k) for which c−1φ(c, k) is also smooth.
Since any smmoth function that vanishes at c = 0 at zero must vanish at least as fast as
c, this is in fact the space of all |φ〉 ∈ S for which φ(0, k) = 0. It follows that the kernel
of η includes the kernel of η0.

Let us now consider two states |φ1〉, |φ2〉 ∈ S which are not annihilated by η0; that is,
for which φ1(0, k) and φ2(0, k) are nonzero on a positive measure subset of DK . Then by
continuity there is some ε such that∫

dk |φi(c, k)|2 > 0 (i = 1, 2)

for all |c| < ε and such that [−ε, ε] ⊂ DC . We now define Π[−ε,ε] to be the projection onto
the spectral interval [−ε, ε] of the constraint Ĉ and consider the state

|ψ1〉 = Π[−ε,ε]|φ1〉.
Note that |ψ1〉 and |φ1〉 map to the same element of Φ′ under both η and η0. We also
define a state |ψ2〉 by the equation

ψ2(c, k) =

√∫
dk′|φ1(c, k′)|2∫
dk′|φ2(c, k′)|2φ2(c, k)

for |c| ≤ ε and φ2(c, k) = 0 for |c| > ε. While |φ2〉 and |ψ2〉 map to different elements of
Φ′, they map to the same ray in Hphys under η and to the same ray in Hphys,0 under η0.
Note that η0|ψ1〉 and η0|ψ2〉 have the same norm in Hphys,0, but are otherwise arbitrary
elements of Hphys,0.

We will now show that the conditions of step 5c guarantee that η|ψ1〉 and η|ψ2〉 have
the same physical norm no matter how η is defined. To proceed, consider the family U(θ)
of unitary operators that generate rotations in the two dimensional subspace of Haux

spanned by |ψ1〉 and |ψ2〉 and note that, for fixed c, the functions ψi(c, k) define elements
|ψi,c〉 of the ‘transverse’ Hilbert space Hc ∼ L2(DK , dk). Such U(θ) are in fact diagonal
in c; that is, they satisfy

〈c, k|U(θ)|φ〉 = 〈k|Uc(θ)|φc〉c
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where the subscripts c on the r.h.s. indicate that the matrix element is taken in the
transverse Hilbert space Hc. Here, Uc(θ) is just the unitary operator on Hc that rotates
the subspace spanned by |ψ1,c〉 and |ψ2,c〉 and 〈k| is the ket for which 〈k|φc〉c = φ(c, k). As
a result, U(θ) commutes with the constraint Ĉ and, since it preserves the subspace Φ, must
belong to the algebra B(?)

phys of observables. However, this means that it must commute
with η and define a unitary operator on the corresponding physical Hilbert space. It
follows that whenever (η0ψ1)[ψ1] = (η0ψ2)[ψ2], we must also have (ηψ1)[ψ1] = (ηψ2)[ψ2].
Since η provides a positive semidefinite inner product, the functional φ 7→ (ηφ)[φ] in fact
defines η completely and η must be just η0 up to some overall positive scale factor.

4. Superselection Laws
In contrast with the previous section, the case considered in [1] did not result in

a unique rigging map. Instead, a large family of maps was found, associated with the
existence of certain ‘superselection rules.’ It seems a reasonable conjecture that, for a
given choice of subspace Φ, the non-uniqueness of the rigging map is always exactly
determined by the superselection rules. While we shall not prove this here, the discussion
below provides supporting evidence. Appendix A shows that this is true for the particular
case studied in [1].

Interestingly, the very existence of superselection rules can depend on the choice of
the dense subspace Φ of step 5b. This emphasizes the importance of choosing Φ based
on physical motivations. Below, we provide two examples of cases where a superselection
laws arises: one (in 4.1) in which it seems to come from the ‘wrong’ choice of Φ, and one
(in 4.2) in which its existence reflects a feature of the classical physics.

4.1 The Dependence on Φ. For our first example, we will rework the case of section
2 using a different choice of Φ. Property A allows us to introduce a notion of continuous
states as follows:

Definition A state |φ〉 ∈ Haux is said to be continuous on Σ ⊂ DC if φ(c, k) is
continuous in c for each fixed k at every c ∈ Σ.

We will construct Φ in the following (complicated!) way. Choose some interval
[−a, a] ⊂ DC . Now, consider the subintervals I−n = (− a

2n ,− a
2n+1 ) and I+

n = ( a
2n+1 ,

a
2n )

for n ≥ 0. Let RE be the union of the I±n for even n and RO be the union for odd n.
In addition, consider a family of projections Πc on Hc for which the matrix elements
〈k|Πc|k′〉c are independent of c and let Nc be the subspace of Hc annihilated by Πc. We
now let Φ be the dense subspace of Haux containing all states |ψ〉 such that

A ) |ψ〉 is continuous on RE and limc→0 in RE exists in C.
B ) |ψ〉 is continuous on RO and limc→0 in RO exists in C.
C ) Πc|ψc〉 = 0 at the midpoint of I±n for each odd n.

The limit in A (B) is taken by considering only sequences in RE (RO).
Note that since elements of Φ are only required to be continuous separately on the

sets RE and RO, there are now two natural choices for the rigging map, ηE and ηO:

(ηEφ)[ψ] = lim
c→0 in RE

∫
dk φ∗(c, k)ψ(c, k)

(ηEφ)[ψ] = lim
c→0 in RO

∫
dk φ∗(c, k)ψ(c, k)
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R e m a r k 1. Note that ηE leads to the usual physical Hilbert space L2(DK , dk),
whereas ηO leads to a smaller physical space isomorphic to Nc.

R e m a r k 2. For fans of group averaging, we mention that the group averaging
procedure [1,8,9,12] does not converge on Φ (see Appendix B).

The existence of these two maps is associated with the following superselection rule.
Let ΦE ⊂ Φ contain those states of |ψ〉 for which ψ(c, k) = 0 when c ∈ RO and let ΦO ⊂ Φ
contain those for which ψ(c, k) = 0 when c ∈ RE . Then, for any A ∈ B(?)

phys, because
[A,C] = 0, we have 〈φE |A|φO〉 = 0 for any |φE〉 ∈ ΦE , |φO〉 ∈ ΦO. Such superselection
rules then descend to the physical level; that is, to the action of the physical operators
on the physical Hilbert space.

For a general constraint (such as, say, px = 0, generating translation gauge invariance),
there is no reason to expect superselection rules. Also, the Hilbert space that results from
ηO seems unreasonably small. Thus, we must regard these features as artifacts of using
the ‘wrong’ choice of Φ. In contrast, the physically motivated choice of section 3 produced
perfectly satisfactory results.

4.2 Physical superselection laws We now turn an example the superselection rule
captures a feature of the corresponding classical system, and thus appears physically
meaningful. For this case, we consider systems which differ slightly from those considered
so far. We now ask only that our system satisfy ‘Property B:’

Property B: The Hilbert space Haux can be written as a direct sum Haux =
Hdisc ⊕ Hcont where Hdisc is (densely) spanned by normalizable eigenstates of Ĉ and
such that when the system is restricted to Hcont, it satisfies Property A.

Now, let Φ = Hdisc ⊕ΠcontS where Πcont is the projection to Hcont. Again, there are
two natural choices of rigging map. First is ηdisc,

ηdisc|ψ〉 = 〈ψ|Π0

where Π0 is the projection onto the (normalizable) eigenstates of Ĉ with eigenvalue
zero. Second is ηcont, defined to annihilate Hdisc but otherwise just as in section 3. Any
combination aηdisc + bηcont for a, b > 0 also defines a rigging map that satisfies the
requirements of step 5c.

Again, there is an associated superselection law between Hdisc and ΠcontS. To see
this, note that since A ∈ B(?)

phys has an adjoint A† ∈ B(?)
phys, we need only show that, for all

A ∈ B(?)
phys, A maps Hdisc into Hdisc and we will be done. However, since [A, Ĉ] = 0 and

the domain of A contains Φ ⊃ Hdisc, Amust map every normalizable eigenvector of Ĉ to a
normalizable eigenvector of Ĉ (with the same eigenvalue). Thus, each A ∈ B(?)

phys preserves
Hdisc, providing us with a superselection rule. Again, this descends to a superselection
rule for the physical operators on the physical Hilbert space.

However, this time the corresponding classical system has a similar feature2. To see
this, recall that when an operator Â is associated with a function A on the classical phase
space, the discrete eigenvalues of the operator Â are associated with parts of the phase
space in which the orbits of the Hamiltonian vector field of the function A are contained

2 The argument given below is an improved version of the one given in Appendix A of [1].
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in compact regions, while the continuous eigenvalues are associated with parts of the
phase space where these orbits are not contained in compact regions.

Suppose then that we have a single classical constraint C. For concreteness, we assume
that the phase space Γ is a finite dimensional manifold. Let Γdisc be the union of the
collection of all orbits O generated by this constraint such that there exists a compact
KO ∈ Γ containing O. We may think of Γdisc as the classical analogue of the spaceHdisc of
discrete eigenvectors of Ĉ. Let Γcont be the rest of the phase space Γ. Now, consider some
function A on the phase space such that A Poisson commutes with C. The exponentiated
action of the Hamiltonian vector field defined by A is a (local) homeomorphism that
maps orbits of C onto orbits of C. Since, for an orbit O ⊂ Γdisc, every neighborhood
U ⊂ Γ of O contains some compact set KU which contains O, we therefore conclude that
this exponentiated map cannot take an orbit Odisc ∈ Γdisc to an orbit Ocont ∈ Γcont

and vice versa. Thus, we find that (in the terminology of [14]) Γdisc and Γcont contain
disjoint sets of symplectic leaves of Γ and we have a classical superselection law between
the corresponding two parts of the reduced phase space. This seems to be the direct
classical analogue of the quantum superselection rules discussed above; in fact, it is even
stronger. All that is really required in the above argument is that the Poisson bracket of
A and C vanish on the constraint surface. Thus, this superselection rule holds even for
the so-called ‘weak observables.’

It seems then that we must be careful. When the space Φ is chosen to reflect the
smooth structure of the phase space, we have found physically meaningful superselec-
tion rules, a reasonable physical Hilbert space, and a (sufficiently) unique rigging map.
However, when this is not the rationale for choosing Φ, spurious results may occur. In
the case of the diffeomorphism invariant states of [1], the corresponding Φ was chosen to
reflect this structure as it is the appropriate domain of definition for the operators that
were assumed to function as coordinates and momenta. Thus, within the framework of
the auxiliary space of [1] and modulo questions concerning the Hamiltonian constraint
(which was intentionally ignored), we expect that the superselection rules of [1] should
be taken seriously.
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Appendix A. Uniqueness of the construction of Connection Representation
Diffeomorphism Invariant States

In this appendix, we give a short proof that the rigging maps used in [1] to solve
the diffeomorphism constraint completely exhaust the set of possible such maps given
the choice of auxiliary space, the definitions of the quantum constraints, and the dense
subspace Φ chosen in [1]. For a full definition of the terms and notation used below, see
[1].
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Recall from that the auxiliary Hilbert space of [1] is spanned by a set of orthonormal
‘spin network states.’ We shall denote these states by |Γα,k〉, where α is a (piecewise
analytic) graph embedded in a given analytic three manifold and k is an index that
takes some finite set of values (this set depends on the graph α). In addition, (analytic)
diffeomorphisms D act on these states by moving the graph α in the obvious way and
permuting the values of the index k allowed by α.

The dense subspace Φ of step 5b is the space of so-called smooth cylindrical functions.
This space contains all finite linear combinations of the spin network states Γα,k and, for
our purposes, may in fact be identified with this slightly smaller space. Following [2], we
shall consider only ‘type I graphs’ (see [2]).

As in [1], it is convenient to introduce the subspaces H[β̃] spanned by spin networks
|Γα,k〉 associated with graphs α that can be moved by a diffeomorphism to some graph
β for which β̃ is the ‘maximal analytic extension.’ These subspaces are superselected by
the algebra B(?)

phys and, on each subspace, there is a corresponding map η[β̃] defined by:

η[β̃]|f〉 =
( ∑
D1∈S(β̃)

∑
[D2]∈GS(β̃)

D1D2|f〉
)†

where we still need to introduce the set S(β̃) and the quotient spaceGS(β̃). S(β̃) is chosen
to be any set (and the above map does not depend on this choice) of diffeomorphisms
Dα̃, one for each maximally extended analytic graph α̃ diffeomorphic to β̃, such that Dα̃

moves the extended graph β̃ onto the extended graph α̃. On the other hand, GS(β̃) (the
‘graph symmetry group’ of β̃) is the quotient Iso(β̃)/TA(β̃) where the ‘isotropy group’
Iso(β̃) is the group of diffeomorphisms which map β̃ onto β̃ and the ‘trivial action group’
TA(β̃) is the group of diffeomorphisms that map every edge e in β̃ onto itself. In the
formula above, [D1] denotes the equivalence class of D2 in GS(β̃).

Any linear combination
∑

i∈I aiη
[β̃i] with positive coefficients ai satisfies the require-

ments of step 5c. (Note that this sum always converges no matter how big the coefficients
ai or the index set I.) We would now like to show that such sums exhaust the set of all
rigging maps. We will follow the same basic strategy as in the uniqueness proof of section
3. That is, we now consider a generic map η satisfying 5c and show that if η[β̃]|φ〉 = 0 for
all β̃, then η|φ〉 = 0 as well.

Suppose then that such that η[β̃]|φ0〉 = 0 for all β̃. Since |φ0〉 ∈ Φ, it can be written
as a sum of spin network states. It will be particularly convenient to write it in the form:

|φ0〉 =
∑

i

∑
j

cijDj |Γi〉

where cij ∈ C, Dj ∈ Diffω, and {|Γi〉} is some set of spin network states, carefully
chosen so that no analytic diffeomorphism maps one spin network state in this set onto
another. Now, it is easily checked that |φ0〉 is annihilated by the above maps exactly when∑

j cij = 0 for each i. However, any rigging map that commutes with diffeomorphisms and
whose image contains only diffeomorphism invariant states must also annihilate states
with

∑
j cij = 0. Thus, η|φ0〉 = 0.

Now consider some spin network state |Γ0〉 := |Γα,k〉 such that η|Γ0〉 is nonzero (so
that η[α̃]|Γ0〉 is nonzero as well) and choose any other state |Γ1〉 ∈ H[α̃] ∩ Φ. We want
to construct an operator A in B(?)

phys that has nonzero matrix elements between |Γ0〉 and
|Γ1〉. This can be done by applying just the kind of ‘group averaging’ that was used in
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the construction of η[β̃]:

A :=
∑

D1∈S(α̃)

∑
[D∈]∈GS(α̃)

D1D2|Γ1〉〈Γ0|D−1
2 D−1

1 .

This operator is diffeomorphism invariant and finite on Φ for exactly the same reasons
as the map η[α̃] (and similarly for A†). As a result, it is an element of B(?)

phys.
Note that A|Γ0〉 is a sum of spin networks that differ from |Γ1〉 only by a diffeomor-

phism. Thus, A|Γ0〉 maps under η to a diffeomorphism invariant state that is proportional
to η|Γ1〉. However, the number of terms in this sum is just the physical norm of the state
|Γ0〉 as defined through the map η[α̃] (and similarly for A†|Γ1〉). Let us therefore set
N0 = (η[α̃]Γ0)[Γ0] and N1 = (η[α̃]Γ1)[Γ1] so that ηA†A|Γ0〉 = N0ηA

†|Γ1〉 = N0N1η|Γ0〉.
Applying this distribution to |Γ0〉 we have:

(ηΓ1)[Γ1]
N1

=
(ηΓ0)[Γ0]

N0
.

As before, this guarantees that when acting on the subspace H[α̃] ∩ Φ, η acts just like
η[α̃] up to an overall positive scale factor. Since the domains of the η[α̃]’s are orthogonal,
it follows that η may in fact be expressed as a sum of the η[α̃] weighted by positive
coefficients.

Appendix B. Convergence of the group averaging procedure
In this appendix we show that the integral that defines the group averaged inner

product does not (absolutely) converge on the entire space Φ given in the second example
of section 4. Recall that the group averaging proposal [1,8,9,12] is to introduce the physical
inner product

〈φ, ψ〉phys =
∫
dt〈φ, eitĈψ〉phys

for φ, ψ in Φ. If this integrand is in fact L1, then we may write this as

lim
T→∞

∫ T

−T

〈φ, eitĈψ〉 = lim
T→∞

〈φ, sin(T Ĉ)

Ĉ
ψ〉

= lim
T→∞

∫
Λ

dλ〈φ(λ),
sin(Tλ)

λ
ψ(λ)〉λ.

However, we will now show that this limit fails to exist for general φ, ψ ∈ Φ.
For convenience, we assume that DC = R. Furthermore, we will take a = 1 and

introduce the intervals J−n = (−2n+1,−2n), J+
n = (2n, 2n+1). Finally, let R′E = RE ∪

(∪±,even nJ
±
n ), R′O = RO ∪ (∪±,odd nJ

±
n ), and let |ψ〉 ∈ Φ be any state such that ψ(c, k)

vanishes for c in R′O.
The important property of R′E is that this set is preserved when the real line is scaled

by a factor of 2k. As such, given any function ψ(λ) which is continuous on R′E , the limit

lim
k→∞

∫
R′

E

ψ(λ) sin(2kTλ)
λ

for large k is just

ψ(0)
∫

R′
E

sin(2kTλ)
λ

≡ ψ(0)I(T )
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which is independent of k. It follows that the limit exists for large T if and only if I(T )
is constant.

However, we will now show that I(T ) is not constant. Note that its derivative is

dI/dT =
∫

R′
E

cos(Tλ)dλ

and suppose that T = π. Then,
∫

J±n
cos(πλ)dλ = 0, but we have

∫
I±n

cos(πλ) > 0 so that
I(π) > 0. As a result, the group averaging norm does not (absolutely) converge for any
nontrivial |ψ〉 ∈ Φ that vanishes on R′O.
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