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A BASIS FOR INVARIANTS IN NON{ABELIAN GAUGE THEORIES�
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D{15738 Zeuthen, Germany

An algorithm is described to convert Lorentz and gauge invariant expressions in non{
Abelian gauge theories with matter into a standard form, consisting of a linear combina-
tion of basis invariants. This algorithm is needed for computer calculations of e�ective
actions. The de�ning properties of the basis invariants are reported. The number of

basis invariants up to mass dimension 16 are presented.

1. Introduction

E�ective actions of gauge theories are space{time integrals over gauge and Lorentz

invariant expressions. From the mathematical point of view, they are, up to some

factors, functional traces of heat kernel coe�cients, known as Schwinger{DeWitt,1

Gilkey{Seeley,2 or Hadamard coe�cients.3 In 
at space-time, these coe�cients are

polynomials constructed from a matrix potential and from the gauge �eld strength

tensor by multiplication, gauge covariant di�erentiation, and contraction of Lorentz

indices. Due to Bianchi identities and the product rule for covariant derivatives,

the form of the coe�cients is not unique. Furthermore, the physically interesting

functional trace of the coe�cients allows cyclic exchanges of matrix factors and

integration by parts.

New methods of computing e�ective actions, such as the string{inspired world

line path integral formalism,4;5 but also the implementation of established calcula-

tion algorithms on computers6 enable the extension of known results to higher order

in the inverse mass expansion. To manage the corresponding increasing number of

terms and to compare results of di�erent methods,7;8 a standard basis of invariants

is needed, in terms of which all results can be expressed. An algorithm should be

provided to convert a Lorentz scalar given in a non{standard form into terms of the

basis. For gravitational invariants, constructed from the Riemann and the metric

tensor, such normal forms were presented up to order eight in the mass dimension

by Fulling et al.9 In the general case with matter, gauge �elds, and gravity, basis sets

of non{local invariants up to third order in the curvature were constructed. They

are used in the expansion of e�ective actions in terms of Barvinsky{Vilkovisky form

factors.10
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This contribution analyzes the formal structure of invariant monomials in non{

Abelian gauge theories with matter in 
at space{time. Step by step, the operations

applicable to invariants are used to convert them into a �xed form. Thus, a basis

of invariants is speci�ed, and simultaneously, a procedure to expand an arbitrary

given Lorentz invariant expression in terms of the basis is obtained. The proof of

the basis property of the speci�ed set of invariants will be published elsewhere.11

2. Notations

Notations are introduced on the basis of a concrete example. Let us consider a

gauged scalar �eld theory described by the massive complex �eld �a and the Her-

mitian matrix valued gauge �eld Aab
� . The gauge covariant derivative in the funda-

mental representation is Dab
� = �ab@�� iAab

� . The coupling constant is contained in

the gauge �eld. Integrating the quantum 
uctuations of the �eld �a in the given

backgrounds 'a and Aa
�, we obtain, in a �rst approximation, the one{loop e�ective

action �(1)[';A] which can be expanded in gauge invariant terms7

�(1)[';A] = Tr ln
�
�D

2 + V +m2
�
=

Z
ddx

X
i

Ci

m�i�d
tr (Ii (F; V )) : (1)

V is a matrix potential originating from the matter �elds. The Ci are complex

numbers and Ii (F; V ) matrix valued Lorentz scalars composed of the potential V ,

the �eld strength tensor F ab
�� = i [D�;D� ]

ab
= @�A

ab
� �@�A

ab
� � i [A�; A�]

ab
; and the

gauge covariant derivative in the adjoint representation D� = [D�; :] = @��i [A�; :] :

D� acts on the matrix potential and on the �eld strength tensor. d is the dimension

of space{time. �i is the mass dimension of the scalar Ii(F; V ) according to the mass

dimensions of its constituents [V ] = 2, [F�� ] = 2, and [D�] = [D�] = 1.

The form (1) is not unique due to several equalities, namely the product rule for

covariant derivatives, integration by parts, cyclic permutations, the Bianchi identity,

the antisymmetry of the �eld strength tensor, and the exchange of derivatives:

D�(XY ) = D�XY +XD�Y;
R
dx tr (D�X�Y ) = �

R
dx tr (X�D�Y ); (2a,b)

tr(XY : : :Z) = tr(Y : : :ZX); D�F�� = D�F�� +D�F��; (2c,d)

F�� = �F��; D�D�X = D�D�X � i [F�� ; X] : (2e,f)

Let us call a V , an F , or covariant derivatives of them a simple factor , i.e.

(simple factor) 2 fV; F��; D�1D�2 : : :D�nV; D�1D�2 : : :D�nF��g: (3)

Simple factors containing the matrix potential are called V {factors, the others F{

factors. With the product rule (2a), expression (1) can be converted into a form

where the invariants Ii(F; V ) are monomials, i.e. products of simple factors. Sub-

sequently, the invariants are supposed to have this form.

If the gauge group representation is unitary, the additional symmetries

V y = V; Ay
� = A�; F y

�� = F��; (D�X)
y
= D�X if Xy = X (4)

hold. Consequently, simple factors are Hermitian. For simple factors X, Y , and Z

this leads to
tr (XY Z : : :) = tr

�
: : :ZyY yXy

�
= tr (: : :ZY X) : (5)
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Thus, an invariant monomial can be expressed by the complex conjugate of its

mirror image with identical factors, but in inverted order. Therefore we call eq. (5)

a mirror transformation. In general, a monomial and its complex conjugate are

independent of each other, so that operation (5) cannot be used to reduce the

number of terms in eq. (1). However, Lagrangians are real. Hence, in an appropriate

basis, an arbitrary invariant monomial I(F; V ) and its mirror image have complex

conjugate coe�cients C and �C so that they add to 2<e (C � I(F; V )). Another

exception occurs for real �a and imaginary Aab
� .aThen V {factors are real and F{

factors imaginary. In this case, monomials and their complex conjugates are not

independent of each other and eq. (5) reduces the number of terms in eq. (1) indeed.

3. The Basis

3.1. The reduction algorithm

We start from an arbitrary Lorentz invariant given in the form (1). The product rule

must be used whenever derivatives of products are encountered. This may happen

at each stage of the algorithm. The manipulations (2b{f, 5) must be applied in the

sequence of the following sub-subsections to obtain a standard result. The rules

given there do not entirely �x all details of the algorithm. Therefore, the algorithm

can be executed in di�erent ways, but the results will be expressed by the same basis

of invariants and, hence, will be identical. The procedure will require exchanges of

derivatives by eq. (2f). Since thereby additional invariants with more F{factors and

fewer derivatives are produced, the algorithm starts with the invariants with the

most F{factors and descends to invariants with fewer and fewer F{factors.

3.1.1. Integration by parts

The indices in a Lorentz invariant monomial can be contracted between di�erent

factors and within the same factor. We call the latter self{contractions. They always

include a covariant derivative. Therefore, we apply integration by parts to covariant

derivatives in self{contractions. Thereby all self{contractions are eliminated.

3.1.2. The Bianchi identity

The Bianchi identity (2d) exchanges the index of one derivative with the indices of

F�� within an F{factor. All other factors remain unchanged. Therefore, we need

a prescription that speci�es the derivatives which are candidates for applying the

Bianchi identity in the F{factor under consideration. Let us consider the example

tr(
L
D�

R
D�

M
D� D�F��| {z }

factor under

consideration

: : :X0
� : : :| {z }

right

sector

Y�� : : :X
00
� : : :| {z }

middle

sector

Z� : : :X� : : :| {z }
left

sector

) : (6)

aThis is the case for real orthogonal representations of the gauge group. Then iAab
�

is real and

antisymmetric in a and b.
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The indices of F�� are contracted with the factors Y�� and Z�, which divide the

remaining factors into three, possibly empty, sectors. We call them \right sector",

\middle sector", and \left sector", as indicated, because, due to cyclic invariance

(2c), the \left sector" is connected with the left{hand side of the factor under

consideration.

The derivatives of the factor under consideration are called left (\L"), right

(\R"), and middle (\M") corresponding to the sector they are contracted with.

Not all derivatives are left, right, or middle (e.g. D�). The Bianchi identity (2d)

mixes all three kinds of derivatives. Therefore it can be used to eliminate one

kind of index in all factors of all monomials. Since the middle sector is invariant

under the mirror transformation (left and right sectors are interchanged), we apply

the Bianchi identity to middle derivatives. Each such application of the Bianchi

identity reduces the number of factors in the corresponding middle sector. Thus,

after �nitely many steps, all middle derivatives are eliminated.

Finally, we convert multiple contractions between factors into a standard form

by

: : :F�� : : :D�D�X : : : ) � i
2
: : :F�� : : : [F��; X] : : : (7)

: : :F�� : : :D�F�� : : : ) 1
2
: : :F�� : : :D�F�� : : : (8)

: : :D�F�� : : :D�F�� : : : ) : : :D�F�� : : :D�F�� : : :+

+1
2
: : :D�F�� : : :D�F�� : : : : (9)

The �rst equality uses the antisymmetry (2e) of the �eld strength tensor and the

commutation rule (2f). The second transformation relies on the antisymmetry (2e)

together with the Bianchi identity (2d). The third rule results by applying the

Bianchi identity (2d) to one of the factors and subsequently using eq. (8).

3.1.3. The arrangement of factors

Cyclic factor permutations (2c) and, possibly, mirror transformations (5) can be

used to identify invariants. Applying eqs. (2c) and (5) in all possible ways to

a given invariant monomial, we obtain a class of equivalent invariants. We pick

a representative of each equivalence class. This may be done by introducing an

ordering relation in the equivalence classes Then we pick the smallest (or greatest)

invariant of each equivalence class as the representative.

3.1.4. The arrangement of indices

Derivatives and indices of F 's can be exchanged by means of eqs. (2f) and (2e)

in all factors of all invariant monomials. Let us consider a certain factor within

an invariant. It can be shifted completely to the left{hand side by eq. (2c), as a

result of which the achieved arrangement of factors is temporarily destroyedb (cf.

example (6)). After this operation, we rearrange the derivatives and/or indices

bThe arrangement of the factors has to be restored after reordering the indices and is, in the end,
not a�ected by this procedure.
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of the F (if present) in the considered factor according to the contracted counter

indices. In example (6) Y�� is located left of Z�. Thus the indices of F�� have the

correct order. The locations of X0
� , Y��, X

00
� , and X� de�ne the correct order of the

derivatives to be D�D�D�D�. Since the mirror transformation inverts the ordering

of the factors, it has to be applied before rearranging the indices. Cyclic factor

permutations and the arrangement of indices do not interfere with each other.

3.2. The de�ning properties of the basis

Pursuing the above algorithm, we state the following properties of basis invariants:

� The invariants are products of simple factors.

� Indices are contracted only between di�erent factors of an invariant monomial.

� There are no \middle" derivatives.

� In multiple contractions between factors, derivatives are contracted with de-

rivatives and indices of F 's with indices of F 's (cf. eqs. (7 { 9)) except for

contractions of an index of an F with a derivative where the other index of

the F is contracted with a third factor.

� The order of derivatives and of indices of the F 's is as described in sub-

subsection 3.1.4.

These properties allow to count the basis invariants of a certain mass dimension.

Up to mass dimension 16, this was performed by a C language program (table 1).

Results of higher dimension or divided by the number of F 's are available.

Table 1. The number of basis invariants with and without the mirror transformation. v is the

number of occurrences of the matrix potential V in the invariants.

Mass dim. Total v = 0 1 2

1 2 1 1 0 0 1 1

2 4 2 2 1 1 0 0 1 1

3 6 5 5 2 2 1 1 1 1

4 8 17 18 7 7 4 5 4 4

5 10 79 105 29 36 24 36 17 23

6 12 554 902 196 300 184 329 119 191

7 14 5283 9749 1788 3218 1911 3655 1096 2020

8 16 65346 127072 21994 42335 24252 47844 13333 25861

Table 1. (Continued)

Mass dim. v = 3 4 5 6 7 8

1 2
2 4
3 6 1 1

4 8 1 1 1 1

5 10 6 7 2 2 1 1

6 12 39 63 13 16 2 2 1 1

7 14 370 670 96 158 18 24 3 3 1 1

8 16 4452 8638 1095 2020 186 329 30 41 3 3 1 1

4. Conclusions and Outlook

A prescription for de�ning a standard basis set of invariants in non{Abelian gauge

theories was obtained. A reduction algorithm was presented to convert a given
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Lorentz scalar by partial integration, by the Bianchi identity, and by cyclic invari-

ance of the trace into a linear combination of this basis set of invariants. The proof

that this set is a basis indeed, relies on a graphical representation of invariants and

is given elsewhere.11

For cases where, in addition, the mirror transformation reduces the number of

independent invariants, a general proof of the basis property is still lacking. However

at least up to mass dimension 16, it can be shown by counting the invariants that

the standard set remains a basis.

Another open problem is to take into account additional identities which exist

for particular choices of the gauge group representation.
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