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Abstract

We consider a probabilistic quantum implementation of a variation of

the Pocklington-Lehmer N − 1 primality test using Shor’s algorithm.

O(log3N log logN log log logN) elementary q-bit operations are required to

determine the primality of a numberN , making it (asymptotically) the fastest

known primality test. Thus, the potential power of quantum mechanical com-

puters is once again revealed.
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Finding large primes and factorizing large composite numbers are two classic mathemat-

ical problems of great practical interest. For instance, in the RSA public key cryptography,
the key, which is made public, is the product of two large primes whose values are kept
secret. The secret values of the two primes are needed to decode the encoded messages
(ciphertexts). The security of this scheme lies in the difficulty in factoring large composites.
More concretely, while multiplying two integers can be done in a time polynomial in the
number of digits of the two integers (and hence “efficient”), the fastest factorization algo-
rithm that runs on classical computers (or Turing machines) takes almost an exponential
amount of time (∼ exp(L1/3) where L is the number of digits of the number to be fac-
torized) [1]. Consequently, given the value of the public key, it is almost hopeless for an
eavesdropper to attempt to break the RSA cryptographic scheme by factoring the key into
two large primes. For this reason, finding an efficient factorization method is the dream of
eavesdroppers. On the other hand, for additional security of the RSA scheme, the public
key has to be changed frequently to avoid “accidental” factorization of the key. To fulfill
this need, an efficient algorithm for proving the primality of a large integer is required.

The possibility of performing classical computation by using quantum mechanical ma-
chines has been investigated by various people [2–6]. Recently, Shor discovered an efficient
quantum factorization algorithm [7,8]: By using the massive parallelism and interference
effect in quantum mechanics, which have no classical counterparts, Shor found an efficient
method to compute the period of a function. This method immediately leads to efficient
algorithms for both the discrete logarithm and factorization problems [7]. Therefore, if a
quantum mechanical computer is ever built, the RSA crypto-system will no longer be se-
cure. Some people have even proposed that quantum cryptography will ultimately be the
only way to ensure the security of a cryptosystem [9–12].

Primality tests1 are generally much easier than factorization. The APRCL test (based
on Jacobi sum) is one of the most commonly used algorithms. The number of elementary
bit operations needed for testing the primality of a number N is O((logN)c log log logN) for
some constant c > 0 [13]. Although the run time of this algorithm is not truly polynomial
in logN , it works reasonably fast for numbers of less than 1,000 decimal digits [14]. The
first polynomial time probabilistic primality test was proposed by Goldwasser and Kilian
[15] using ideas from elliptic curves. Their algorithm was later implemented by Atkin and
Morain [14,16]. Its run time scales as O(log6N). However, their algorithm assumes some
unproven (although very plausible) conjectures in analytic number theory [16] and may
fail to work for an infinite sequence of (non-random) prime numbers [17] even though it
will never mis-identify a composite number as a prime. Finally, using ideas from Abelian
varieties, Adleman and Huang [17] discovered a polynomial time probabilistic primality test
without any unproven hypothesis. However, their algorithm is extremely complicated and
is totally impractical to implement [14].

Further improvements may be possible. In fact, if we assume that validity of the (yet still

1A primality test is an algorithm which outputs “true” if and only if the input is a prime. It may

not halt if the input is composite. This is to be distinguished from a compositeness test that may

occasionally indicate a number as prime even when it is in fact composite.
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unproven) Extended Riemann Hypothesis, then there is a deterministic primality test whose
run time scales as O((logN)4 log log logN) [18]. More recently, there is statistical evidence
supporting the conjecture that the primality of a number N can be proven deterministically
in O((logN)3 log logN log log logN) time [19].

In this paper, we propose a straightforward probabilistic primality test based on the
Pocklington-Lehmer N −1 method using the quantum factorization algorithm. Its run time
scales as O((logN)3 log logN log log logN) and is thus asymptotically faster than all known
classical primality tests. In the discussion below, we will always assume that the number N
has failed all common compositeness tests and hence is very likely to be a prime (see, for
example, Refs. [1,14,20] for some simple and efficient compositeness tests).

Note that the number of primitive residue classes (mod N) is N−1 and the multiplicative
group formed by the primitive residue classes has a generator of order N − 1 if and only if
N is a prime [20]. This leads us to the following theorem:

Theorem 1: (Pocklington-Lehmer N−1 test) Suppose N−1 =
∏m

j=1 p
βj
j with all pj ’s distinct

primes. If there exists a ∈ ZN such that a(N−1)/pj 6≡ 1 (mod N) for j = 1, 2, . . . ,m

aN−1 ≡ 1 (mod N)
, (1)

then N is a prime [14,20].

Thus, the test consists of two parts, namely, the complete factorization of the num-
ber N − 1, and the verification of conditions in Eq. (1). Since the test requires the
complete factorization of a number, it is not a good general purpose primality test be-
fore the discovery of Shor’s quantum factorization algorithm. (As mentioned earlier, no
efficient classical factorization method is known. The fastest known classical method for
factorization is the number field sieve. Under reasonable heuristic assumptions, it takes
O(exp(c(logM)1/3(log logM)2/3)) elementary operations for some constant c > 0 [21] to
find a factor of a number M .)

The situation is completely different after Shor’s discovery. As shown in the Appendix A,
Shor’s algorithm requires O((logM)2(log logM)2 log log logM) elementary q-bit operations2

to find a factor of a composite number M , provided that M is not in the form of pn or 2pn

for some odd prime number p. In the case that M is of the form pn for an odd prime p,
there exists a classical algorithm to find p and n in O((logM)2(log logM)2 log log logM)
time [14]. Alternatively, we show in Appendix B that this can be done equally efficiently
by using a quantum algorithm similar to Shor’s algorithm. Since factorization of a prime
power is much easier than that of a composite number with distinct prime factors, we shall
only consider the latter in our computational complexity analysis.

2A quantum mechanical bit is now commonly called a “q-bit”. Loosely speaking, coherent su-

perposition of states allows a q-bit to hold more information than a classical bit. In addition,

“elementary” here refers to operation in the form of unitary operator acting on one or two q-bits.

Please refer to Refs. [22–24] for constructions of “elementary” logical operators.
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Let us consider the first part of the test — the complete factorization of the number
N − 1. Suppose we would like to factorize M ≡ N − 1 completely. Using Shor’s algorithm,
we can find a non-trivial factor f of M in O((logM)2(log logM)2 log log logM) elementary
operations. The problem then reduces to the factorization of the numbers f and M/f . We
can further speed up the process by extracting multiple factors of M , if any, by computing
gcd(f,M/f). Clearly, this takes negligible time as compared to the Shor’s algorithm. And
the complete factorization ofM is obtain by recursively applying Shor’s algorithmm−1 times
where m is the number of distinct primes of M . Since the product of the first m primes is of
order of 2m [20], so complete factorization ofM requires the running of Shor’s algorithm for at
most O(logM) times. Thus, no more than O((logM)3(log logM)2 log log logM) elementary
operations are needed for running Shor’s algorithm alone. In addition, we also need to verify
that a complete factorization of M ≡ N − 1 has been obtained. That is, the pj’s we have
found in Theorem 1 are indeed prime numbers. Let us denote the number of elementary
operations needed for the first and second parts of the primality test for a M by P1(M) and
P2(M) respectively. Also, let P (M) = P1(M) + P2(M). From the above discussion,

P1(N)

≤
m∑
i=1

P (pi) + O((logN)3(log logN)2 log log logN) . (2)

Let us come to the second part of the test — the application of the Pocklington-Lehmer
N − 1 test. We choose an integer m randomly and test if all the conditions in Eq. (1)
are satisfied. Now there are at most O(logN) such conditions. Using the power algo-
rithm [25], verification of each condition in Eq. (1) requires O(logN) multiplications. Using
the Schönhangen and Strassen method, multiplying two number of size at most N can be
done in O(logN log logN log log logN) elementary operations [25,26]. Therefore, altogether
O((logN)3 log logN log log logN) elementary operations are needed for each random num-
ber m chosen. It can be shown that the probability that a randomly chosen integer m
satisfying all the conditions in Eq. (1) is at least O(1/ log logN) [27]. Consequently, the
total number of elementary operations needed for the second part of the test is given by

P2(N) ≤ O((logN)3(log logN)2 log log logN) . (3)

Notice that if Πm
i=1p

βi
i is the prime number decomposition of a positive integer N (with

pi are distinct primes), then

m∑
i=1

log pi ≤ logN , (4a)

m∑
i=1

log log pi ≤ log logN , (4b)

and hence

m∑
i=1

(log pi)
3 ≤

(
m∑
i=1

log pi

)3

≤ (logN)3 . (4c)
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Therefore,

m∑
i=1

(log pi)
3(log log pi)

2(log log log pi)

≤ (logN)3(log logN)2(log log logN) . (5)

By induction, it is straightforward to prove from Eqs. (2)–(5) that

P (N) = P1(N) + P2(N)

≤ O((logN)3(log logN)2 log log logN) . (6)

Note that if N is in fact a composite number, this primality test will never terminate.
The Pocklington-Lehmer test gives a certificate for primality once the number N passes it.
On the other hand, Shor’s algorithm is efficient for finding non-trivial factors of a number.
Thus, Shor’s algorithm and our quantum primality test are complimentary to each other.

Although Eq. (6) already tells us that the above quantum primality test algorithm is
already better than all the classical algorithms known to date, we now go on to describe a
fine tuning of our quantum algorithm which reduces the run time by a factor of log logN .
As shown in the operation counting analysis above, both the quantum factorization and the
verification of Eq. (1) are equally fast. Thus, in order to reduce the run time of the quantum
Pocklington-Lehmer algorithm, we have to speed up both parts.

To speed up the quantum factorization, we can perform trial divisions to eliminate
all the prime factors of N − 1 that are smaller than k. This can be done by ≈ k
divisions, taking O(k logN log logN log log logN) time [26]. After the trial division, we
can concentrate on the prime factors of N − 1 that are greater than k. Clearly, at
most O(logN/ log k) distinct prime factors of N − 1 are greater than k. So by com-
bining the trial division with Shor’s algorithm, N − 1 can be factorized completely in
O(logN log logN log log logN(k + (logN)2 log logN/ log k)) time. Optimal solution is ob-
tained when we take the number of trial divisions k ∼ (logN)2/ log logN . Therefore, factor-
ization of N−1 requires only O((logN)3 log logN log log logN) elementary q-bit operations.
(In case we have a prime number table up to the number k, then prime number theorem
tells us that only O(k/ log k) trial divisions are required. Using the same argument, we know
that optimal solution occurs when k ∼ log2N . However, the optimal number of elementary
q-bit operations is still O((logN)3 log logN log log logN). That is, only a constant factor
speed up is gained when we use a prime number table.)

To speed up the verification of primality, we employ a variation of the Pocklington-
Lehmer test by Brillhart et al. [20,28]:

Theorem 2: (Brillhart et al.) Suppose N − 1 =
∏m

j=1 p
βj
j with all pj’s distinct primes. And

if, for each j = 1, 2, . . . ,m, there exists aj ∈ ZN such that a
(N−1)/pj
j 6≡ 1 (mod N)

aN−1
j ≡ 1 (mod N)

, (7)

then N is a prime.
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Once again, we randomly choose an integer m and test if it satisfies Eq. (7). For each pj,
the probability that a randomly chosen m satisfies the constraint m(N−1)/pj 6≡ 1 (mod N)
in Eq. (7) is at least 1/2. Thus, for each m, half of the constraints in Eq. (7) are satis-
fied on average. Thus, we are almost sure to have found all the required aj by randomly
picking m’s and checking Eq. (7) a few times. Obviously, our new verification process takes
O((logN)3 log logN log log logN) time. Combining the quantum factorization with trial
division, and Theorem 2, we have a O((logN)3 log logN log log logN) run time quantum
primality test as promised.

In summary, we have presented a probabilistic quantum primality test using a variation
of the Pocklington-Lehmer N − 1 test and Shor’s quantum factorization algorithm. Its run
time scales as O((logN)3 log logN log log logN). (Moreover, it requires O(log2N) bits of
extra working space.) As far as we know, this is the (asymptotically) fastest primality test
to date. Our quantum primality test can be further speeded up by a constant factor if we
replace Theorem 2 by another variation of the Pocklington-Lehmer algorithm which involve
only a partial factorization of N − 1 (see Ref. [20], for example).

It is interesting to know if there exist an even faster primality test. In particular, if the
conjecture by Bach and Huelsbergen is correct, then there is a deterministic primality test,
whose run time is as good as ours (i.e. O((logN)3 log logN log log logN) [19].
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APPENDIX A: SHOR’S ALGORITHM

We outline the idea of Shor’s algorithm below (See Refs. [7,8] for details). To factorize a
composite number M (which is assumed not to be a prime power), we prepare our system
in the state

|Ψ〉 =
1

2L/2

2L∑
a=1

|a〉 , (A1)

with 2L ≈M2. This can be achieved by, say, setting L quantum spin-1/2 particles with their
spins pointing towards the positive x-direction (and all our measurements are performed in
the z-direction).

Then we evolve our wavefunction to

|Ψ〉 =
1

2L/2

2L∑
a=1

|a,mamod M〉 , (A2)

for some randomly chosen integer 1 < m < M with gcd(m,M) = 1. (If gcd(m,M) > 1, then
we are so lucky that we have found a non-trivial factor of M by chance. The probability for
this to happen scales exponentially with logM , and is therefore negligible.) The above evo-
lution can be done using the power algorithm [25], which takes O(L) multiplications in ZM .
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As mentioned in the text, multiplying two L-bit numbers using the Schönhagen and Strassen
method, which is asymptotically the fastest known algorithm, requires O(L logL log logL)
elementary bit operations [25,26]. Consequently, evolving the wavefunction from state (A1)
to state (A2) takes O(L2 logL log logL) elementary q-bit operations. Besides, it requires
O(L) extra q-bits as working space during the computation.

Now we make a measurement on the second set of q-bits in our system (which should
take at most O(L) time). Thus, the wavefunction of our system for the first set of q-bits
collapses to

|Ψ〉 =
1
√
k

k∑
a=0

|a0 + pa〉 , (A3)

where p is the order of the number m under multiplication modulo M , 0 ≤ a0 < k is some
constant, and k =

[
(2L − a0)/p

]
.

To extract the order p, we perform a discrete Fourier transform, which evolves our system
to

|Ψ〉 =
1
√
ksL

2L−1∑
c=0

k∑
a=0

exp

[
2πi(a0 + pa)c

2L

]
|c〉 . (A4)

This can be done in O(L2) elementary q-bit operations [8]. Now the amplitude of our
wavefunction is sharply peaked at |p〉. It can be shown that by making a measurement on
the first set of q-bits, we have a probability of at least O(1/ logL) of getting the correct order
p [7,8]. So, by repeatedly running our machine O(logL) times, we are almost sure to get
the order p of the multiplicative group modulo M generated by the integer m. Therefore, it
requires O((logM)2(log logM)2 log log logM) elementary q-bit operations to find the order
p of the group 〈m〉.

Now we hope that p is an even number and that gcd((mp/2 − 1)mod M,M) is a non-
trivial factor of M . It can be shown that for a randomly chosen m, the probability that the
above algorithm does give a non-trivial factor of M is at least 1/2 provided that M is not
of the form pk or 2pk for some odd prime p [8].

The remaining case is to recognize and factorize an odd number M in the form of a
prime power. This can be done by classical probabilistic algorithms whose run time scales
like O((logM)2(log logM)2 log log logM) [14], which is negligible in comparison with Shor’s
algorithm. (See Appendix B for an equally efficient quantum prime power factorization
algorithm.) Thus, we have an efficient way to factorize a composite number M .

Combining Shor’s algorithm with the classical factorization of prime powers, we are
almost sure to find a non-trivial factor of M after O((logM)2(log logM)2 log log logM)
elementary q-bit operations. Moreover, the power algorithm is one of the major bottle
necks in this method.

APPENDIX B: QUANTUM PRIME POWER FACTORIZATION ALGORITHM

Here we discuss a variant of Shor’s algorithm that is useful for factoring a number M that
is of the form pn for some odd prime p. Following Shor, we can find the order of a number
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m which is relatively prime to M ≡ pn in O((logM)2(log logM)2 log log logM) time. We
denote the set of all integers in ZM which are relatively prime to M by U(ZM ). It can be
shown that U(ZM ) is a cyclic group of order pn−1(p − 1) under multiplication modulo M
[29]. The group generated by m under multiplication modulo M , 〈m〉, is a sub-group of
U(ZM ). The probability that the order of 〈m〉 is divisible by pn−1 equals the probability
that a randomly chosen element of Zpn−1(p−1) is relatively prime to pn−1, which is in turn
equal to 1 − 1/p ≥ 2/3. So, the greatest common divisor of the order of m and M has at
least 2/3 chance of being pn−1. Thus, we have a probability of at least 2/3 of finding p by
calculating M/ gcd(M, r) where r is the order of m. Once p is found, M can be factorized
easily. The total time required scales as O((logM)2(log logM)2 log log logM).
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