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We compute structure functions in the Hamiltonian formalism on a momentum lattice using a

physically motivated regularisation that links the maximal parton number to the lattice size. We
show for the �43+1 theory that our method allows to describe continuum physics. The critical line

and the renormalised mass spectrum close to the critical line are computed and scaling behaviour is

observed in good agreement with L�uscher and Weisz' lattice results. We then compute distribution
functions and �nd a Q2 behaviour and the typical peak at xB ! 0 like in QCD.

PACS-index: 13.85.-t, 11.10.Ef

Hadron structure is probed by deep inelastic scattering (DIS). Over recent years a great deal of experimental

data has been gathered from high energy collider experiments. While perturbative quantum chromodynamics (QCD)

describes successfully the large Q2 dependence of DIS structure functions, it fails to predict the correct dependence

on the Bj�rken variable xB. Thus much e�ort has been devoted to compute quark or gluon distribution functions

and proton structure functions from QCD with non-perturbative methods. E.g., Martinelli et al. [1] have computed

the �rst two moments of the pion structure function via Monte Carlo lattice simulations. These calculations are

notoriously di�cult (for the present status of lattice calculations of structure functions see Ref. [2]). This situation

calls for alternative techniques. In this letter we present such a new approach. Its basic ingredients are: (i) We

use a Hamiltonian formulation, based on (ii) a momentum lattice as regulator, and (iii) use a Breit frame (not the

rest frame) corresponding to the scattering process. We apply our method to the scalar model in 3 + 1 dimensions,

which has been extensively studied, and compute the distribution function. As a result we �nd an Altarelli-Parisi

like behaviour leading to a sharp forward peak at small xB at high resolution Q2, as it typically shows up in high

energy DIS hadron scattering experiments. We extract continuum physics: Close to the critical point our results are

in perfect agreement with the predicted scaling behaviour as well as with Euclidian lattice results by L�uscher and

Weisz [3].

Let us briey outline the reasons for the choice of our method: (i) Structure functions are computed from wave

functions. Wave functions are de�ned in Minkowsky space where they can be computed directly from a Hamilto-

nian formulation. The Hamilonian approach o�ers the advantage of allowing to compute directly Minkowsky space

observables. E.g., scattering wave functions for glueball-like states in compact QED2+1 have been computed in a

Hamiltonian formulation on a momentum lattice [4] (for a review of Hamiltonian lattice methods see [5{7]). (ii) The

usefulness of a momentum lattice to compute physics close to a critical point has been demonstrated in Ref. [8,9].

(iii) The reason for our choice of the Breit frame will be explained below. However, Hamiltonian methods are known

to lead to numerical problems because of the huge number of degrees of freedom involved. Nobody has succeeded yet

in observing scaling behaviour indicating continuum physics in a (3+1)-dimensional Hamiltonian formulation. In this

work we shall demonstrate for the scalar theory that those di�culties can be overcome.

The most important experiment in order to probe the structure of hadrons is deep inelastic scattering (DIS)). Its

simplest form is inclusive scattering of an unpolarised lepton o� a hadronic target. Let us recall some basic notations

[10]. The hadron in its ground state with four momentum P interacts with the probing lepton by the exchange of a

virtual photon (our neutrino) with space-like four-momentum q. In Feynman's parton model it is assumed that the

proton consists of constituents, the partons, which are weakly bound, i.e. its binding energy is small compared to the

resolution ability Q :=
p�q�q� of the probing photon. In this approximation, the so-called Bj�rken scaling variable

xB := Q2

2P�q�
can be interpreted as the momentum fraction of the struck parton if we work in the Breit frame. The

Breit frame is de�ned by the requirements that the photon energy q0 be zero and that the photon momentum ~q be

antiparallel to the hadron momentum ~P . In this frame the following relation between the parton momentum ~p and

the proton momentum holds:

(~p� ~P=2)2 � j~P=2j2: (1)

The rationale for this particular choice of frame being that QCD structure functions F (xB; Q) can be interpreted as a

linear combination of parton momentum distribution functions f(xB ; Q), which have a more intuitive interpretation.
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The latter is de�ned by th Structure functions are another way of expressing scattering cross sections. The distribution

function of a parton counts the number of those partons with a given momentum fraction xB in the proton. For a

precise de�nition see Ref. [10].

Because the Breit frame introduced above refers to a particular struck parton and we want to describe a many-

parton system (proton) we need to extend the de�nition to a generalised Breit frame: q0 = 0 but ~q needs no longer be

antiparallel to ~P . Although the parton momentum needs no longer be collinear in general to the proton momentum
~P , we nevertheless impose Eq.(1) as kinematical condition. While the generalised Breit frame has been introduced

for the purpose of practical calculations, it should be noted that the strict relation between distribution and structure

functions, characteristic for original Breit-frame no longer holds in a strict sense. However, this relation is recovered

for the generalised Breit frame in the continuum limit.

Because we are working in the Hamiltonian approach we need to de�ne a basis of the Hilbert space. We construct the

Hilbert space as a Fock space of free particles and select (parton) momenta ~p from a bounded domain corresponding

to DIS as given by Eq.(1). This is an assumption based on the physical intuition that the experimentally observable

parton momenta are those which dominate the quantum dynamics. This assumption has been tested by computing

critical behaviour of renormalised masses and a good agreement with analytical scaling behaviour has been observed

(see below).

Now we introduce a momentum lattice regularisation: In order to have a practically convenient lattice we further

constrain the parton momenta from Eq.(1), namely by selecting a regular cube centered at ~P=2 and located inside

the ball given by Eq.(1). I.e., the parton momenta ~p lie in the domain

0 � pi � � =

p
3

2
j~P j for i = x; y; z: (2)

We de�ne lattice momenta ~p := ~n�p where ~n is an integer vector and �p is the momentum lattice spacing cover-

ing the domain given by Eq.(2). One notices that all lattice momenta are positive (non negative). Contrary to a

regularisation in the rest frame which does not limit the particle number, our approach has the following important

property: For any given Hilbert state with non-zero total momentum, the Fock space particle numbers are bounded.

Consequently the ultraviolet cuto� � given by Eq.(2) implies a total particle number cuto� and thus drastically

reduces the dimension of the Hilbert space.

Mass spectrum and critical behaviour of the �43+1 theory
Before discussing structure functions we need to convince ourselves that the method allows to compute correctly

physical observables. We have chosen the scalar �43+1 theory because it is a quite well understood theory and has a

second order phase transition, allowing to test our method near a critical point. The Hamiltonian of the �4 theory is

given by

H =

Z
d3x

1

2
(
@�

@t
)2 +

1

2
(~r�)2 + m2

0

2
�2 +

g0

4!
�4; (3)

where m0 and g0 are the bare mass and coupling constant, respectively. We express the Hamiltonian in terms of free

�eld creation and annihilation operators corresponding to the lattice momenta. Because the Hamiltonian and the

momentum operators commute, we compute the energy spectrum En in a Hilbert space sector of given momentum ~P .

Since we are not in the rest frame we have to use the mass-shell condition Mn :=

q
E2
n � ~P 2 in order to obtain the

physical mass spectrum. It is known [3] that the critical line between the symmetric and the broken phase lies entirely

in the region where the bare parton mass squared m2
0 is negative. Hence we cannot build up the Fock-space in terms

of partons with those masses. As a remedy we have split the bare mass squared m2
0 = m2

kin + m2
int into a positive

kinetic part m2
kin and an interaction part m2

int. The Fock states are built from positive bare masses mkin. The best

choice of mkin seems to be to take the renormalised mass mR (which however, requires a separate calculation). In

numerical calculations close to the critical point shown in Fig.[1] we have chosen for simplicity a small positive value.

We found that the lower lying physical mass spectrum is not very sensitive to the value of mkin (this is not the case

for higher lying masses).

We diagonalised the Hamiltonian on two lattices: �=�p = 3 and �=�p = 4. This would correspond to symmetric

lattices (�� and +�) of size 73 and 93 nodes, respectively. This results in a very small Hilbert space of only 6 and 21
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states, respectively. In order to compare our results to those of L�uscher and Weisz [3] we express the bare parameters

m0 and g0 in terms of the parameters � and �: m2
0
= (1� 2�)=�� 8 and g0 = 6 �

�2
. Fig.[1] displays the renormalised

mass mR versus �. One observes that our results computed on very small lattices are quite close to the results of

L�uscher and Weisz [3]. Masses M computed on the lattice must obey a < 1=M < L where L is the length of the

lattice and a denotes the lattice spacing of a space-time lattice � = �
a
. It can be shown from perturbation theory

[11,3] that the physical masses close to the critical point obey the following scaling law M � C�1=2jln� j�1=6, where
� := 1 � �=�crit and C is a constant. Since the results of Ref. [3] are based on the solution of the renormalisation

group equations, this scaling law �ts their results. One should note, however, that two di�erent regularisations (this

work and that of Ref. [3]) in general correspond to two di�erent critical lines. In Tab. [1] we have displayed our results

for the critical points �crit as a function of � and compared our results with those of Ref. [3]. Again, our results are

very close to those of L�uscher and Weisz. These results cover a domain of the bare parameter space extending quite

far away from the Gaussian �xed point � = 1=8 and � = 0.

Another way to test continuum physics is to look at the mass ratios Mn=M1 from the spectrum on the lattice

and check if they become independent of the cuto� � or else independent of the coupling constant g0(�) (i.e., they

scale). Those mass ratios Mn=M1 are shown in Fig.[2]. As can be seen, for a number of states Mn=M1 ! const in

a wide range of �-values, i.e., they scale. However, for some states Mn=M1 diverges, i.e., there is no scaling. The

physical reason behind this is the following: The �43+1 model describes a gas of partons repelling each other [3]. The

spectrum of Fig.[2] shows states dominated by the 1-,2-,3-,4- particle Fock space sectors plus a spectrum of excited

(scattering) states. The picture of repulsive two-particle-exchange force is con�rmed by observation that the mass

of the lowest-lying n-body state is larger than n-times the mass of the one-body state. The states which scale are

just those lowest-lying n-body states. The higher-lying part of the spectrum consits of states with more nodes in

the wave-function than lattice points, having also a wider range and contributions from higher Fock-state sectors.

Because in the calculation corresponding to Fig.[2], the parameters �p, � and the parton number cuto� are all kept

�xed, we cannot properly describe those higher-lying states. Consequently, they do not show scaling. When we go to

bigger lattices (�p! 0) then we observe (not displayed here) more states which show scaling.

Distribution functions
The distribution function f(xB ; Q) of �nding some parton with momentum fraction xB inside the hadron is determined

by the parton momentum distribution function ~f (~p; ~P ) for �nding a parton with momentum ~p inside the hadron with

momentum ~P . Since Q is a dimensionful quantity, its scale is set by the lattice spacing a, i.e., Q � 1

a(m0; g0)
and thus

depends on the bare parameters if one keeps the renormalised mass �xed. The continuum limit a ! 0 corresponds

to the the limit towards arbitrarily high resolution ability. If one keeps the renormalised mass and the renormalised

coupling constant �xed, then Q is a function of the bare coupling constant g0 and vice versa { invertibility of Q(g0)

assumed. Hence f(xB ; Q) is related via the function Q(g0) to the distribution function �f(xB ; g0) which only depends

on dimensionless parameters. Consequently, a calculation of the distribution function along a renormalisation group

trajectory can be used to compute the Q-dependence of the quark structure functions in QCD.

While QCD possesses bound states of quarks and gluons, the existence of corresponding bound states in the scalar

�43+1 is not evident. According to Ref. [3] they do not exist in the symmetric phase and there is little chance to

�nd them in the broken phase, either. This is con�rmed by our numerical �ndings. In order to compute distribution

functions of a bound state of partons in the scalar model we have taken recurrence to the �3 model. We calculate the

distribution function of the �3 theory, because the �3-interaction describes forces which are attractive one-particle

exchange forces [3]. This allows formation of bound states as in QCD. However, this theory is known to su�er from

an unstable vacuum since it is unbounded from below. The unstable vacuum of the �3 theory prevents to calculate

meaningful ground state masses which are needed to specify renormalisation group trajectories and hence the exact

relation between the resolution Q and the bare coupling constant g0. While in QCD one computes �f (xB; g0 and g0(Q)

to obtain f(xB), here we can only compute the distribution function f(xB ; g0(Q). We have computed the distribution

function in 1-,2- and 3 space dimensions. For a given parton number cuto�, these curves look very much alike. In

order to analyse the behaviour at small xB we have chosen to present our result corresponding to a calculation in one

space dimension (Fig.[3]). When increasing the coupling g0 we see that the distibution function develops a peak at

momentum fraction xB = 0. This is so, because increasing the coupling means that more partons are produced which

share the total momentum fraction. The behaviour of the distribution function seen here is typical for QCD, where

g0(Q) increases with the resolution Q. It is seen in DIS experiments and described by the Altarelli-Parisi equations.

If we had applied a parton number cuto� independent of �, the small xB behaviour of Fig.[3] which is a typical
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many-body e�ect [12], would not have been seen. This is so because a system of n identical observable particles must

have an expectation value of xB around 1=n for symmetry reasons.

In conclusion, we have devised a Hamiltonian method able to compute physical observables in Minkowsky space.

We have applied it to the scalar model and obtained the correct scaling behaviour of the mass spectrum at the

critical point. Moreover, we have computed distribution functions showing a peak at small xB as described by the

Altarelli-Parisi equations in QCD. Work is in progress to compute structure functions for full QCD.
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Fig.1 The ground state mass mR in lattice units (a � 1) versus � for � = 0:00345739 (�� = 0:01 in Ref. [3]). The

dots correspond to results of Ref. [3]. Our results correspond to �=�p = 3 (dashed line) and �=�p = 4 (solid line).

Fig.2 The lowest lying mass spectrum versus �. The ground state mass is set to one. � as in Fig.[1].

Fig.3 The distribution function �f (xB; g0(Q)) of �
3
1+1 versus the momentum fraction xB and the coupling constant

g0(Q). The bare mass m0 has been to be m0 = 3�k. �=�p = 11.

I. TABLE CAPTION

� 0.0005 0.001 0.005 0.01 0.05 0.1

�LWcrit 0.125101 0.125202 0.125991 0.126968 0.132368 0.13601

� 0.99997 0.99993 0.99972 0.9993 1.0073 1.0275

The critical points �crit versus �. �
LW
crit is taken from Ref. [3]. � := �KScrit=�

LW
crit denotes the ratio between the results

of this work and Ref. [3]. In this work, �crit has been determined by the condition that the renormalised mass mR

becomes imaginary. �=�p = 4.
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