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ABSTRACT

A new procedure is presented, which allows, based on Kendall's � , to test for partial
correlation in the presence of censored data. Further, a signi�cance level can be assigned
to the partial correlation { a problem which hasn't been addressed in the past, even for
uncensored data. The results of various tests with simulated data are reported. Finally,
we apply this newly developed methodology to estimate the in
uence of selection e�ects
on the correlation between the soft X{ray luminosity and both total and core radio
luminosity in a complete sample of Active Galactic Nuclei.
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1 INTRODUCTION

Astronomers are frequently confronted with the problem of
missing or incomplete information. This typically happens

when a sample of sources, which has been selected for show-

ing emission in a certain waveband, is then observed in an-
other part of the electromagnetic spectrum. A lack of in-

trinsic emission, absorption due to intervening material or

insu�cient sensitivity of the instrument then often result in
upper limits or, more general, in a 'censored' data set.

In our speci�c case a sample of Active Galactic Nu-
clei (AGN) with 2.7 GHz 
uxes greater than 2 Jy has been

established for which almost complete information on the

radio and the optical continuum as well as line emission ex-
ists (Morganti et al. 1993, Tadhunter et al. 1993, di Serego

Alighieri et al. 1994). The soft X{ray properties of these

objects were determined by using the 
ux limited ROSAT
All{Sky Survey (Siebert et al. 1995). For about 40% of the

objects in this sample only an upper limit on the soft X{ray


ux could be given.

One probable clue to the radiation mechanisms in AGN

is to search for a relationship between the emission from
di�erent wavebands. Many attempts have been made in the

past to investigate the correlations between the radio, the

optical and the X{ray regime (e.g. Feigelson & Berg 1983,
Fabbiano et al. 1984, Zamorani 1984, Kembhavi et al. 1986,

Wilkes & Elvis 1987, Browne & Murphy 1987). Thus, given

the above mentioned problems, many procedures have been
developed by astrophysicists to deal with the problem of cor-

relation and regression analysis with censored data (Schmitt

1985, Feigelson & Nelson 1985, Isobe et al. 1986, Avni &
Tananbaum 1986).

By applying regression and correlation analysis to the

radio and soft X{ray continuum emission of the above men-

tioned complete sample including the upper limits (using
ASURV Rev 1.3, La Valley et al. 1992, Feigelson & Nelson

1985, Isobe et al. 1986), correlations of the soft X{ray lumi-

nosity with both the total and the radio core luminosity were
found (Siebert et al. 1995). The use of luminosities instead

of 
uxes, however, always introduces a redshift bias to the

data, as luminosities are strongly correlated with redshift in

ux limited samples. It is therefore crucial to estimate the

in
uence of this e�ect on the correlations in order to be able

to draw reliable conclusions on the true physical relationship
between the emission from the two wavebands. Partial corre-

lation coe�cients have been used to deal with this problem

(e.g. Kembhavi et al. 1986). However, up to now, censored
data could not be taken into account.

In this paper we want to present a method that allows
to apply partial correlation to censored data and to assign

a signi�cance level to the resulting correlation coe�cient.

The structure of the paper is as follows: after introducing
the notation and partial Kendall's � coe�cient (x2.1), this

concept will be extended to censored data (x2.2). In x3 we

describe the various tests we applied and report numerical
results on both simulated and 'real' data.

We note that our method is based on rank correlation

coe�cients. Rank correlation analysis is more general than
the frequently used linear correlation analysis and thus our

method is also applicable to linear correlation coe�cients.

This procedure resulted from a interdisciplinary col-

laboration of astrophysics and mathematical statistics

in the form of the newly founded Statistical Con-

sulting Center for Astronomy (SCCA). Further infor-
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mation can be obtained through World Wide Web
(http://www.stat.psu.edu/scca/homepage.html), or by con-

tacting SCCA@stat.psu.edu. The computer code developed

on the basis of the procedure presented in this paper is also
available from this site.

2 PARTIAL KENDALL'S � COEFFICIENT

WITH CENSORED DATA

In this section we give a description of the partial Kendal-
l's � coe�cient with censored data and describe a proce-

dure for testing the hypothesis that the population partial

Kendall's � is zero. In the �rst subsection we give a brief
introduction and background references for Kendall's rank

correlation coe�cient and Kendall's partial rank correlation

coe�cient with uncensored data. The procedure for censored
data is given in subsection 2.2.

2.1 Introduction and Background

In this subsection we consider the uncensored case. Let T =
(T1; T2; T3) be the random vector of interest, and let Ti =

(T1i; T2i; T3i); i = 1; : : : ; n; be the sample values. For k =

1; 2; 3, set

Jk(i; j) = I(Tki < Tkj)� I(Tkj < Tki);

where I(x < y) = 1, if x < y and 0 otherwise. Kendal-
l's (1938) rank correlation coe�cient between Tk and Tl is

de�ned by

�kl = E(Jk(i; j)Jl(i; j)); k 6= l;

and its sample estimate by

�̂kl =
2

n(n� 1)

X

i<j

Jk(i; j)Jl(i; j):

It has been shown that � can be extended to the case of par-
tial correlation and that the partial � has the same structural

form as �12:3, the Pearson's partial product-moment corre-

lation (Kendall 1970). In particular, Kendall's partial rank
correlation coe�cient between T1 and T2 given T3 is de�ned

as

�12:3 =
�12 � �13�23

[(1 � �2
13
)(1� �2

23
)]1=2

:

For a general discussion of the problem of measuring partial

association see Quade (1974). A geometric interpretation of
partial correlation is given in Thomas & O'Quigley (1993).

In spite of the long history of Kendall's partial rank correla-

tion coe�cient, there are no tests for the signi�cance of the
partial � (Hettmansperger 1984). See also Nelson & Yang

(1988) where they study, via Monte Carlo, the performance

of the Jackknife approximation to the distribution of �̂12:3.
A useful discussion on the interpretation of Kendall's par-

tial rank correlation coe�cient can also be found in Nelson

& Yang (1988).

2.2 Extension to Censored Data

The extension of Kendall's � to censored data was �rst given
by Brown, Hollander & Korwar (1974) in a biostatistical

context. A more careful derivation of its distributional prop-
erties was given by Oakes (1982). After introducing some

notation, we describe this censored data version of Kendal-

l's � . The partial � is then de�ned in terms of � as in the
uncensored case. Then we describe a method for testing the

signi�cance of the partial � . To our knowledge, this method

is new even with uncensored data, since Macklin (1982) only
veri�ed by computer simulations that the asymptotic dis-

tribution of Spearman's partial � has, under the null hy-

pothesis, the same form as the asymptotic distribution of
Spearman's �.

Let again T = (T1; T2; T3) be the random vector

of interest. However, due to censoring we only observe
(X1i; �1i;X2i; �2i;X3i; �3i); i = 1; : : : ; n; where, for k =

1; 2; 3, Xki = minfTki; Ckig; �ki = I(Tki � Cki) where

Cki is the censoring variable and I(A) is the indicator of the
event A.

At this point we have to emphasize that the above is

the right censoring model common in Biostatistics. In As-
tronomy the data are generally left censored. Left censoring,

however, can be converted to right censoring by multiplying

all data points by �1. (If the log of the data is being an-
alyzed, multiplication by �1 should take place after taking

logs.) With this conversion, Cki represents minus (the log

of) the detection limit for the k� th coordinate of the i� th

observation, Tki is minus (the log of) the k�th coordinate of

the i� th observation, and if �ki = 1 then what is observed

(i.e. Xki) is the variable of interest, while if �ki = 0 then
only the detection limit was recorded.

The censored data version of the function J becomes

Jk(i; j) = �kiI(Xki < Xkj)� �kjI(Xkj < Xki):

For k; l = 1; 2; 3, set

hkl(i; j) = Jk(i; j)Jl(i; j):

In this notation, the censored data version of Kendall's �

between Tk and Tl is

�̂kl =
2

n(n� 1)

X

i<j

hkl(i; j);

and the censored data version of the partial Kendall's � be-

tween T1 and T2 given T3 is

�̂12:3 =
�̂12 � �̂13�̂23

[(1� �̂2
13
)(1� �̂2

23
)]1=2

:

Under the null hypothesis H0 that the partial Kendall's � is

zero, the above statistic is asymptotically normal with zero

mean and estimated variance (see also appendix)

�̂
2 = 16n�1

An

(1� �̂2
13
)(1� �̂2

23
)
;

where

An = (n� 1)�1
nX

i1=1

�
Bi1 �

�B
�
2

; (1)

where

Bi1 =
6

(n� 1)(n� 2)(n� 3)

X

j1 < i2 < j2
all 6= i1

g(i1; j1; i2; j2);

�B is the average of the Bi's, and
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g(i1; j1; i2; j2) =
1

24

X

p

~g(i1; j1; i2; j2)

where
P

p
denotes summation over all permutations of

(i1; j1; i2; j2) and

~g(i1; j1; i2; j2) = h12(i1; j1)� h13(i1; j1)h23(i2; j2):

The hypothesis of zero partial correlation coe�cient is re-

jected at level � if

j
�̂12:3

�̂
j > z�=2;

where z�=2 denotes the 100(1 � �=2)-th percentile of the
standard normal distribution.

3 NUMERICAL RESULTS AND DATA

ANALYSIS

3.1 Simulations

The testing procedure described in Section 2 is based on the

asymptotic (i.e. 'large' sample size) normality of the partial

� . In practice, however, we often have to deal with small or
moderate sample sizes. Thus it is useful to have some un-

derstanding of the performance of the procedure under such

settings. Two important performance characteristics of any
testing procedure are the attained level and the power of the

procedure. With �nite samples, the attained level will not

be exactly equal to the chosen � because the small-sample
distribution of the test statistic is not exactly normal. The

power of a testing procedure is the probability that the pro-

cedure will reject the null hypothesis when it is not true.
Clearly, the more pronounced the departure from the null

hypothesis, the greater the power.

Both the attained level and the power of a testing proce-
dure against selected alternatives can be evaluated via sim-

ulation studies using arti�cially generated data sets. For the

simulation results reported we used sample size n = 30,
and � = 0:05. Under the null hypothesis (i.e. zero par-

tial correlation) the data sets were generated as follows:

T1i; T2i; T3i are all independent exponential random vari-
ables with mean one; since all variables are generated inde-

pendently, the partial correlation coe�cient between T1 and

T2 given T3 is zero. The censoring variables C1i; C2i; C3i

are independent exponential random variables with mean

four. This gives a theoretical level of censoring of 20% for

all three variables. The statistic was based on the data
Xki = minfTki; Ckig; �ki = I(Tki � Cki), k = 1; 2; 3,

i = 1; : : : ; 30. From 1000 simulated data sets the null hy-
pothesis was rejected 71 times. Next, in order to get an

idea of how sensitive the test is to departures from the null

hypothesis, random samples were generated with nonzero
partial correlation. Four levels of departure from the null

hypothesis were considered. For all levels the variable T3i
and all the censoring variables were generated as before.
Variables T1i and T2i were generated as follows: For the

�rst level, T1i = 0:8T �1i + 0:2T4i, T2i = 0:8T �2i + 0:2T4i,

where T �1i; T
�
2i; T4i are all independent exponential random

variables (and independent from T3i) with mean one. Thus

T1i; T2i are dependent due to the presence of the common

T4i and this dependence is the same when the independent
T3i is held �xed. For the second level, T1i = 0:6T �1i +0:4T4i,

T2i = 0:6T �2i + 0:4T4i. For the third and fourth levels the
coe�cients become 0.4, 0.6, and 0.2, 0.8 respectively. Thus,

level one represents the smallest departure from the null hy-

pothesis and level four represents the largest. In particular,
the Pearson partial correlation for level one is 0.06, and for

levels two, three and four, it becomes 0.31, 0.69, and 0.94

respectively. From 1000 generated data sets from each of the
four levels the null hypothesis was rejected 109, 345, 812, and

1000 times, for levels one, two, three, and four, respectively.

Recall that we chose � = 0:05. Thus, if the small-sample

distribution of the test statistic is well approximated by its

asymptotic distribution, the attained level of the test pro-
cedure should be approximately 0.05 (i.e. it should reject

about 50 times out of 1000 simulations under the null hy-
pothesis). Large deviations from that indicate poor approxi-

mation to the small-sample distribution. From the statistical

point of view, the attained level of 0.071 is signi�cantly dif-
ferent from the chosen � = 0:05; (a 95% con�dence interval

for the attained level is (0:055; 0:087)). From the practical

point of view, however, the di�erence is not signi�cant; in
fact, for a sample of size 30 with 20% censoring, it is quite

satisfactory. The power of the procedure is rather low for

small departures from the null hypothesis but it increases
very noticeably as the departures become more pronounced.

For larger sample sizes, the attained level should be closer to

0.05, and the power should be greater. To verify this we ran
again the simulations changing only the sample size to 80.

With this sample size, the attained level was 0.049, and the

power against the four alternatives was 0.158, 0.746, 0.999,
and 1.000.

3.2 Application to astronomical data

As an application of the procedure described in x2 to an
astrophysical problem we further investigated the sample

already discussed by Morganti et al. (1993), Tadhunter et

al. (1993) and Siebert et al. (1995). In total it consists of
88 sources (68 radio galaxies, 18 quasars, 2 BL Lac objects)

which were selected from the Wall & Peacock 2.7 GHz sam-

ple (Wall & Peacock 1985) of radio sources. The selection
criteria were: redshift z < 0.7, radio 
ux density S2:7GHz > 2

Jy and declination � < 10o.

One of the key issues of the study was to investigate the

relationship of the radio to the soft X{ray emission in the
(0.1{2.4)keV ROSAT energy band. In Figures 1 and 2 we

show a plot of the soft X-ray luminosity Lx versus the total

radio luminosity Lt and the core radio luminosity Lc , re-
spectively. Clearly, a correlation is visible in both diagrams.

Indeed, the correlation and regression analysis using ASURV

(La Valley et al. 1992, Feigelson & Nelson 1985, Isobe et al.
1986) shows that the radio and the soft X{ray emission are

correlated, both for the galaxies and the quasars, although

the statistical signi�cances of the correlations are low in the

case of the quasars. This is probably due to the small sample

size and the small range in luminosity.

Because of the 
ux limit of the original Wall & Peacock

radio catalog, Lt is strongly correlated with redshift. Fur-
ther, the correlations of Lx with Lc and Lt are not mutually

independent since Lc is also correlated with Lt . In order to

evaluate the in
uence of the individual redshift{luminosity
correlations and the Lc - Lt correlation on the correlations
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Table 1. Results of the correlation and regression analysis

N X Y �rx �rx;z P �rx;Lc
P

NUL NUL P� � �

(1) (2) (3) (4) (5) (6) (7) (8) (9)

quasars 18 logLr;total logLx 0.250 0.196 0.271 0.036 0.749

0 1 0.081 0.179 0.111

17 logLr;core logLx 0.309 0.269 0.017 0.190 0.039

0 0 0.017 0.173 0.127

galaxies 68 logLr;total logLx 0.264 0.115 0.075 0.185 0.0004

0 28 0.0003 0.065 0.065

59 logLr;core logLx 0.311 0.254 6:3� 10�5 0.249 2:7� 10�5

10 20 < 10�6 0.059 0.060

Notes. Column (1): AGN class. Column (2): Number of objects in each class. Column (3),(4): Indepen-

dent(X) and dependent (Y) variable respectively. The number of upper limits is given in the second line.

Column (5): Kendall's � of the radio vs X-ray correlation with the corresponding probability that the cor-

relation arises by chance given in the second line. Column (6): Partial Kendall's � with the e�ect of redshift

excluded, together with the calculated variance (see x2). Column (7): Probability of erroneously rejecting

the null hypothesis (i.e. no correlation).Column (8),(9): Same as in columns (6) and (7), but with the e�ect

of the Lc { Lt correlation taken into account.

Figure 1. Total rest frame 2.7GHz radio luminosity versus soft

X{ray luminosity in the (0.1{2.4)keV energy band. Full dots de-

note quasars, whereas galaxies are plotted with open squares.

Upper limits are indicated by arrows.

with Lx , we applied the procedure developed in x2 to this
data set.

In the case of the quasars, the Lx { Lt correlation seems
to be strongly a�ected by both the redshift bias and the

Lc { Lt correlation. It turns out that the correlation is no

longer statistically signi�cant once both selection e�ects are

properly accounted for. The Lx { Lc correlation is much less

a�ected and the probability of erroneously rejecting the null

hypothesis of no correlation is <� 4%. As we have shown in

the previous section, the power of the statistical test depends

on the sample size. Given the low number of quasars, an

error probability of 4% is acceptable. We thus conclude that

there is indeed a correlation between Lx and Lc for quasars

Figure 2. Radio core luminosity at 2.7 GHz versus soft X{ray

luminosity. Full dots denote quasars, whereas galaxies are plotted

with open squares. Upper limits are indicated by arrows.

and that the Lx { Lt correlation is probably an artifact of

the redshift bias and/or the strong relation of Lt with Lc .

The results for the radio galaxies are similar. The Lx

vs Lc correlation remains highly signi�cant in the partial
correlation analysis, whereas we �nd evidence that the Lx {

Lt correlation is most likely introduced by the redshift bias.

The fact that the Lx - Lc correlation is independent of

redshift e�ects in both object classes is not surprising, since,
because of the inclusion of upper limit values in the analysis,

Lx as well as Lc do not depend a priori on redshift.

For a discussion of the results with respect to uni�cation

schemes and physical emission processes, see Siebert et al.

(1995).
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4 SUMMARY

In this paper we present a new methodology to test for par-

tial association in censored (astronomical) data. This proce-

dure is based on the Kendall's � statistic and allows for the
�rst time to assign a signi�cance level to the resulting par-

tial correlation coe�cient. Tests with simulated data show

that the procedure gives reliable results, although the power
of the statistical test also depends on the sample size.

We applied the new method to a sample of 18 quasars

and 68 radio galaxies de�ned in Morganti et al. (1993) in or-
der to investigate the in
uence of two selection e�ects on the

observed correlation of Lx with both Lt and Lc , namely the

strong correlations of Lt with redshift and with Lc . Whereas
we �nd evidence that the Lx - Lt correlation is most likely

an artifact of the redshift bias in both object classes, we con-

clude that the Lx { Lc correlation is not a�ected by either
of the selection e�ects in galaxies as well as in quasars.
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APPENDIX A: MATHEMATICAL

DERIVATIONS

The idea is to express the numerator of Kendall's partial � as

a U -statistic and then use existing theory (Lee (1990); Ser-


ing (1980)). We will use the notation introduced in Section
2. Write

�̂12 � �̂13�̂23

=
2

n(n� 1)

X

i<j

h12(i; j)�

�
4

n2(n� 1)2

X

i<j

h13(i; j)
X

i<j

h23(i; j)

=
4

n2(n� 1)2

X

i<j

X

i1<j1

[h12(i; j)� h13(i; j)h23(i1; j1)]

=
1

n2(n� 1)2

X

i6=j

X

i1 6=j1

~g(i; j; i1; j1)

=
1

n(n� 1)(n� 2)(n� 3)

X

i6=j 6=i1 6=j1

~g(i; j; i1; j1) +

+O(
1

n
)

=
1

n(n� 1)(n� 2)(n� 3)

X

i6=j 6=i1 6=j1

g(i; j; i1; j1) +

+O(
1

n
)

=
24

n(n� 1)(n� 2)(n� 3)

X

i<j<i1<j1

g(i; j; i1; j1) +

+O(
1

n
)

where O( 1
n
) denotes a quantity that when multiplied by n

remains bounded as n ! 1. The �rst term on the right

hand side is a U -statistic, that has mean value zero under
the null hypothesis. Thus, from Ser
ing (1980, p. 188) it

follows that, under the null hypothesis, �̂12 � �̂13�̂23 has the

same asymptotic distribution as its 'projection'

4

n

nX

i=1

Pi;

where the Pi are independent and identically distributed

random variables and are described in the preceding refer-

ence. Thus its asymptotic variance is 16n�1Var(P1). The

estimate of Var(P1) given in (1) is the estimate proposed by

Sen (1960) modi�ed to increase the sensitivity of the testing

procedure under the alternative hypothesis.


