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Abstract. In the present contribution we shall give a brief review of the

main properties of sphalerons in various theories with a Yang{Mills �eld.

1. Introduction

As is well known, the vacuum in gauge theories has a complicated structure

[1]. One can label vacua with a topological (Chern{Simons) number. Vacua with

di�erent topological numbers are separated by a potential barrier, whose height is

set by the sphaleron [2], [3].

Topologically nontrivial 
uctuations of the gauge �eld lead to fermion number

nonconservation [4] via the anomaly [5]. The fermion number nonconservation in

topologically nontrivial gauge �eld backgrounds can be described by the generalized

Bogolyubov transformation technique [6], [7] or in terms of a level-crossing picture

[8]. The rate of the fermion number nonconservation depends on the energy of the

process. The sphaleron solution determines the energy scale for processes with a

strong nonconservation of fermion number.
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Recently a discrete series of static, spherically symmetrical solutions of

Einstein{Yang{Mills (EYM) theory was found was found by Bartnik and McKin-

non [9]. It turns out that Bartnik{McKinnon (BMK) solutions are gravitational

analogues of the electroweak sphaleron [10], [11]. Solutions of the same nature were

found in Yang{Mills-dilaton (YMD) theory [12], [13]. It was understood that the

existence of all of these solutions is related to topological properties of the YM �eld

con�guration space.

In the present contribution we give a brief review of di�erent YM sphalerons.

In the next section we describe sphaleron solutions in YMH, EYM and YMD

theories. In section 3 we discuss the main properties of these solutions and their in-

terpretation. In section 4 we discuss similarity and di�erence in various sphalerons.

Section 5 contains concluding remarks.

2. Sphaleron solutions in di�erent theories

In the present section we shall discuss several theories with the YM �eld in

which sphaleron solutions exist, namely YMH with the Higgs doublet, EYM, and

YMD, and describe the main properties of sphalerons.

2.1. Electroweak sphaleron

The electroweak sphaleron has a relatively long history. It was found by R.F.

Dashen, B. Hasslacher, and A. Neveu (DHN) [14] in 1974 in relation with hadron

physics and rediscovered later in the context of nuclear physics by Boguta [15]. In

1983 an analysis of the properties of the con�guration space of an SU(2) YM �eld

[2] led to the claim of existence of saddle point solutions in YMH theory. It was

realized [3] that they coincide with the DHN solutions.

The argument for the existence of sphalerons runs as follows [2]. Let us consider

a one-parameter family of con�gurations interpolating between the vacua with dif-

ferent topological (Chern{Simons) numbers. The asymptotic behaviour of the gauge

�eld de�nes a map S2 ! SU(2) ' S3. A suitable one-parameter family of maps is

topologically equivalent to a single nontrivial map S3 ! S3. Denoting the maxi-

mum of the (static) energy along each path l by E(l), we may take the minimum of

E(l) running through all nontrivial paths. This minimum corresponds to a saddle

point of the energy functional.

In pure YM theory there is no scale and there are no static solutions [16] in

(1 + 3) dimensions. One way out is to introduce a Higgs �eld.

The action for the YMH theory has the form

SYMH =

Z �
�

1

4g2
F a
��F

a �� + (D��)
y
D��� �(�y��

v2

2
)2
�
d4x (1)
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where F a
�� is the SU(2) gauge �eld strength, F a

�� = @�W
a
� � @�W

a
� + �abcW b

�W
c
� ,

and a = 1; 2; 3 is the SU(2) group index, �; � = 0; 1; 2; 3 are space-time indices.

Covariant derivatives are de�ned by D�� = @��� i
2
�aW a

��.

We are interested in spherically symmetric solutions. The most general spher-

ically symmetric ansatz for the SU(2) Yang{Mills �eld W a
� can be written (in the

Abelian gauge) as [17]

W a
t = (0; 0; A0) ; W a

� = (�1; �2; 0) ;

W a
r = (0; 0; A1) ; W a

' = (��2 sin �; �1 sin �; cos �) : (2)

For the Higgs �eld we take

� =
vp
2
[H + iK(~n � ~�)]

�
0

1

�
; (3)

where ~� are the usual Pauli isospin matrices and ~n = ~x=r.

The ansatz (2) is form-invariant under gauge transformations around the third

isoaxis, with A� transforming as a U(1) gauge �eld on the reduced space-time

(t; r), whereas � = �1 + i�2 is a scalar �eld of charge one with respect to the U(1).

Introducing � = H + iK we �nd

A� ! A� + @�
; �! ei
�; �! ei
=2�: (4)

With respect to this U(1) one may de�ne the `charge conjugation'

A� ! �A�; �! �; �! �: (5)

The even sector with respect to this charge conjugation is given by

A0 = 0; A1 = 0; �1 �W (r); �2 = 0;K = 0: (6)

In this sector the ansatz (2) is equivalent to the usual \monopole" ansatz

W a
0 = 0; W a

i = �aij
nj

r
(1�W (r)) (7)

with nj = xj=r. And the Higgs �eld is

� =
vp
2
H(r)

�
0

1

�
: (8)
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The reduced action in this sector has the form

SredYMH = �
4�v

g

Z  �
dW

d�

�2

+
(W 2 � 1)2

2�2

+
�2

2

�
dH

d�

�2

+
H2(1 +W )2

4
+

1

4

�

g2
�2(H2 � 1)2

!
d� (9)

where � = gvr.

The corresponding equations of motion are

d2W

d�2
=

W (W 2 � 1)

�2
+
H2

4
(1 +W ) ;

d

d�

�
�2
dH

d�

�
=

H(1 +W )2

2
+

�

g2
�2(H2 � 1)H : (10)

The solution has to interpolate between

W = 1 ; H = 0 ; (11)

at �! 0 and

W = �1 ; H = 1 (12)

for � !1.

It was found [14], [3] that equations (10) indeed have a sphaleron solution

fW (r);H(r)g which satis�es boundary conditions (11), (12).

2.2. Gravitational sphaleron

In 1988 Bartnik and McKinnon unexpectedly found a discrete sequence of

globally regular solutions of the EYM theory.

We say unexpectedly, because neither vacuum Einstein nor pure YM theory

has nontrivial globally regular, static, �nite energy solutions [16]. There are also no

such solutions in the EYM theory in (2 + 1) dimensions [18].

The action for the EYM theory has the form

SEYM =
1

4�

Z �
� 1

4G
R � 1

4g2
F a
��F

a ��

�p
�g d4x (13)

where g denotes the gauge coupling constant and G is Newton's constant.
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A convenient parametrization for the metric turns out to be

ds2 = S2(r)N(r)dt2 � dr2

N(r)
� r2d
2 ; (14)

where d
2 = d�2 + sin2(�)d'2 is the line element of the unit sphere.

For the SU(2) YM potential we make the usual (`magnetic') spherically sym-

metric ansatz (7). Substituting this ansatz into the action we obtain the reduced

action

SredEYM = �
Z

S

�
1

2G
(N + rN 0 � 1) +

1

g2

�
NW 02 +

(1�W 2)2

2r2

��
dr ; (15)

where a prime denotes d
dr
.

The resulting �eld equations are

(NSW 0)0 = S
W (W 2 � 1)

r2
;

N 0 =
1

r

�
1�N � 2

�
NW 02 +

(1 �W 2)2

2r2

��
;

S�1S0 =
2W 02

r
: (16)

The �eld equations (16) have singular points at r = 0 and r =1 as well as points

where N(r) vanishes. Regularity at r = 0 of a con�guration requires N(r) =

1 + O(r2), W (r) = �1 + O(r2) and S(r) = S(0) + O(r2). Since W and �W are

gauge equivalent we may chooseW (0) = 1. Similarly we can assume S(0) = 1 since

a rescaling of S corresponds to a trivial rescaling of the time coordinate. Inserting

a power series expansion into (16) one �nds

W (r) = 1� br2 +O(r4) ;

N(r) = 1� 4b2r2 +O(r4) ;

S(r) = 1 + 4b2r2 +O(r4) ; (17)

where b is an arbitrary parameter.

Similarly assuming a power series expansion in 1
r
at r =1 for asymptotically


at solutions, one �nds lim
r!1

W (r) = f�1; 0g. It turns out that W (1) = 0 cannot
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occur for globally regular solutions, so we concentrate on the remaining cases. One

�nds

W (r) = �
�
1�

c

r
+O

�
1

r2

��
;

N(r) = 1�
2M

r
+O

�
1

r4

�
;

S(r) = S1

�
1 +O

�
1

r4

��
; (18)

where again c;M and S1 are arbitrary parameters and have to be determined from

numerical calculations.

It was found [9] that equations (16) admit a discrete sequence of �nite-energy

solutions fWn;Nn; Sng which interpolate between the asymptotic behaviours (17)

for r ! 0 and (18) for r !1.

2.3. Dilatonic sphaleron

As mentioned earlier, there are no static solutions in the pure YM theory in

(3 + 1) dimensions. The reason is that pure YM theory is repulsive. In order to

have solutions with �nite energy one needs some extra �eld providing attraction that

compensates YM repulsion. In the case of the electroweak sphaleron this attraction

is provided by a Higgs �eld. It was realized [12], [13] that the role of a binding force

can be provided by a dilaton �eld as well.

Introducing a dilaton �eld we naturally obtain a EYMD theory with the action

SEYMD =
1

4�

Z �
�

1

4G
R+

1

2
(@')2 �

e2�'

4g2
F 2

�p
�g d4x (19)

where � and g respectively denote the dilatonic and gauge coupling constant and

G is Newton's constant.

This theory depends on a dimensionless parameter 
 = �

g
p
G
. In the limit


 ! 0 one gets the EYM theory studied in [9]. The value 
 = 1 corresponds to a

model obtained from heterotic string theory [19]. We found strong indications that

the lowest-lying regular solution for this value of 
 may be obtained in closed form

[20], [21].

We will not discuss here the case of general 
 [20], [22], but rather concentrate

on the limiting case 
 !1 where one obtains the YM-dilaton theory in 
at space

[12], [13].
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In the 
at case when gravity decouples we get a YMD theory de�ned by the

action

SYMD =
1

4�

Z �
1

2
(@')2 �

e2'

4g2
F 2

�
d4x: (20)

The corresponding reduced action is

SredYMD = �
Z

dr

�
r2

2
'02 + e2'

�
W 02 +

(W 2 � 1)2

2r2

��
(21)

with resulting �eld equations

W 00 =
W (W 2 � 1)

r2
� 2'0W 0 ;

(r2'0)0 = 2e2'
�
W 02 +

(1 �W 2)2

2r2

�
: (22)

These equations are invariant under a shift ' ! ' + '0 accompanied by a simul-

taneous rescaling r ! re'0 . Hence globally regular solutions can be normalized to

'(1) = 0.

It was found [12], [13] that equations (22) have a discrete sequence of �nite

energy solutions fWn; 'ng, where n = 1; 2; 3; ::: labels the number of zeros of the

gauge function Wn(r).

The mass of this solution varies from � 0:8 for n = 1 to 1:0 for n ! 1 in

natural units �g.

The asymptotic behavior of these solutions for r ! 0 is

Wn(r) = 1� bnr
2 +O(r4) ;

'n(r) = 'n(0) + 2e2'n(0)b2nr
2 +O(r4) ; (23)

and for r!1 is

Wn(r) = (�1)n
�
1�

cn

r
+O

�
1

r2

��
;

'n(r) = �
dn

r
+O

�
1

r4

�
: (24)

The parameters bn; 'n(0); cn and dn have to be determined by numerical calcula-

tions.
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2.4. Gravitating sphaleron

A natural generalization of the YMH theory is obtained taking gravity into

account. In this way one gets EYMH theory, which has gravitating sphaleron [23],

[24] solutions.

This theory contains two scales, gravitational and electroweak. As a result one

gets two kinds of excitation modes: gravitational (analogous to the BMK mode)

and electroweak. The lowest solution is with one sphaleron node. The next one,

with two nodes, contains one sphaleron node and one gravitational node.

3. Properties and interpretation

The main properties of the sphalerons are as follows:

(i) they have �nite energy

(ii) they have fractional topological charge

(iii) there are fermion zero modes in the background of these solutions

(iv) they are saddle points of the action.

We call solutions of EYM and YMD sphalerons since they possess all the prop-

erties (i){(iv). More precisely, solutions with odd n are sphalerons, while solutions

with even n correspond to trivial loops in con�guration space.

(i) The mass of the sphaleron in the standard model of electroweak interactions

is of order of a few TeV. The EYM sphalerons have typical masses of order 1=g
p
G.

If we assume that our model is part of the string theory, or in other words if we are

granted the mass scale parameter MPl, the mass of the solutions of the Einstein{

Yang{Mills theory is of the order of unity in Planckian units. In the EYMD theory

the mass of the solutions decreases with increasing dilatonic coupling constant 


and for large 
 goes to zero like MEYMD � MPl


2
.

(ii) It was shown [2], [3] how to assign a topological (baryon) number to the

sphaleron. It turns out to be 1
2
. In the gauge we use here one can read this o� from

the asymptotic behaviour of the gauge �eld.

(iii) It was found that there are fermion zero modes in the background of the

electroweak [25], gravitational [26] and dilatonic [27] sphalerons. This is in perfect

agreement with the picture of level-crossing phenomena [8].

(iv) The electroweak sphaleron has just one negative mode [2], [3], [28].

Various aspects of the stability of BMK solutions have been analyzed [29],

[30], [31], [32], [33], [34], [35]. It is natural [34] to distinguish two di�erent kinds of

instabilities, which we call `sphaleron' and `gravitational' instabilities. Gravitational

instabilities have no analogue for the 
at-space sphaleron, whereas instabilities of
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the former type have same nature as for the YMH sphaleron. It was found [29], [30]

that the BMK solutions are unstable and the numerical results for the few lowest

solutions led to the conclusion that the nth Bartnik{McKinnon solution has exactly

n unstable gravitational modes. It was shown analytically [31], [32] that there exists

at least one sphaleron-like unstable mode for each member of the BMK family.

Numerical studies [34] led to the claim that the nth BMK solution has exactly n

sphaleron-like instabilities, so that altogether the nth BMK solution has 2n unstable

modes, n of either type. It is quite remarkable that the conjecture about the number

of sphaleron-like instabilities can be proven [35] in spite of the fact that the BMK

solutions are not known analytically.

Numerical studies indicates that the same conjecture is true for dilatonic

sphalerons, namely the nth solution of the YMD theory has exactly 2n unstable

modes [27].

4. Comparison of di�erent sphalerons

It is an interesting question why such di�erent theories as YMH, EYM and

YMD posses similar solutions. The \explanation" lies in the presence of a YM �eld

in all of these cases. Introducing a proper \time" coordinate � (di�erent in each

case) one arrives at an equation of the following type:

d2W

d�2
= �

dU

dW
+ �(� ) _W + h(� ); (25)

where U(W ) = �(W 2 � 1)2=4 is an inverted double well potential, and the coe�-

cients �(� ) and h(� ) for each theory are shown in the Table.

Theory �(� ) h(� )

YM 1 0

YMH 1 e2�H2

4
(1 +W )

EYM K � _K
K
� 2 _W2

Kr
0

YMD 1� 2 _' 0

Table. Coe�cients in equation (25) for di�erent theories. K �
p
N .

Without the last term h(� ) the equation (25) has a simple mechanical analogue,

the motion of a \particle" in the potential U(W ) under the in
uence of friction,

with the coe�cient �(� ). The last term, which is present only in the YMH case,

plays the role of a \time dependent" potential.
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In order to have a �nite-energy �eld-theoretical solution the \particle" in our

mechanical analogy should start at W = 1 for � ! �1 with _W = 0 and end up at

W = �1 for � = +1.

It is obvious that there are no static solutions in the pure YM theory, because

the constant friction term prevents the \particle" from stopping at the top,W = �1.
In the YMH case the friction term is the same but the potential is deformed

with increasing � .

In EYM and YMD cases the friction coe�cient depends on the derivatives of

other �elds. Thus one can have positive as well as negative friction. This allows for

excited solutions in the cases with gravity and dilaton, corresponding to oscillations

of the \particle".

Although all the solutions we discuss are similar, there is an important dif-

ference. In contrast to the electroweak sphaleron the gravitational and dilatonic

sphalerons have an even number of negative modes [34], [27]. ((This fact should be

considered in view of the recent paper of Rubakov and Shvedov [36].))

5. Concluding remarks

We have shown that there are saddle point solutions of similar nature in YMH,

EYM and YMD theories. We emphasized the similarities and di�erences between

these solutions.

In addition to the globally regular solutions considered above there are also

black hole solutions [37], [20], [23] of corresponding theories. They may be con-

sidered as black holes sitting inside sphalerons. These solutions are of interest as

counterexamples for a \no-hair" conjecture.

The \zoo" of solutions described is an interesting problem of mathematical

physics. The sphaleron is important in electroweak baryogenesis. The role and

importance of the gravitational and dilatonic analogues is not yet clear.
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