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Abstract

We show that S-duality in four dimensional non-supersymmetric gauge theories

can be formulated as a canonical transformation in the phase space of the theory. It is

shown that in phase space the modular anomaly emerges as the result of integrating

out the momenta degrees of freedom. In the case of non-abelian gauge theories the

canonical transformation yields also a dual theory with ~� = �1=� , � = �
2� + 4�i

g2
, and

gauge group the dual of the original one. The generalization to d dimensional abelian

gauge theories of p-forms is also considered.
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1 Introduction

A lot of progress has been made in the last few years in the understanding of S-duality as

a symmetry of four dimensional gauge theories. The conjecture of Montonen and Olive [1]

that N = 4 supersymmetric Yang-Mills theories were invariant under strong-weak coupling

with the exchange of the gauge group by its dual was tested in [2], were it was shown

that in fact the partition function transformed as a modular form. Some progress has been

also made for N = 2 and N = 1 supersymmetric Yang-Mills theories [7, 4]. However a

path integral derivation of S-duality is in general still unknown. In [8] Witten showed that

S-duality in four dimensional abelian gauge theories [5, 6, 7] can be implemented at the

level of the path integral in a very similar way to T-duality in non-linear sigma models

in String Theory [11]. The idea is to consider a global isometry of the Lagrangian which

can be expressed as translations of a given coordinate (the adapted coordinate), gauge this

isometry by introducing a fake gauge �eld and impose the constraint that the curvature tensor

associated to this gauge �eld is zero so that the gauge �eld is non-propagating. Integrating

the Lagrange multiplier and �xing the gauge �eld to zero the original theory is recovered and

integrating the gauge �eld and �xing the adapted coordinate to zero the new dual theory is

obtained. In the case of T-duality the initial variables are 0-forms and the global isometry
that is gauged is �! � + � where � is the adapted coordinate. In the case of abelian gauge

theories the initial variables are 1-forms and the isometry which is gauged is A ! A + �

where now the � parameter is a 1-form. Then the gauge �eld which has to be introduced is
a 2-form and its �eld strength a 3-form. In 4 dimensions the Lagrange multiplier imposing
that the �eld strength vanishes is a 1-form, like the original gauge �eld, and the dual theory
is expressed also in terms of 1-forms. Also for this non-supersymmetric case the partition

function transforms as a modular function with a modular weight proportional to the Euler
characteristic and the signature of the manifold [8, 9].

Given the analogy with T-duality a canonical transformation must be beyond this path
integral manipulation, since this is the case in T-duality [13, 14, 15]. In section 2 we present
the explicit generating functional producing this transformation and show that it is the
generalization of the functional in 2-dimensional non-linear sigma models to 4 dimensions and

1-forms. Under this transformation electric and magnetic degrees of freedom get interchanged
(with the minus relative sign) as shown in abelian lattice gauge theories in [6]. The canonical
transformation approach is the simplest in order to obtain the dual theory, also in this case
in which in the Hamiltonian formulation one has to be careful with the constraints. It is
easy to show that both the initial and the dual theory are de�ned in the same subspace of

the phase space after the canonical transformation is performed. We show that in phase
space the partition functions of the initial and dual theories coincide and that only after

integrating out the momenta degrees of freedom the modular anomaly [8, 9] appears.
In the canonical transformation approach the generalization to Yang-Mills theories is

straightforward. The dual theory is also a Yang-Mills theory with gauge group the dual of

the original one (as conjectured by Montonen and Olive in the N = 4 supersymmetric case)

and inverted coupling. We show this in section 3. We also exhibit a path integral derivation

in the style presented in [8] for the abelian case.
The results presented in section 2 can be easily generalized to the case of d dimensional

abelian gauge theories of p-forms, as it is explained in section 4. The modular anomaly in
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the transformation of the partition function is obtained. The implementation at the level of

the path integral using a coset construction was presented in [10].

2 The abelian case

In this section we construct the explicit canonical transformation which produces the change

� ! �1=� (2. 1)

with � = �=2� + 4�i=g2, for U(1) four dimensional euclidean gauge theories.

Let us consider the Lagrangian

L =
1

8�
(
4�

g2
FmnF

mn +
i�

4�
�mnpqF

mnF pq)

=
i

8�
(��F+

mnF
+mn � �F�

mnF
�mn) (2. 2)

where

F+
mn =

1

2
(Fmn +

�Fmn) =
1

2
(Fmn +

1

2
�mnpqF

pq);

F�

mn =
1

2
(Fmn �

�Fmn) =
1

2
(Fmn �

1

2
�mnpqF

pq) (2. 3)

and Fmn = @mAn � @nAm. It was shown in [8] that the transformation (2. 1) could be

derived at the level of the path integral by the usual Rocek and Verlinde's procedure [12]
one follows to construct abelian T-duals of two dimensional sigma models in String Theory.
In this case given a global abelian continuous isometry of the sigma model one can turn it
local by introducing a fake gauge �eld in the Lagrangian by minimal coupling and imposing
the constraint that this gauge �eld is non-dynamical. Solving this constraint and �xing the
gauge �eld to be zero one recovers the original theory. If instead the gauge �eld is integrated

and the gauge is �xed in the original variables a sigma model written in terms of the Lagrange
multiplier introduced to impose the constraint is obtained. This is the dual sigma model.
In [8] the same construction is applied to obtain the dual of the abelian gauge theory. The
global continuous abelian isometry in this theory is

A! A+ � (2. 4)

where now the isometry parameter is a 1-form. This global isometry can be gauged by
introducing a gauge �eld G, 2-form, which is imposed to be non-dynamical with the term

Z
M
d4x ~AdG (2. 5)

where the Lagrange multiplier ~A is a 1-form. Integrating ~A the constraint dG = 0 is obtained,
ie. G pure gauge, and we can recover (2. 2) by either �xing A = 0 or G = 0. On the other

hand by integrating out G and then �xing A = 0 the following Lagrangian is gotten:

~L =
i

8�
(�

1

��
~F+
mn

~F+mn +
1

�
~F�

mn
~F�mn) (2. 6)
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with ~F� the self- and antiself-dual components of ~Fmn � @m ~An � @n ~Am. This is the S-dual

of the initial electromagnetic theory since in the particular case � = 0 it corresponds to the

inversion of the coupling constant g.

In this procedure we have made an integration by parts in the Lagrange multipliers term

and neglected a total derivative1. However this total derivative contains some information,

in particular it implies that the initial and dual Lagrangians are equal up to a total time

derivative, exactly what happens when two theories are related by a canonical transfor-

mation. To be more precise, the generating functional of a canonical transformation from

fqi; pig to fQ
i; Pig is such that

pi _qi �H(qi; pi) = Pi _Qi � ~H(Qi; Pi) +
dF

dt
: (2. 7)

If F is a type I generating functional (depending only on coordinates) H = ~H if and only if2

@F

@qi
= pi

@F

@Qi
= �Pi (2. 8)

Under duality:
~L( ~A) = L(A) + d ~A ^ dA (2. 9)

which implies3

�mnpq(@m ~An � @n ~Am)(@pAq � @qAp) = �(
�F

� ~Am

_~Am +
�F

�Am

_Am) (2. 10)

This produces the canonical transformation

�� =
�F

�A�

= �4 � ~F 0�; �0 = 0;

~�� = �
�F

� ~A�

= 4 �F 0�; ~�0 = 0 (2. 11)

plus a constraint
��@�A0 = ~��@� ~A0; (2. 12)

where greek indices run over spatial coordinates.

The generating functional producing this canonical transformation is

F = �2
Z
M;tfixed

d3x( ~A�
�F 0� +A�

� ~F 0�) = �
1

2

Z
M
d4x ~F ^ F: (2. 13)

1This term is seen in the gauge A = 0.
2We assume F does not depend explicitly on time.
3Our convention for the product of forms is: ~F ^ F = �mnpq ~FmnFpq.
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This is the result one would expect a priori from what is known in two-dimensional sigma-

models, where the generating functional is given in terms of the adapted coordinate to the

isometry � and the Lagrange multiplier ~� by [13, 14]

F = �
1

2

Z
M2

d~� ^ d�: (2. 14)

The Hamiltonian associated to (2. 2) is given by4:

H =
1

4(�� � � )
���

� + @�A0�
� �

�� + �

�� � �
��

�F 0� +
4���

�� � �
�F 0� �F0� (2. 15)

plus the constraints

�0 = 0; @��
� = 0; (2. 16)

where

�� =
�F

� _A�

= 4��F+0� � 4�F�0�: (2. 17)

�0 is a primary constraint and @��
� = 0 is the secondary constraint emerging from the

equation of motion for �0. They imply that the theory is de�ned in the reduced phase space
given by �0 = 0, @��

� = 0. These constraints are also satis�ed in the dual theory, since they
are obtained directly from the canonical transformation. Then the dual theory is de�ned in
the same reduced phase space than the original one. The relation (2. 12) is trivial in this

subspace. However we need to consider it in order to recover the dual Lagrangian from the
canonically transformed Hamiltonian, since for that we need the naive Hamiltonian without
taking into account the constraints. Our purpose is to show that the canonically transformed
Lagrangian is the dual Lagrangian and for that we do not need to study in detail the way
the theory gets de�ned in the Hamiltonian formalism [16], it is enough to show that both

the initial and dual theories are de�ned in the same reduced phase space.
The canonically transformed Hamiltonian reads:

~H =
1

4

���

�� � �
~��

~�� + @�V0 ~�
� +

�� + �

�� � �
~��

� ~F 0�+
4

�� � �
� ~F0�

� ~F 0�: (2. 18)

The corresponding Lagrangian is given by the dual Lagrangian (2. 6). Recall that (2. 11):

�� = �4 � ~F 0�;

~�� = 4 �F 0�

corresponds to the usual interchange between electric and magnetic degrees of freedom when

there is no �-term.
Some useful information can be obtained within this approach. The generating functional

(2. 13) is linear in both the original and dual variables. Then the following relation holds:

He
iF
8� = ~He

iF
8� (2. 19)

4We have droped the global i=8� factor. It will then appear when exponentiating these quantities.
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which implies:

 k[ ~A] = N(k)
Z
DA(x�)e

i
8�
F [ ~A;A(x�)]�k[A(x

�)] (2. 20)

with �k[A] and  k[ ~A] eigenfunctions of the initial and dual Hamiltonians respectively with the

same eigenvalue and N(k) a normalization factor [17]. From this relation global properties

can be easily worked out. The Dirac quantization condition:
Z
�
F = 2�n; n 2 Z; (2. 21)

for � any closed two-surface in the manifold, implies for ~F :
Z
�

~F = 2�m; m 2 Z (2. 22)

and ~F must live in the dual lattice. Also from (2. 20) the transformation applies to any

four dimensional manifold M since �k[A] can be the result of integrating the theory in an

arbitrary manifold with boundary.

We can obtain in phase space the modular anomaly emerging in the transformation of

the partition function [8, 9]. The argument goes as follows. In phase space the partition

function is given by5:

Zps =
Z
DA�D�

�e�
i
8�

R
d4x( _A����H) (2. 23)

Under (2. 11)
DA�D�

� = D ~A�D~��: (2. 24)

Then the dual phase space partition function is given by:

~Zps =
Z
D ~A�D~��e�

i
8�

R
d4x( _~A� ~��� ~H) = Zps (2. 25)

showing that in phase space the partition function is invariant under duality. Integration on
momenta in (2. 23) gives:

Zps =
Z
DA�(Im� )

B2=2e�
R
d4xL (2. 26)

with L given by (2. 2). The factor (Im� )B2=2 in the measure is the regularized (det Im� )1=2

coming from the gaussian integration over the momenta. B2 is the dimension of the space of
2-forms in the four dimensional manifold M (regularized on a lattice) and emerges because

the momenta are 2-forms.

The same calculation in the dual phase space partition function gives:

~Zps =
Z
D ~A�(det(Im�

1

�
))1=2e�

R
d4x~L (2. 27)

with ~L given by (2. 6). We regularize the factor

det(Im�
1

�
) = det(Im�=(� �� )) (2. 28)

5In order to have a well-de�ned partition function we have to �x the gauge symmetry. The following

arguments are in this sense formal.
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by

(Im� )B2=2���B
+

2
=2��B

�

2
=2 (2. 29)

where B+
2 and B�

2 are respectively the dimensions of the spaces of self-dual and anti-self-dual

2-forms. In con�guration space the partition function is de�ned by [8]:

Z = (Im� )(B1�B0)=2
Z
DA�e

�S = (Im� )(B1�B0�B2)=2Zps (2. 30)

and in the dual model
~Z = (

Im�

� ��
)(B1�B0)=2

Z
D ~A�e

�~S (2. 31)

From Zps = ~Zps we arrive to

Z = ��(���)=4���(�+�)=4 ~Z (2. 32)

where � = 2(B0�B1) +B2 is the Euler number (the regularization is such that Bp = B4�p)

and � = B+
2 � B�

2 is the signature of the manifold. This is the modular factor appearing

in [8, 9]. In phase space the partition function is simply de�ned as the integration over

coordinates and momenta and it transforms as a scalar with modular weight equal to zero.

Is only when going to the con�guration space that the integrations over the momenta produce
some determinants which after being regularized yield the modular factor found in [8, 9].
A very similar argument applies to the transformation of the dilaton in two-dimensional

non-linear sigma-models.

3 The non-abelian case

The canonical transformation approach can be straightforwardly generalized to the case of

non-abelian gauge theories with arbitrary compact group G. The initial Lagrangian is given
by:

L =
1

8�
(
4�

g2
F (a)
mnF

(a)mn +
i�

4�
�mnpqF (a)

mnF
(a)
pq )

=
i

8�
(��F (a)+

mn F (a)+mn � �F (a)�
mn F (a)�mn) (3. 1)

where F = dA � A ^ A and we have chosen Tr(T aT b) = �ab (T a are the generators of the
Lie algebra). The conjugate momenta and the Hamiltonian are:

�a
� =

�L

� _Aa
�

= 2(�� � � )F
(a)
0� + 2(�� + � ) �F

(a)
0�

�a
0 = 0 (3. 2)

H =
1

4

1

�� � �
�a
��

a�+(@�A
a
0 + fabcA

b
0A

c
�)�

a��
�� + �

�� � �
�a� �F

(a)
0� +

4���

�� � �
�F

(a)
0�

�F (a)0�: (3. 3)

In the non-abelian case it proves more useful to use f �F0�;�
�g as the coordinates in phase

space and look for a canonical transformation

f �F0�;�
�g ! f � ~F0�; ~�

�g: (3. 4)
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Then as in the abelian case the canonical transformation is the usual interchange between

electric and magnetic degrees of freedom:

�a� = �4 � ~F 0�

~�a� = 4 �F 0�: (3. 5)

This leads to the dual Lagrangian:

~L =
i

8�
Tr(�

1

��
~F+
mn

~F+mn +
1

�
~F�

mn
~F�mn): (3. 6)

We have used the constraint:

�a�(@�A
a
0 + fabcA

b
0A

c
�) =

~�a�(@� ~A
a
� + fabc ~A

b
0
~Ac
�); (3. 7)

trivial in the phase space of the theory since

@��
a� � fabcA

b
��

c� = 0 (3. 8)

are the secondary constraints that result from the equations of motion of the primary con-
straints �a

� = 0. As in the abelian case the original and canonically transformed Hamiltoni-

ans are de�ned in the same restricted phase space.
We must stress that in order to de�ne correctly the phase space of the theory as parametrized

by f �F0�;�
�g we have to introduce �rst order formalism for the initial Lagrangian. The

detailed description is given in [16]. The idea is to introduce a Lagrangian L[F;A], where
now F are arbitrary two-forms in the manifold, arranged to give F = dA �A ^ A from the

equation of motion for F . Now the F have no dynamical meaning since they have no time
derivative, and the momenta are conjugate to the A-variables:

�am =
�L[F;A]

� _Aa
m

(3. 9)

In this way the phase space variables �� and �F 0� are not conjugate variables and are only
related through the equations of motion.

The corresponding generating functional in the �rst order formalism is:

F = �4
Z
M;tfixed

d3xTr( ~A�
�F 0� +A�

� ~F 0�) (3. 10)

Within this approach strong-weak coupling duality is straightforwardly generalized to non-

abelian gauge theories. The same arguments that we applied in the abelian case in order to

obtain global properties can be applied in this case. For instance the dual variables must live
in the dual lattice. This implies that for the case of a SU(N) gauge group the dual theory
is invariant under SU(N)=ZN gauge transformations, as was conjectured by Montonen and

Olive for N = 4 Yang-Mills theories. Also, the same arguments yielding the modular factor

in the transformation of the partition function in con�guration space apply in this case.

The dual Lagrangian can also be obtained by manipulating the path integral in a very
similar way to the abelian case (see [18, 19] for alternative derivations). Let us consider the
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following intermediate Lagrangian (in the sense that the initial and dual theories will be

obtained from it):

LI =
i

8�
Tr(��F+

mnF
+mn � �F�

mnF
�mn + �mnpqGmnGpq) (3. 11)

where F is an arbitrary 2-form in the manifold and G � dA � A ^ A. Integration over A

produces the constraint:

�mnpq(@nF
(a)
pq � fabcF

b
nF

(c)
pq ) = 0 (3. 12)

In manifolds without non-trivial homology two-cycles6 F must be the curvature tensor F =

dA�A ^ A. Substituting in (3. 11) we obtain

L =
i

8�
Tr((�� + 2)F+

mnF
+mn � (� + 2)F�

mnF
�mn): (3. 13)

Since the theory is invariant under � ! �+2 (for even lattices it is invariant under � ! �+1)

we recover the original theory. If instead we integrate out the F -�elds it is easy to see that

the dual Lagrangian (3. 6) with ~F = G is gotten. The dual gauge group is the dual of the

original group (in the sense that the metric de�ned by its weight vectors is the inverse of
the one in the original gauge group). In order to see this we have to proceed more carefully
in our previous derivation. We take the gauge �elds in the fundamental representation of
the gauge Lie algebra and the metric de�ned by the weight vectors gab � dab. Following the
steps explained above from the Lagrangian:

LI =
i

8�
(��dabF

(a)+
mn F (b)+mn � �dabF

(a)�
mn F (b)�mn + �mnpqG(a)

mnF
(a)
pq ) (3. 14)

we arrive to the dual Lagrangian (3. 6) with metric ~gab = ~dab where ~dabd
bc � �ca. Then

the dual theory is de�ned on the dual Lie algebra. For instance in the case of SU(2) gauge
theories the dual group is SO(3). The theory de�ned in SU(2) is invariant under �! �+2�
(� ! � + 1) since in SU(2):

1

16�2

Z
Tr(Fmn

�Fmn) = n (3. 15)

with n an integer and the trace in the fundamental representation. For SO(3) the instanton
number is n=4 which implies that the dual theory is invariant under ~�! ~�+8� or ~� ! ~�+4.
Then the dual theory is not invariant under the whole SL(2; Z) but only under the subgroup
generated by

� !�
1

�
; � ! � + 4: (3. 16)

Similar considerations apply to SU(N).

4 Generalization to p-forms abelian gauge theories

The generalization to p-forms abelian gauge theories in d dimensions is direct from what
we have studied in section 2. We are going to consider the case d = 2(p + 1) which is the

6We have not studied in detail the case of manifolds with non-trivial homology two-cycles.
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one in which both the initial and dual theories are expressed as functions of (p+ 1)-forms7.

The generalized S-duality transformation is implemented in the path integral by gauging the

global isometry

A! A+ � (4. 1)

where now A and the gauge parameter are p-forms. The total derivative term that gives

information about the generating functional of the canonical transformation is d ~A^dA, with
~A, the Lagrange multiplier, also a p-form.

It is immediate to show that the canonical transformation is generated by the type-I

generating functional8:

F = �
1

(p+ 1)!

Z
ddxd ~A ^ dA (4. 2)

which produces:

��1:::�p =
�F

�A�1:::�p

= �((p+ 1)!)2 � ~F 0�1:::�p (4. 3)

~��1:::�p = �
�F

� ~A�1:::�p

= ((p + 1)!)2 �F 0�1:::�p (4. 4)

The same relation (2. 20) for the wave functions holds in this case since the generating

functional is linear in the initial and dual variables. From it we can obtain global infor-
mation about the dual variables. We can also obtain the modular weight appearing in the
transformation of the partition function [10].

Let us consider �rst the case p odd. p+1 is even and then the theory allows for a �-term.
In phase space (we omit the p indices):

Zps =
Z
DAD�e�

i
8�

R
ddx( _A��H) = (Im� )Bp+1=2

Z
DAe�S ; (4. 5)

after regularizing the determinant coming from the gaussian integration on the momenta,
(p+1)-forms in this case. The dual phase space partition function coincides with the initial
one and it is given by:

~Zps =
Z
D~�D ~Ae�

i
8�

R
ddx( _~A~�� ~H) = (Im� )Bp+1=2��B

�

p+1
=2���B

+

p+1
=2

Z
D ~Ae�

~S (4. 6)

The con�guration space partition function is:

Z = (Im� )Np=2
Z
DAe�S (4. 7)

where we have followed the notation in [10], Np being the dimension of the space of p forms

after substracting all the gauge invariances (see [10] for the detailed analysis). In the dual
model the partition function is the same with � ! �1=� . Then we have:

Z = ��
���

4 ���
�+�

4 ~Z (4. 8)

7In the arbitrary case the dual theory would depend on (d� p� 1) forms
8Our convetions are: �F i1:::ip+1 = 1

(p+1)!
�i1:::idFip+2:::id and ~F ^ F = �i1:::id ~Fi1:::ip+1Fip+2:::id .
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where � = 2(�1)pNp+(�1)p+1Bp+1 is the Euler number and � = B+
p+1�B

�

p+1 the signature

of the manifold.

In the case p even a �-term does not exist. Similar arguments to the ones above yield:

Z = (
4�

g2
)�=2 ~Z (4. 9)

All these results agree with the ones presented in [10].

5 Conclusions

We have seen that for non-supersymmetric abelian four dimensional gauge theories S-duality

can be implemented as a canonical transformation in the phase space of the theory. This is

easily generalized to the case of non-abelian gauge theories with arbitrary compact group.

In this case the dual non-abelian gauge group is the dual of the original gauge group, as

conjectured by Montonen and Olive [1] and tested by Vafa and Witten [2] for N = 4 Yang-

Mills theories. In the non-abelian case we have also presented a way of implementing non-

abelian S-duality in the path integral in con�guration space.
We have seen that in phase space the partition function is invariant under S-duality and

it is only after integrating out the momenta degrees of freedom that a modular factor appears
and the partition function in con�guration space transforms as a modular function. This

applies for abelian and non-abelian gauge theories.
We have generalized the canonical transformation approach to arbitrary d-dimensional

abelian gauge theories de�ned with p forms and obtained the corresponding modular weights
appearing in the transformation of the partition function.

It could be very interesting to generalize the results presented in this paper to the case

of supersymmetric gauge theories.
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