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1 Introduction

Thanks to the work done in expressing vector bundles, forms, integration,

etc., on locally compact topological spaces X, entirely in terms of the algebra

C(X) of complex continuous functions onX vanishing at in�nity which forms

a commutative C� algebra; a generalization of ordinary geometry can be in-

troduced. Namely, when expressed in terms of a C� algebra the above cited

notions make sense even when the C� algebra is not commutative, there-

fore not of the form C(X) [1]. The simplest non-commutative geometries

that have been studied are non-commutative and non-cocommutative Hopf

algebras, corresponding to both quantization and curvature.

Meanwhile in classical mechanics states are points of a manifold M and

observables are functions onM ; in the quantum case, states are one-dimensional

subspaces of a Hilbert space H and observables are operators in H. Observ-

ables, in both classical and quantum mechanics, form an associative algebra,

which is commutative in the classical case and non-commutative in the quan-

tum case. So, we can think of quantization as a procedure that replaces the

classical algebra of observables by a non-commutative quantum algebra of

observables. The non-commutative Heisenberg algebra, i.e. the algebra that

comes up because momentum and space are not simultaneously measurable

(so called Heisenberg's uncertainty principle), is the best example to illustrate

this idea. Generally speaking, it is expected that even using non commutative

geometry, one might nevertheless extend our regular notions of symmetry to

the quantum world. If we consider the space of states endowed by a group

structure, the functions on this are observables. To quantize such a system

one has to construct a non-commutative associative algebra of functions on

a locally compact topological group space; i.e. a quantum group [2].

Thinking about quantization of the space-time metric itself, where we

cannot use path integration techniques to express quantization in terms of

classical �elds; we claim the assumption of a smooth manifold structure for

space-time to be meaningless in extremely small scales from the experimental

viewpoint. The problem is that the �ner the accuracy in the observation we

ask for, the heavier the test particle we need; eventually the space-time curva-

ture due to both the test particle and the space-time itself can be of the same

magnitud. In this context, by relaxing the assumption of smoothness of the

space-time manifold and introducing non-commutative algebraic geometry,

we propose a scheme called q-regularization, so we can regulate relevant quan-
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tities in �eld theory before renormalising. q (being q2 6= �1) parametrizes

the deformation to the non-commutative and non-cocommutative framework

in which relevant quantities in quantum �eld theories are �nite for q 6= 1, and

reduce to the unregulated, divergent, physical theory as q ! 1. Namely, as

well as in dimensional regularization we interpolate consistently to dimension

4�� where the relevant quantities are �nite (these would be in�nite at dimen-

sion four); in q-regularization we extend relevant quantities in quantum �eld

theory to a non-commutative and non-cocommutaive Hopf algebra or quan-

tum group (by introducing the parameter q ) where the relevant quantities

are �nite (these would be in�nite at q = 1; i.e. in C(X), the commutative

limit).

We present two examples, the �rst one is constructed in a four dimensional

representation of a particular non-commutative space previously reported [3].

The second example is proposed having in mind q-spinors (two dimensional

objects with the generators of A2=0
q , Manin's quantum plane [4], as entries)

constructed by the projective representation of the Heisenberg algebra, they

are braided in a very speci�c way to obtain a q-deformed space.

Second example is intended as a �rst step to approach q-regularization in

q-Minkowski space-time. We work out this example in a q-deformed space

which can be related with both, �rst example's q-mutator algebra and pre-

viously reported [5][6] braided two copies of Manin's quantum planes. Since

we do not impose reality conditions, among others, we are not working in

anyway in q-Minkowski space-time.

For the second example we want to learn more about the symmetries of

our measure, we study a projection in the q-deformed space used and its

relation to the SUq(2) measure. Moreover, we analyze the null directions of

the corresponding Hopf algebra that lead to a q-deformed Galilei group.

This paper is organized as follows; in Section 2 we construct the Manin

quantum plane out of the non-commutative Heisenberg algebra and introduce

the q-spinors as a way to link q-regularization scheme with physically mean-

ingful concepts. In section 3, we present two examples of q-regularization on

q-deformed Euclidean spaces for ��4 theory. Our scheme can only be carried

out in a very particular basis for functions de�ned on the q-deformed spaces

chosen such that we end with a Haar weight that reduces to an ordinary inte-

gration. Further work should be done to generalize this. Finally, in order to

learn about desired properties of symmetry in this q-regularization we study

the zero time projection of the measure we have just introduced in second
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example in terms of the SUq(2) measure and the null directions of the Hopf

algebra that lead to a q-deformed Galilei group. The quantum Galilei group

has been found as symmetry in condensed matter [7].

2 From Heisenberg algebra to q-spinors.

The goal of this section is to link non-commutative Heisenberg algebra with

two co-cycles and q-spinors as de�ned by Manin [4]. Let us start by the

fundamental Heisenberg commutator algebra generated by translations on

phase space (r;p); h
ri; pj

i
= i�h�ij (1)h

ri; rj
i
=
h
pi; pj

i
= 0:

We propose the following translation operator on phase space;

U(a;b) = ei(a�p�b�r)=�h where a and b 2 Rn . (2)

In a ray or projective representation, eq(2) obeys the composition law [8].

U(a2;b2) �U(a1;b1) = e[2�i�2(r;(a1;b1);(a2;b2))]
�U(a1+ a2;b1 +b2);

(3)
where a1;b1;a2;b2 2 Rn and, for a free particle in quantum mechanics, the

two co-cycle �2 for translations in the phase space is given by

2��2 (r; (a1;b1); (a2;b2)) =
1

2�h
(a1 � b2 � a2 � b1): (4)

Let us now consider the following in�nitesimal Galilei transformation [8]

r
0 = r+ a1 = r+ �hu r

00 = r+ a2 = r (5)

p
0 = p+ b1 = p p

00 = p+ b2 = p+ �hu;

where u is a unit vector in Rn.

If we de�ne

q = e
�i�h

; (6)
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impose eq(5) as symmetry in eq(4) and substitute the result in eq(3), it is

straightforward to prove that

U(�hu; 0)U(0; �hu) = qU(0; �hu)U(�hu; 0) (7)

is a realization of A(2=0)
q ; i.e. this ful�lls the non-commutative algebra of the

Manin's quantum plane [4].

Like other authors [5][6], we call the following two dimensional object a

q-spinor (more properly Weyl q-spinor).

Z� =

"
Z1

Z2

#
=

"
U(�hu; 0)

U(0; �hu)

#
, i.e. � = 1; 2 . (8)

In example 2 we use an approach [5] [6] in which the q-deformed space can

be related with the tensor product representation of two q-spinor spaces

called (Z i; ~Z i). A pair of q-spinors (i = 1; 2) is introduced in each space.

Hereafter greek indices are for spinor su�x and roman ones for di�erent

spinors. Besides it is required the following braiding

Z i ~Zj = R̂
ij
j0i0

~Zj0Z i0 (9)

where R̂
ij
j0i0 is the Yang-Baxter matrix for SLq(2; C).

3 Examples on q-regularization

In this section we present two examples of q-regularization for ��4 theory on

two apparently di�erent q-deformed spaces, both Euclidean. The �rst case

involves a four dimensional version of a Hopf algebra previously reported

[3]; we propose to extend momenta internal to Feynman loops to a non-

commutative structure. Second example involves a braided 4-dimensional

representation of Manin's quantum plane (so called q-spinors) where some

particular transformations on the generators of this Hopf algebra relates to

the one used in example 1. Actually, example 1 is posed in order to better

explain example 2 which is considered as a preliminary step for formulating

q-regularization on q-Minkowski space-time.

EXAMPLE 1. From reference 3, let us consider the Hopf algebra L

generated by (l1; l2; l3; l4) and

[lk; lj] = iljQ
0; for k=2,4 and j=1,3 (10)
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where Q0 =
p
1 � q. De�ne on this, the antipode map as

S (lk) = �lk S (lj) = �q�iljq�lk=Q0

; (11)

the coproduct map is given by

4lk = lk 
 1 + 1
 lk 4 lj = lj 
 1 + q
lk
Q0 
 lj and (12)

the counit

� (lk) = � (lj) = 0: (13)

Additionally, L can become a C� algebra if we de�ne

l�k = lk l�j = l�jq
i=2 (14)

For every �nite-dimensional Hopf algebra there is an invariant integration,

the Haar weight
R
, unique up to normalization.

A basis Ba1;:::a4 = eia1l1:::eia4l4 where an 2 C, being C the complex is

chosen, then the dual basis Da01;:::a
0

4
is given via

Ba1:::a4Da0
1
:::a0

4
= �(a0

1
� a1):::�(a

0

4
� a4); a0n 2 C (15)

where the Dirac delta functions � have been de�ned with respect to the usual

Lebesgue integration, then it is straightforward, by analogy with the case of

�nite dimensional Hopf algebras [9], to prove [10]Z Z
f = [2��(0)]

k
Z Y

j

da0jf
0(0; a0j(1� q�i)) (16)

for all j and f suitable of being written on the basis Ba1:::a4. In case q 6= 1

and assuming proper analycity and decay of f 0 (the Fourier transform of the

Wick ordered function f), eq(16) might be �nite for suitable f . If q = 1

eq(16) certainly diverges.

We propose, from ��4 theory, to q-regularize the vertex corrections with

contributions given by

�(s) =
(�i�)2

2

Z Z
d4l

(2�)4
i

(l� p)2 � �20 � i�

i

l2 � �20 + i�
(17)

where s is any of the Mandelstam variables. These corrections diverge loga-

rithmically.
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Let us extend the internal momentum in the Feynman loop in �(s) to the

non-commutative algebraic framework by considering instead of the standard

Lebesgue integration, the Haar weight above de�ned on the basis Ba1:::a4,

thus;

�q(s) = (18)

�2
0
�(0)

2(2�)3

Z dj l0j�
p2k +

�
l0j(1 � q�i)� pj

�
2 � �20 + i�

� ��
l0j(1� q�i)

�
2 � �20 + i�

�

where l0j are the odd components of the dual internal momentum that was

extended to non-commutative geometry and pk(pl) are the even (odd) com-

ponents of the external momentum in standard Euclidean commutative four

dimensional space-time. Unless q = 1, eq(18) is �nite, thus we have a regu-

larization scheme. An additional attempt of q-renormalization has recently

been presented [10]. Since we extend to the non-commutative framework only

the internal momenta degrees of freedom, the lack of locality, consequence of

this extention has not experimental consequences in this case. [11].

EXAMPLE 2. Let us consider the Hopf algebra H generated by 1 and

(a; �a; b;�b) such that;

h
b;�b
i
= 0; [a; �a] = 2(q�1 � q)q

1

2Q0
(b+3�b)

(19)

h
�b; a

i
= [b; a] = 2Q0�a;

h
�b; �a

i
= [b; �a] = 2Q0a:

The coproduct map 4 in this Hopf algebra is

4a = a
 1 + q
b

Q0 
 a 4 b = b
 1 + 1 
 b (20)

4�a = �a
 1 + q
�b

Q0 
 �a 4 �b = �b
 1 + 1 
 �b;

the antipode map S is

S(a) =
1

2

�
�(q�2 + q2)aq

�
b

Q0 + (q2 � q�2)�aq
�

b

Q0

�
(21)

S(�a) =
1

2

�
(q2 � q�2)aq

�
�b
Q0 � (q�2 + q2)�aq

�
�b
Q0

�
S(b) = �b S(�b) = ��b;
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and �nally the counit map � is

�(a) = �(�a) = �(b) = �(�b) = 0 (22)

Furthermore, we can make this into a �-algebra via

b� = b; �b� = �b a� = aqi=2; �a� = �aqi=2

i� q is a primitive root of unity such that q4 = 1.

We would like to relate H with

X ij = ~Z iZj 2 A2=0
q 
A2=0

q i; j = 1; 2; (23)

where ~Z i and Zj where introduced in Section 2 (eq(8) and eq(9)). It is

straightforward to prove that A2=0
q 
 A2=0

q is isomorphic to the real algebra

generated by 1 and (A, �A,B, �B), where

A = X + Y; �A = X � Y; B = Z + T; �B = Z � T (24)

and

X = q�1=2X11; Y = q�1=2X12; Z =
q�1X21 � qX22p

q + q�1
; T =

X21 +X22

q
p
q + q�1

:

(25)

To relate H with A2=0
q 
 A2=0

q let us rewrite the (A; �A;B; �B) generators, for

q 6= 1, as follows

A = a; �A = �a; (26)

B = q
b

Q0 ; �B = q
�b
Q0 :

On the other hand, it is straightforward to prove that in H , ((a+ �a), (a�
�a), b, �b) corresponds to the algebra L with generators (l1; l2; l3; l4) de�ned

in example 1. If q ! 1, the algebra becomes the commutative algebra of

functions on the space generated by (a; �a; b;�b) and the unit.

Like in example 1, we proceed de�ning the Haar measure
R R

as a map

H ! C, such that Z Z
f = f(1)

Z Z
f(2) 8f 2 H (27)
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Here we have expressed the action of 4 on f as 4f = f(1)
 f(2). We remark

that it is well known in the theory of Hopf algebras [12] that eq(27) is the

dual formulation of the usual left invariance.

By analogy with the case of �nite dimensional Hopf algebras [9], we use

the following formal expression for eq(27)

Z Z
f = TrHLfS

2 (28)

where Lf stands for f acting by left multiplication on H .

From eq(21) follows

S2(a� �a) = w�1(a� �a) ; S2(a+ �a) = w�1(a+ �a) ; S2b = b ; S2�b = �b

(29)

where w�1 = f(q) and limq!1w
�1 = 1. This shall be used below.

To compute
R R

we propose the following basis in H :

F �1�2;�3�4;�5�6 = (F �1�2; F �3�4; F �5�6) = (30)

�
ei�1

�bei�2
(a��a)

2 ; ei�3
�bei�4

(a+�a)

2 ; ei�5
�bei�6b

�

where

F �1�2;�3�4;�5�6 2 H and (�1; �2; �3; �4; �5; �6) 2 R:

We associate to F �1�2;�3�4;�5�6 a dual basis F�01�
0

2;�
0

3�
0

4;�
0

5�
0

6
2 (A2=0

q 
 A2=0
q )!

where (A2=0
q 
A2=0

q )! is the dual Hopf algebra of A2=0
q 
A2=0

q , such that

F �1�2;�3�4;�5�6F�01�
0

2;�
0

3�
0

4;�
0

5�
0

6
= (�(�0

1
� �1)�(�

0

2
� �2); (31)

�(�0
3
� �3)�(�

0

4
� �4); �(�

0

5
� �5)�(�

0

6
� �6))

In basis eq(30) we have introduced six parameters �i, one for each generator

involved. They are dual variables to the non-commutative parameter.

Theorem 1. The Haar weight
R R

F �1�2;�3�4;�5�6 de�ned in eq(28), for a

basis F �1�2;�3�4;�5�6 chosen as in eq(30), reduces to an ordinary integration.

Proof. From eq(19) we know that

h
�b; (a� �a)

i
= �2Q0(a� �a)
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h
�b; (a+ �a)

i
= 2Q0(a+ �a)h

�b; b
i
= 0

Note that (a+�a)

2
= X, (a��a)

2
= Y in eq(25). Substituting the basis given by

eq(30) in eq(28) and using the Glaube formula for operators we obtain the

ordinary integral

Z Z
F �1�2;�3�4;�5�6 =

�Z
1

�1

d�0
1
d�0

2
�(�0

1
� (�1 + �0

1
))�(�0

2
� (�2e

�2i�01Q
0

+ w�1�0
2
));

(32)Z
1

�1

d�0
3
d�0

4
�(�0

3
� (�3 + �0

3
))�(�0

4
� (�4e

2i�03Q
0

+ w�1�0
4
));

Z
1

�1

d�0
5
d�0

6
�(�0

5
� (�5 + �0

5
))�(�0

6
� (�6 + �0

6
))

�

Q.E.D.

The basis F �1�2;�3�4;�5�6 in eq(30) admits an expression in terms of the q-

spinor de�ned in eq(8) out of the projective representation for the Heisenberg

algebra. Furthermore, this basis can be rewritten in terms of q-Majorana

spinors built using q-Weyl spinors in analogy with the commutative algebraic

formulation. As a result of this we can show how does not matter if we think

in terms of integrating out non-commutative light cone coordinates, Weyl

q-spinors or Majorana q-spinors degrees of freedom; the result is exactly the

same. Furthermore, the Haar measure
R R

de�ned on H can be written in

terms of ordinary integration.

Theorem 2. For a suitable f 2 H that can be expressed on the ba-

sis F �1�2;�3�4;�5�6 given in eq(30) (or any of their di�erent q-spinor repre-

sentations),
R R

f as de�ned in eq(28) contains a component that can be

q-regularized, i.e. is �nite provided q 6= 1, but in�nite in the limit q = 1.

Proof.

It is straightforward to show that for any function f de�ned on H with

basis F �1�2;�3�4;�5�6 the following transformation holds

f =: f 0 :=

Z
1

�1

d�1d�2 ~f(�1; �2)F
�1�2+ (33)

Z
1

�1

d�3d�4 ~f(�3; �4)F
�3�4 +

Z
1

�1

d�5d�6 ~f(�5; �6)F
�5�6
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where we express f as a normal ordered form of f', in terms of the gener-

ators. Namely putting �b to the left of a, �a and b in the light cone coordinate

approach; f�3; �0g to the left of f�+; ��g in the Weyl q-spinor formulation

and �nally f
3; 
0g to the left of f
1; 
2g in the Majorana q-spinor basis. Here

(�0; �3; �+; ��) and (
0; 
1; 
2; 
3) are q-deformed Pauli and Dirac matrices

[6]. Additionally ~f is the Fourier transform of f', i.e.

~f(�i; �j) = (2�)�2
Z
1

�1

d�id�jf
0(�i�j)e

�i�i�ie�i�j�j (34)

i; j = (1; 2); (3; 4); (5; 6):

Then carrying on integration on �1, �3, �5, �6 we obtainZ Z
f =

Z
1

�1

d�01d�
0

2d�2
~f(0; �2)�(�

0

2(1� w�1)� �2e
�2i�01Q

0

)+

(35)Z
1

�1

d�03d�
0

4d�4
~f(0; �4)�(�

0

4(1 � w�1)� �4e
�2i�03Q

0

)+
Z
1

�1

d�05d�
0

6
~f (0; 0);

that after changing the order of integration and integrating on �2 and �4

becomes

Z Z
f =

Z
1

�1

d�01d�
0

2e
�01Q

0 ~f(0; �02(1� w�1)e2i�
0

1Q
0

)+ (36)

Z
1

�1

d�03d�
0

4e
��03Q

0 ~f(0; �04(1� w�1)e�2i�03Q
0

)+
Z
1

�1

d�05d�
0

6
~f(0; 0)

The last term in eq(36) corresponds to the ordinary divergent term that

appears in the standard commutative algebraic formulation of quantum �eld

theory; there is no way we can recover a �nite term out of this in the limit

q! 1. Checking the non-commutative Hopf algebra generated byX ij we �nd

the reason why this happens to be so; T is central with respect to (X;Y;Z),
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so this part of the Haar measure is not really de�ned on a non-commutative

algebraic variety. Therefore we can extract out of
R R

f a q-regularizable partZ Z
f �

Z
1

�1

d�0
5
d�0

6
~f(0; 0) = (37)

(2��(0))

�Z
1

�1

d�0
2
~f(0; �0

2
(1 � w�1)) +

Z
1

�1

d�0
4
~f(0; �0

4
(1 � w�1)

�
:

But limq!1w
�1 = 1 thus, as q ! 1,

R R
f � R

1

�1
d�0

5
d�0

6
~f(0; 0) diverges, by

contrast at q 6= 1 and assuming suitable analicity and decay of ~f to allow

contour integration, eq(37) can be made �nite for suitable f; moreover, this

is proportional to (1 �w�1)�1.

In the limit q ! 1, the transformation described in eq(26) is non sense,

because in this limit the map H ! L is singular. We remark that this does

not mean that the q-regularization scheme performed on the algebra H and

described up to here is lacking sense in case q = 1 but only the map that

relates this with A2=0
q 
A2=0

q . We are interested in this map because might be

of some help in the future construction of q-regularization on q-Minkowski

space-time. Further work should be done in this direction.

Q.E.D.

For obvious reasons, the vertex correction for ��4 theory described in

example 1 is suitable of being q-regularized on H as well as in example 2

was on L. Further work should be done to generalize these examples to more

interesting cases. Since this scheme is strongly basis dependant, a complete

analysis of the class of functions suitable of being q-regularized on physically

interesting basis is needed. Note that q-regularization may be considered

equivalent to dimensional regularization in a similar sense to the McKane

and Parisi-Sourlas case [13].

4 Comments and Remarks.

In the paper wherein Woronowicz [14] proves the existence and uniqueness of

the Haar measure, i.e. the unique state invariant under left (and simultane-

usly right) shifts, for any compact quantum group, he proposes the following

q-integration on SUq(2)Z
1

q0
f = (1 � q)

1X
k=0

qkf(qk) for any f 2 SUq(2); (38)
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On the other hand, let us set T = 0 in eq(25) and from eq(7), we get

U2(�hu; 0) = q
1
2 ~u1(0; �hu) and U2(0; �hu) = �q� 1

2 ~u1(�hu; 0); (39)

this is equivalent to set ~Z�= ��� �Z� in eq(9). Thus

A = X + Y; �A = X � Y B = �B = Z:

We call X1 = 1

2
(A+ �A),X2 = 1

2
(A� �A) and X3 = B; then in terms of this

(X1;X2;X3) 3-dimensional vector representation we propose the following

basis to be used;

F �1�2;�3�4 =
�
ei�1x

3

ei�2x
1

; ei�3x
3

ei�4x
2
�

(40)

where X1 = x1, X2 = x2, and X3 = q
x3

Q0 , as was done in eq(26).

From the work done on the category of representations of a Hopf algebra

we can write the action of any function f of the Hopf algebra SUq(2) on its

vector representation V, through the corresponding basis;

f :ejm =
X

i=+;�;0

f iei:e
j
m 2 V 8f 2 SUq(2) (41)

where e+=X
+,e�=X

�, e0=H is the SUq(2) basis and f i 2 C.

From eq(41) is clear that the Woronowicz's map
R
f ! C for the SUq(2)

Haar measure induces a
R R

f ! C map for the vector representation of the

Hopf algebra SUq(2), inducing another for � which is written in terms of

SUq(2). We de�ne the � matrix as

�
(ij)

(i0j0) � ~M i
i0M

j
j0 ; M 2 SLq(2; C); ~M 2 ~SLq(2; C) : (42)

Thus, the similarity of eq(34) and eq(38) can be understood in these terms.

From these two facts and the obvious similarity of the q-integration car-

ried out in eq(34) and the one depicted in eq(38), we think that the q-Time

zero-projection in the q-deformed space de�ned for the second example corre-

sponding to the ~My =M�1 identi�cation, reduces
R R

f � R1
�1

d�0
5
d�0

6
~f(0; 0)

in Theorem 2 to the Haar weight on the vector representation of � written

in terms of SUq(2).
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Finally, we show how null directions in � can lead us to obtain the quan-

tum mechanical Galilei group. By imposing the following null bi-ideals

u1
2
= 0; u2

1
= 0;

u1
1
u2
2
= u2

2
u1
1
= 1;

being uij 2 M ( the same is asked for ~uij being ~uij 2 ~M ), we obtain a direct

product representation of the quantum Galilei group.

We can see this from the viewpoint of cohomological formalism. We con-

struct the quantum mechanical Galilei group, choosing the following Galilei

transformations

r
0 = r+ vt p

0 = p+mv (43)

where m is the particle mass.

Then eq(2) transforms to

U(v) = ei
v�(pt�mr)

�h ; (44)

and its action on a wave function 	(r) introduces a phase (one-cocycle) �1,

i.e.

U(v) �	(r) = e2i��1(r;v) �	(r+ vt): (45)

We shall consider this one-cocycle as trivial, so

�1(r;v) = ��0 = �0(r
0)� �0(r) (46)

where �0 is a function, called 0-cocycle, which depends only on r.

Therefore, the group law of the quantum mechanical Galilei group for

translations on phase space (or U(1) extended Galilei group) is expressed

such that

e2i��0(r
0

) = e2i�(�0(r)+�+�1(r;v)) (47)

where

2��1 =
1

�h
(mv � r+ 1

2
mv2t) (48)

and � is the central parameter of the quantum mechanical Galilei group.

On the other hand, we require

M =

 
u1
1

u1
2

u2
1

u2
2

!
2 SLq(2) and M =

 
~u1
1

~u1
2

~u2
1

~u2
2

!
2 ~SLq(2) to belong to

14



the quantum mechanical Galilei group; i.e. M ( equivalently ~M) must ful�ll

eq(5). It is straightforward to prove that, in this case, the following null

bi-ideals have to be imposed on M (equivalently on ~M )

u1
2
= 0 u2

1
= 0 (49)

u1
1
u2
2

= u2
2
u1
1
= 1;

so to end up with a group that has only one generator as should be.

Besides, we can prove that the null bi-ideals once imposed onM 2 SLq(2)

(thereby de�ning the quantum mechanical Galilei group) produce the follow-

ing pairing

< u1
2
; tykm >= R1k

2m = 0 k;m; s = 1; 2

< u2
1
; tykm >= R2k

1m = 0 (50)

< u1
1
u2
2
; tyks >= R1k

1mR
2m
2s = 1

< u2
2
u1
1
; tyks >= R2k

2mR
1m
1s = 1

where tykm (k;m = 1; 2) are generators of the dual Hopf algebra for SLq(2)

and R
ij
kl (i; j; k; l = 1; 2) entries of the Yang-Baxter matrix RG associated

with the quantum mechanical Galilei group. This does not determine RG

but restricts the solution to block diagonal matrices.

Finally, if we impose the null-directions given by eq(50) in � we obtain

the following representation of the quantum Galilei group

� =

0
BBBBBBB@

(~u1
1)
�1u1

1 0 0 0

0 ~u11u
1
1+q

2(~u11u
1
1)

�1

1+q2
0 q2(~u11u

1
1�(~u11u

1
1)

�1)
1+q2

0 0 ~u1
1(u

1
1)
�1 0

0 ~u11u
1
1�(~u11u

1
1)

�1

1+q2
0 q2(~u11u

1
1+(~u11u

1
1)

�1)
1+q2

1
CCCCCCCA
(51)

Summarizing, in this paper we have introduced the concept of q-regularization

and used the projective representation of the non-commutative Heisenberg

algebra to construct the Manin quantum plane, thereby de�ning q-spinors.

Using this as a building block we present a q-regularization in terms of a four

15



dimensional representation of a particular two dimensional non-commutative

space at �rst. Besides, regularization on a q-deformed space that can be

maped into a particular braided product of Manin's quantum plane and it

is related to the �rst q-space is studied too. We show how to extract, from

relevant quantities, �nite components (provided q 6= 1) that can become in-

�nite at q = 1. To compute the Haar weight, we propose particular basis

projected from q-deformed spaces, so the functions to be q-regularized are to

be considered on this frame of reference. An example for ��4 �eld theory is

presented. Additional work must be done to generalize our scheme to any

arbitrary function on q-Minkowski space-time basis.

Finally, in order to learn about the general scheme and its symmetries, we

study the T=0 Haar measure in terms of the SUq(2) measure and the null

directions in the Hopf algebra that lead to a quantum mechanical Galilei

group.

Although in this paper we can q-regularize only a class of suitable func-

tions (restricted by the particular basis chosen), we think that the full pre-

scription, derived from physical considerations, might apply to make relevant

quantities in �eld theory �nite at q 6= 1.
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