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The massless particle which we best know, the photon, is certainly stable for very long

times. As for the neutrino, admitted it is really massless, the experimental evidence is less

strong, but it is generally regarded as stable too.

Nevertheless, kinematics allows in principle the decay of a massless particle, provided the

products are massless and their momenta have the same direction and versus of the initial

momentum [1]. This means that the Mandelstam variables of the process vanish, so that its

amplitude, regarded as a function of Mandelstam variables, must be computed in this particular

\infrared" limit x. Moreover, even if the limit of the amplitude is not zero, the phase space for

the products reduces to a line in momentum space and then its volume tends to vanish.

In the case of QED it is possible to show in a general way through the Ward identities

that the decay amplitude for  ! 1 + ::: + n (n odd) can be factorized into a scalar part

which is �nite and a tensor part which vanishes when all the external momenta are aligned. An

analogous reasoning holds for the neutrino. In both cases, it is crucial that the loop amplitudes

contain in the denominator the masses of the fermions or of the vector bosons, respectively.

Another example of massless particle is the graviton. Here we do not have any experimental

evidence yet. It has been hypotesized [2] that the non-linearity of Einstein equations could lead

to a \frequency degeneration" in gravitational waves, a phenomenon which from the quantum

point of view would correspond to a decay of the graviton into more gravitons of smaller energy.

We were able however to prove through a generalization of the procedure applied to QED that

the amplitude of this process vanishes in the perturbation theory on a at background. The

negative mass dimensionality of the Newton constant plays in this case a role analogous to

the fermion masses in QED. At the non perturbative level, the hypotesized existence of a

cosmological constant could change the situation (see below).

The case of the gluon, although physically quite academic due to the con�nement, is partic-

ularly interesting because the amplitude of the decay g ! g1+ :::+gn (n odd) is �nite for n = 3

and divergent for n � 5. (The Ward identities still allow a factorization of this amplitude, but

the scalar part contains poles.) Nevertheless, the total decay probability is zero because the

phase space for the products is suppressed strongly enough to compensate for the divergence

in the amplitude. We thus have here a typical example of cancellation of infrared divergences

in the computation of a physical quantity.

xIn the four-particle amplitude we mean by Mandelstam variables the usual ones, s, t, u; for amplitudes

with more external massless particles, they are taken to be all the possible scalar products between the external

four-momenta.
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A general power counting argument suggests us in which conditions a real decay of a massless

particle could be possible: the lagrangian should contain a self-coupling without derivatives

and with a coupling of positive mass dimension. This is precisely what happens in quantum

gravity in the presence of a cosmological constant, and in fact it has been suggested that in

this theory strong infrared e�ects could become relevant [3]. But one must remind that the

cosmological constant also multiplies in the lagrangian a term which is quadratic in the �eld

and thus generates an e�ective mass for the graviton (if � < 0) or an unstable theory (if � > 0)

[4]. A possible way to elude this problem is to admit, like in lattice theory, that the e�ective

cosmological constant vanishes on large scales but not on small scales and is negative in sign

[5]. This approach is however out of the scopes of our paper.

The structure of the article is the following. In Section 1 we prove a list of general kinematical

properties which characterize the decay of any massless particle. These properties are only due

to Lorentz invariance and to the conservation of the total four-momentum. We then introduce

an infrared regularization which allows the computation of the decay amplitudes in the limit of

vanishing Mandelstam variables. In Section 2 we employ Property 7 (factorization of the partial

decay probability) to give a dimensional estimate of the decay probability of the photon, the

neutrino, the gluon and the graviton. After recalling in Section 3 how the exact proper vertices

are connected to the complete perturbative expression for the decay amplitude, in Section 4

we use the Ward identities for QED, Yang-Mills theory (YM) and Einstein quantum gravity

(QG) to �nd the most general form and momenta-dependence of these vertices. In Section 5 we

present our conclusions and a few brief speculations about the possible role of a non-vanishing

cosmological constant in the decay of the graviton.

1 General kynematical properties.

In this Section we derive the most general properties of the decay of a massless particle. They

are due only to the Lorentz invariance of the process and to the conservation of the total

four-momentum.

Property 1. { A massless particle can only decay into massless particles. { In fact, through

a suitable Lorentz boost we can make the energy of the initial state arbitrarily small. If, per

absurdum, in the �nal state massive particles were present, the energy of this state would be in

any reference frame equal or bigger than the sum of the masses.

Property 2. { Let us suppose that the impulse ~p 0 of the initial particle is oriented in a certain
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direction and versus, for instance let its four-momentum have the form

p0 = (E0; 0; 0; E0) (1)

Then also the impulses ~p 1:::~p n of the n product particles are oriented in the same direction

and versus; in our example we shall have (Fig. 1)

pi = (Ei; 0; 0; Ei); i = 1; :::; n;
nX
i=1

Ei = E0 (2)

E0
> &%
'$ E1

>
E2>

> En

.............

Figure 1: Collinearity property (Property 2).

{ Also this property depends on the fact that through a suitable Lorentz boost along z we can

make the energy of the initial state arbitrarily small; while if by absurd in the �nal state some

transversal momenta were present, their contribution to the energy would not be a�ected by

the boost. More explicitly, let us consider the (n+1) four-momenta pi = (Ei; ~p i); i = 0; 1; :::; n

in Minkowski space and the following expression

G(pi) = �4
 

nX
i=0

pi
!

nY
i=0

�
h
(pi)2

i
�(E0)

nY
i=1

�(�Ei): (3)

The �rst factor in G expresses the overall four-momentum conservation; the factor
Qn

i=0 � [(p
i)2]

contrains all the four-momenta to be on-shell; �nally, the �-functions specify that the particle

0 is in-going and the particles 1; :::; n are out-going. We shall show that G has support concen-

trated in a region where all ~p i are parallel to each other, more precisely in the region where

there exist �i < 0, i = 1; :::n such that

pi = �ip
0 (4)

Proof { We have, from (p0)2 = 0 and
Pn

i=0 p
i = 0 that

 
nX
i=1

Ei

!2

�
 

nX
i=1

~p i

!2

=

 
nX
i=1

pi
!2

= 0: (5)
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Note that the 3-vector
Pn

i=1 ~p
i has a length ` � Pn

i=1 j~p ij, and the equality holds only if

~p i = �i~p for some ~p; on the other hand,

�
pi
�2

= 0; i = 1; :::; n) Ei = j~p ij; (6)

therefore (5) reads  
nX
i=1

j~p ij
!2

�
�����
nX
i=1

~p i

�����
2

= 0 (7)

which can be satis�ed only if there exist ~p; �i (�i all of the same sign) such that ~p i = �i~p. On

the other hand, �4 (
Pn

i=0 p
i) implies that ~p i = �i~p

0 with �i < 0, and taking the modules we

have Ei = j~p ij = �ij~p 0j = �iE
0; this proves (4).

Property 3. { If the initial particle has helicity h and decays into n particles of the same

helicity, n must be odd. { The proof follows directly from Property 2 and from the conservation

of the angular momentum.

Property 4. { In the decay of a massless particle, all the scalar products (pi�pj); i; j = 0; 1; :::; n

vanish. This means that the Mandelstam variables vanish. { The proof follows directly from

Property 2.

Property 5. { If "i represents the polarization vector of the i-th particle involved in the decay,

in a gauge such that (pi � "i) = 0, then we have also (pi � "j) = 0 for i; j = 0; 1; :::; n. { One more

time, the proof follows directly from Property 2.

From Properties 4 and 5 it follows that there are no Lorentz-invariant functions of the

external four-momenta and polarizations which can be used in the description of the decay

process. The amplitude of the process can only be a constant. As we shall see, in the cases we

are examining this constant is zero, except that for QCD.

We de�ne for subsequent use a \decay con�guration" as follows: it is a pair of (n+1) four-

momenta and (n + 1) polarization vectors (pi; "i)i=0;1;:::;n satisfying the properties (pi)
2 = 0,Pn

i=0 p
i = 0, ("i � pi) = 0, p00 > 0, pl0 < 0 for l = 1; :::; n. As we have seen, for particles with

non-zero helicity n must be odd; in general we have furthermore that pl = �lp
0 with l = 1; :::; n,

�l � 0; and �nally, that ("i � "j) = 0 for i; j = 0; 1; :::; n.

Property 6. { If a massless particle decays, its lifetime � in a reference frame where its energy

is E0 has the form

� = �E0 (8)
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where � is a constant which depends on the dynamics of the process and has dimension [mass]�2.

{ The proof is based on Lorentz invariance. Let us suppose that in suitable reference system

the four-momentum of the particle is

p0 = (E0; 0; 0; E0); (9)

that is, the particle moves upwards along z, with energy E0. Consider a Lorentz boost along

the z axis, namely of the form

L(�) =

0
BBBBBBB@

 0 0 ��
0 1 0 0

0 0 1 0

�� 0 0 

1
CCCCCCCA
: (10)

For any four-vector V , we have in the boosted system V 0 = L(�)V , that is

V0
0 = (V0 � �Vz);

Vz
0 = (Vz � �V0);

Vx
0 = Vx; Vy

0 = Vy: (11)

At the time t = 0, the origins of the two systems coincide. Suppose now that the massless

particle is produced at t = 0 with the four-momentum p0 above (eq. (9)) and its decay is

observed in the unprimed reference system at a time t = � , that is, at a coordinate x = � .

Using (11) to transform E0 and � in the primed reference system one sees immediately that

E0 0

� 0
=
E0

�
; (12)

that is, the lifetime of a massless particle in any reference system is proportional to its energy.

This proves (8). Of course, the constant � in (8) cannot depend on E0. We can say that the

decay process, if it happens, does not have any characteristic energy scale.

We recall that in quantum �eld theory the decay probability is given by the formula

��1 =
1

2E0

X
n�2

Z nY
i=1

d3pi

(2�)32Ei
�4
 
p0 �

nX
i=1

pi
!
jTnj2 (13)

where Tn is the quantum amplitude for the process with n product particles. Thus the constant

� of eq. (8) corresponds to half the sum of the integrals in (13), although eq. (8) is more general

and does not strictly imply that the probability has the form (13).
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We would like now to introduce an infrared regularization in order to allow the concrete

computation of the amplitude in the limit in which the Mandelstam variables and the products

(eipj) approach zero (compare properties 4, 5 and the subsequent comment). Obtaining such a

regularization is not trivial. The most common infrared regularization technique, which consists

in giving the soft particles a small mass � which eventually goes to zero, does not work in the

present case, because the (regularized) process in which one particle of mass � decays into more

particles of the same mass has obviously zero probability.

I

> s
II

>

��@@����

���� >>

>
.............

III

Figure 2: Factorization of the decay amplitude.

Let us instead suppose (Fig. 2) that a very weak external source J gives the decaying parti-

cle (state I) an in�nitesimal additional energy !0, with probability f(!0), where f is a function

which has a narrow peak around some small value !. The exact nature of the source and of the

particle which carries the energy !0 are not essential. For instance, if J represents a classical

�eld, the energy can be carried by an on-shell boson with four-momentum (!0; !0; 0; 0); by ab-

sorbing the boson, the initial particle gains a small transversal impulse (state II). Alternatively,

the energy !0 could be carried by an o�-shell boson produced in J through an annihilation

process, with four-momentum (!0; 0; 0; 0); by absorbing the boson, the initial particle gets o�

shell too.

Then the decay takes place; the products (state III) have now a small tranversal impulse of

order ! and the Mandelstam variables (pi � pj) are of order !2. The partial decay probability

into n product particles is written as a sum over intermediate states (compare (eq. 13))

��1n = lim
!!0

Z
d!0 f(!0)

1

2E0
!0

Z nY
i=1

d3pi

(2�)32Ei
�4
 
pII!0 �

nX
i=1

pi
!
jhII!0jT jIIIij2: (14)

Let now the probability f(!0) approach a delta function �(!0 � !). When ! ! 0, the

squared amplitude jhII!0jT jIIIij2 tends to a constant (Properties 4 and 5), in the sense that
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it does not depend on the �nal momenta ~p 1; :::; ~p n over which one integrates in (14), but only

on ! and on the couplings and the masses of the theory.

We note that the mass dimension of jhII!0jT jIIIij2 is equal to 2(3�n). Furthermore, let us

consider the integral of the phase space. Through the �4 it depends on pII , that is, in principle

both on ! and E0. But according to (12) and to the following remark, the integral does not

depend on E0, because this would modify the Lorentz factor 1
E0 which already appears in (14).

Thus, having dimension [mass]2n�4, it must be simply proportional to !2n�4. We have proved

in this way the following property.

Property 7. { The regularized partial decay probability ��1n of a massless particle is factorized

into three parts: the term 1
E0 due to Lorentz invariance; the square of the decay amplitude,

which depends on ! and on the couplings and masses of the theory and has dimension 2(3�n);
the volume of the phase space, proportional to !2n�4. In formula,

��1n = lim
!!0

1

E0
� (Phase space � !2n�4)� (Amplitude squared, of dim. 2(3 � n)): (15)

Property 8. { Let us �nally consider the decay of one massless particle into two particles of

the same kind, as it is allowed for spinless particles (then one can generalize to the case of the

decay of particles with spin into n particles, with n odd). We would like to �nd the energy

distribution of the product particles; in particular, we wonder if the emission probability of

one \infrared" particle is limited, or if this process tends to be dominant. In other words,

supposed the decay takes place, does the initial particle prefers (1) to \break into two parts"

of comparable energy or rather (2) to loose just a small fraction of its energy through a kind

of infrared process? We shall show that (2) is not the case. {

For the proof we recall that according to Property 7 and to the discussion which precedes it

the energy distribution of the product particles is determined only by the phase space and not

by the amplitude. Let us put the system into a box of volume V . The modes of the massless �eld

in this box have energies which are multiples of some fundamental energy E0 = �h!0 � �hcV �1=3.

Since the momenta remain aligned in the decay, we are reduced in practice to a one-dimensional

problem.

Let E = NE0 be the energy of the initial particle, and E1 = n1E0, E2 = n2E0 (with

n1 + n2 = N) the energies of the product particles. The number of possible distinct �nal

con�gurations is clearly given by N=2 if N is even and by (N � 1)=2 if N is odd. Let be

0 � x � 1; the number of \infrared" �nal con�gurations { those for which one of the two

product particles has energy smaller than xNE0 { divided by the total number of con�gurations,
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is a quantity which tends to a constant as E0 ! 0 and thus N ! 1 (that means, V ! 1).

For instance, the probability that one of the two product particles carries less than 1=4 of the

initial energy equals 1=2 for N !1. More generally, the probability that it carries less than

a fraction 1=k of the initial energy tends to 2=k.

2 Power counting.

The last factor in eq. (15), namely the probability jhII!jT jIIIij2, can be quite easily estimated

by dimensional considerations. For instance, in QED the four-photons amplitude is given to

lowest order by the four fermions loop (�g. 3a). For small values of the total momentum ! this

amplitude { which must be adimensional { behaves like [6]

T4 � �2

 
!

mf

!4

; (16)

where � is the �ne structure constant and mf is the mass of the fermion. This result can be

generalized to the n-fermions loop: the key point is that the fermionic propagators of the loop

produce masses in the denominator. The case of the neutrino is analogous: the masses of Z0

or W� appear at the denominator in the amplitude. In both cases, since the amplitude is

proportional to a positive power of the regularizator !, it vanishes in the infrared limit due to

(15).

s s
s s
		�� ��



		��

�
�

s s
s s
(

(
)

)

_ _
^ ^

)

)
(

(

__
^^

		�� ��



		��

�
�

Figure 3: (a) Fermions square loop. (b) Gravitons or gluons loop.

In the case of pure quantum gravity we have tree and one-loop graviton diagrams with k

external legs (�g. 3b). Explicit expressions for the k = 4 amplitudes have been given by [7, 8].

In any case, these amplitudes contain positive powers of the constant � =
p
16�G and then,

like in QED, they behave always like a positive power of ! and cause the decay probability to

vanish.
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In the case of QCD the amplitudes do not contain dimensional constants. We expect that

the decay amplitude of the gluon into three gluons, being adimensional, tends to a constant

when ! ! 0, and this is in fact what happens [8]. The decay amplitudes of a gluon into 5, 7

... gluons have mass dimensions -2, -4 ... respectively, so they diverge when ! ! 0; but this

divergence is compensated in the phase space integral by a bigger positive power of ! (compare

(15)), in such a way that the probability behaves like !2=E(0) anf thus vanishes in the limit.

We are not going to apply this power counting argument to all possible theories and cou-

plings, since it is in each case quite immediate. As a last example, we may wonder if a photon

can in principle decay due to the gravitational interaction, through diagrams with external

photons and one loop of gravitons. Since the coupling constant � has mass dimension -1, while

the �ne structure constant � is adimensional and there are no masses involved, we conclude

once more that the amplitude of the process vanishes in the infrared limit.

It is clear from eq. (15) that a ��1n di�erent from zero can be only obtained when the squared

amplitude is proportional to a su�ciently high negative power of !. If we admit (as is generally

true in perturbation theory) that the coupling constants always appear in the numerator, this

means that the amplitude must contain a coupling constant with positive mass dimension. We

shall return on this point in the conclusions.

3 Diagrammatics: !-dependence of the decay amplitudes.

The dimensional arguments we used in the previous section allow to determine the !-dependence

of the decay amplitude only for the pure (QED, YM, QG) gauge theories, where the only

parameter in the action is the coupling constant (in free QED the latter is absent). If the gauge

�eld is coupled to some matter �eld, generally speaking new (dimensionful) parameters, like

their masses, will appear in the action, and the previous arguments will not be automatically

applicable any more. A more explicit analysis of the perturbative expansion and use of Feynman

diagrams is therefore needed, in order to determine in full generality the !-dependence of the

decay amplitudes. In this and in the following section we carry it out and show that general

results are essentially the same as those found by the dimensional arguments in section 2. We

conclude that the decay probability of the gauge bosons of QED, YM, QG vanish.

We will start the analysis of the perturbative expansion from the tree level: a sum of

truncated connected tree-diagrams with (n+1) external lines will give the lowest order (in

�h) contribution to the decay amplitude of 1 gauge boson in n gauge bosons. Higher order
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corrections will involve truncated connected diagrams with one or more loops. To formally

compute the \exact" decay amplitude one has to replace in each tree diagram every boson

propagator with the corresponding exact boson propagator, and each m-boson vertex with

the corresponding m-boson proper vertex (i.e. one-particle-irreducible Green function). To

get the �hr-order approximation of the decay amplitude, one simply has to retain the terms of

order � r in this formal \ exact" expression. As we will see, the Ward identities imply that

when approaching a decay con�guration: (1) in QED the decay amplitude of a process with

m external photons vanishes; (2) in QG the decay amplitude of a process with m external

gravitons or photons vanishes; (3) the decay amplitudes of processes with external Y.M. bosons

may be �nite or diverge, but in such a way that the corresponding decay probabilities vanish.

3.1 Tree level

Let us start from the Feynman vertices with m gauge massless bosons (m � 3) [see the actions

(26)]: we draw them in �g. (4). The diagrams are to be understood as truncated in the external

lines. In QED there is no m-photon vertex. In YM there are only two m-gluon vertices (for

m = 3; 4). In pure QG there is one m-graviton vertex for every m � 3; if coupling of gravity

with the electromagnetic or the Yang-Mills �elds is considered, then there are also vertices with

k spin-1 bosons (photons or gluons) and r gravitons, for k = 2; 3; 4 and r � 1. In the �gures,

a wavy line in the QG case will denote either a graviton or another gauge boson (a photon or

a gluon).

_ _
^ ^
��


		��6= 0; 

�

�
��


		��		�� 6= 0; YM

_ _
^ ^
��


		�� 6= 0; 

�

�
��


		��		�� 6= 0; 

�

�
��



__
^^

		��		�� 6= 0; .... QG

Figure 4: Feynman vertices

At the tree level, the decay amplitudes T tree
2 ; T tree

3 ; T tree
4 ; T tree

5 ; ::: of YM, QG are the sum of

the diagrams in �g. (5).
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T tree
2 = _ _

^ ^
��


		��

T tree
3 = 

�

�
��


		��		�� + _ _

^ ^
��


		�� ��


		��

T tree
4 = 

�

�
��



__
^^

		��		�� (QG) + 		�� ��


		��

�

� ��


		��

T tree
5 = 

�

�
��



__
^^
_ _
^ ^

		��		�� (QG) + 

�
�
��


_ _
^ ^

		��		�� ��


		��

(QG) + 		�� ��


		��

�

� ��


		��
_ _
^ ^

+

��

		��
		��

�

� ��


		��
��


		��

+ _ _
^ ^
��


		�� ��

��



_ _
^ ^

		�� ��

_ _^ ^

Figure 5: Tree level amplitudes: (QG) means that the diagram in T tree
5 is present only in QG.

Tree diagrams involving ghost lines do not contribute to T tree
n . In fact, even though ghosts

are massless, diagrams with external ghosts are zero when multiplied by physical polarization

vectors, and diagrams with internal ghost lines (propagators) have necessarily also external

ghost lines, by ghost number conservation. One can easily verify that in QG the decay ampli-

tudes with only m external gravitons or photons vanish (T tree
n = 0) in any decay con�guration,

because each vertex is quadratic in the momenta ki, implying an overall (k)2 dependence of

each separate diagram in �g. (5); when contracted with the external polarization vectors, this

will give zero, since in the decay con�guration all 4-momenta are null vectors proportional to

each other.
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3.2 Higher orders

To formally compute the \exact" decay amplitude one has to replace in each tree diagram every

boson propagator with the corresponding exact boson propagator, and each m-boson vertex

with the corresponding m-boson proper vertex (i.e. one-particle-irreducible Green function), as

depicted in �g. (6); there we have symbolized each proper vertex by a blob. Diagrams involving

ghost lines can be excluded for the same reasons as before.

T2 = _ _
^ ^
��


		��y

T3 = y

�
�
��


		��		�� + y_ _

^ ^
��


		�� ��


		��y

Figure 6: Exact amplitudes

Using Property 2 it is easy to verify that if the external momenta are slightly o�-shell, the

momenta carried by the propagators in �gg. (5), (6) also are, and the scalar products of all

momenta are of order !2; ! is the infrared regulator (with dimension of a mass) introduced in

section 1. The exact propagators for massless particles in the infrared limit have to behave as

the naive ones, i.e. are of order !�2.

Let E; Ey; Eg and I; Iy; Ig denote respectively the number of external and internal pho-

ton,YM boson, graviton lines coming out of one of the diagrams in �g. (6). Let mv
;m

v
y;m

v
g

denote the numbers of photons,YM bosons, gravitons coming out from the vth proper vertex

�v appearing in the same diagram. Clearly,

E =
X
v

mv
 � 2I

Ey =
X
v

mv
y � 2Iy

Eg =
X
v

mv
g � 2Ig: (17)

Moreover,

Np � Ip � �(Ep) (18)
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where �(x) :=

(
0 if x = 0

1 if x > 0
and Np denotes the number of proper vertices in the diagram where

at least one particle p (p being a YM boson and/or a graviton) comes out; this disequality

follow from the fact that Np = 0 if and only if Ep = 0 = Ip.

The results of next section (Property 10) can be summarized as follows, that

�v = o(!mv
+4�(m

v
y)�m

v
y+2�(m

v
g)�

mv
y

0 ) (19)

where in our notation o(!p) will denote an in�nitesimal or an in�nite of at least order p in !,

namely lim
!!0

[o(!p)!�p] is zero or �nite. The overall !-dependence of the diagram contribution

D(!) will be the product of the dependences of each vertex and each propagator:

D(!) =

"Y
v

o(!mv
+4�(m

v
y)�m

v
y+2�(m

v
g)�

mv
y

0 )

#
!�2(I+Iy+Ig) (20)

Using equations (17), the latter becomes

D(!) = o(!E�Ey+4(Ny�Iy)+2(N 0

g�Ig)); (21)

where N 0
g denotes the number of proper vertices in the diagram where at least one graviton and

no YM boson come out. To estimate 4(Ny � Iy) + 2(N 0
g � Ig) let us distinguish two cases. If

Ey = 0, then by colour conservation mv
y = 0 for all vertices in the diagram, implying N 0

g = Ng;

using formulae (18) for p = y and p = g, we �nd 4(Ny � Iy) + 2(N 0
g � Ig) � 4�(Ey) + 2�(Eg). If

Ey > 0, noting that (Ny+N
0
g) = Np, Iy+ Ig = Ip, where now p denotes either y or g, and using

formulae (18) , we �nd 4(Ny � Iy) + 2(N 0
g � Ig) � 2�(Ey) + 2�(Ep) = 4�(Ey). Summing up,

4(Ny � Iy)+ 2(N 0
g � Ig) � 4�(Ey) + 2�(Eg)�

Ey

0 This expression depends only on the numbers of

external bosons of the process, not on the particular diagram we are considering, therefore we

�nd the following

Property 9. { The amplitude T of a decay process with E external photons, Ey external YM

boson and Eg gravitons satis�es the condition:

T = o(!E�Ey+4�(Ey)+2�(Eg)�
Ey
0 ): (22)

This formula is valid at any loop order in all particles di�erent from the gravitons and at least

at one loop order in the gravitons, because the matter action with a background metric is

multiplicatively renormalizable [11], whereas at �rst order in the graviton loops pure QG is

�nite on-shell.

Note that the RHS of formula (22): 1) is independent of the number of external gravitons,

provided Ey > 0; 2) vanishes if Ey = 0.
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4 Ward identities

In QED the proper n-photon vertices ��1:::�nn (p1; :::; pn) satisfy the Ward identity

p�1�
�1�2:::�n
n (p1; p2; :::; pn)"�2(p

2):::"�n(p
n) = 0; (23)

where pi is the momentum of the i-th photon and "�i(p
i) the corresponding polarization vector;

this transversality condition amounts to the gauge invariance of any physical process involving

n (incoming or outgoing) photons.

In this section we �rst derive the identity above and its analogues for general Yang-Mills

(YM) and Einstein (with � = 0) Quantum Gravity (QG) theories in the momentum con�g-

uration of decay processes (compare with Property 2). Then we use them and a continuity

argument to show that the proper vertex for any decay process with �xed external momenta

vanishes in QED and QG, whereas it is �nite in YM. The Ward identities are derived formally

by using naive functional integration considerations based only on the gauge invariance of the

classical action (not on its explicit form). In the case of QED,YM, their validity extends to

the true (i.e. renormalized) theories at any order in the loops because renormalization pre-

serves Ward identities. In the case of QG, their validity is guaranteed at any loop order in the

matter �elds and at least at one loop order in the gravitons, because the matter action with a

background metric is multiplicatively renormalizable [11], whereas at �rst order in the graviton

loops pure QG is �nite on-shell.

We start by �xing the notation. Let Sinv(�) denote the (local) action depending on the

classical �elds f�Ig and RI
�(�) corresponding (local) gauge generators:

��Sinv = �Sinv
��I

���
I = 0; (24)

We employ a condensed notation in which a capital indicex I is a collective index; it represents

both discrete indices and a continuous space-time variables x. A repeated index implies sum-

mation over discrete indices and integration over x. Explicitly, in the case of QED, YM, QG

the �elds �I include

�I :=

8>>><
>>>:
A�(x);  (x); � (x) and/or '(x), �'(x) in QED;

Aa
�(x); + possibly  i(x); � i(x) and/or 'i(x); �'i(x) in YM;

h��(x) + possibly any �I considered in the two previous cases in QG;

(25)

x 2 M4 denotes the point in Minkowski spacetime, A�(x); A
a
�(x) the gauge potentials corre-

sponding respectively to a U(1) and a semisimple group G,  (x); � (x) (resp. '(x); �'(x)) spinors
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(complex scalars),  i(x); � i(x) (resp. 'i(x); �'i(x)) spinors (complex scalars) making up a �nite

multiplet belonging to some �nite representation Rep(Lie(G)) (in the latter case (T a)ij will de-

note the matrix representation of the hermitean Lie algebra generators corresponding to Aa
�),

h��(x) is the graviton �eld, ��� denotes the Minkowski metric tensor (which plays the role of

background metric) in cartesian coordinates, and g��(x) = ��� + �h�� is the the metric tensor.

The invariant actions Sinv read

Sinv =

8>>><
>>>:
�1

4

R
M4 d4x (F ��F��) + Smat in QED;

�1
4

R
M4 d4x (F a ��F a

��) + Smat in YM;R
M4 d4x g

1

2 (� � 1
16�G

R) + Smat in QG;

(26)

where F��; F
a
�� is the �eld strenght in QED,YM respectively, R is the Ricci scalar of the metric

g�� , g := �det[g��], fabc are the structure constants of Lie(G) and e the coupling constant.

Smat is the action of the matter minimally coupled to the gauge potential {.

A�; A
a
�; h�� are respectively the gauge potentials for QED, YM, QG, with gauge transfor-

mations

��A� = @�� in QED; (27)

��A
a
� = (D��)

a := @��
a + efabcAb

��
c in YM; (28)

��g�� = g��@��
� + g��@��

� + ��@�g�� ;

��A
a
� = Aa

�@��
� + ��@�A

a
� in QG: (29)

We omit for the sake of brevity the well-known gauge transformations of the other �elds.

The quantization of the theory (in a perturbative setting) is performed in the BRST for-

malism [10, 9]: the set of �elds f�Ig is enlarged to a set f�Ag by the introduction of ghosts,

antighosts and Stueckelberg �elds, and we associate to the action Sinv a gauge-�xed action S	

depending on the gauge-�xing functional 	. Index A, like I, represents both discrete indices

and the continuous space-time variables x. Let SGF := S	(�)�Sinv(�); in QED and YM, SGF

can be constructed as SGF = s	, where s denotes the BRST transformation associated to the

gauge transformations (27) - (29).

The generating functional Z(J) (depending on the external sources J) for the Green func-

{Strictly speaking, in the case of QG an action Smat containing a spinor contribution requires the introduction

of vierbeins as dynamical variables instead of the metric. However, the considerations of this section hold also

in that case, since they are based on the gauge tranformations (29) of the metric, which can be obtained from

the gauge transformations of the vierbeins.
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tions of the theory is de�ned by

Z(J) :=
Z
D�e i

�h
[S	(�)+J

A�A]; (30)

where D� is a gauge invariant functional measure, JA transforms under di�eomorphisms as

the appropriate tensor density.

By performing a gauge k transformation � ! � + ��� of the dummy integration variables

� in the RHS of eq. (30) the integral Z(J) remains the same (the Jacobian is 1), implying the

Ward identities

0 = ��Z(J) =
i

�h

Z
D�[JA ���A + ��SGF ]e

i
�h
[S	(�)+J

A�A]; (31)

or, in terms of the generating functional W (J) := �h
i
ln[Z(J)] of the connected Green functions,

0 =
h
JA ���A + ��SGF

i���
�A!

�

�JA

W (J) + disconnected terms: (32)

The disconnected terms are absent when evaluating the Green function on any decay process,

since in this case only one initial particle is present. Therefore, as far as we are concerned,

0 =
h
JA ���A + ��SGF

i���
�A!

�

�JA

W (J): (33)

In order to obtain the Ward identities for the proper vertex functions we introduce the usual

Legendre transform �(~�) := [W (J)� JA�A]jJ=J(~�), where the function J = J(~�) is obtained

by inverting the relations ~�A = �W
�JA

; the new independent variables are the \classical �elds" ~�.

Consequently JA(~�) = � ��

�~�A
.

From identity (33) we draw the following Ward identities for the generating functional of

proper vertices �

0 =

"
��

�~�A

� ��~�A + ��SGF (~�)

#
: (34)

Actually, we are interested in the Ward identities for the proper vertices having only physical

gauge bosons as external (incoming or outcoming) particles. The physicality condition is best

imposed in momentum space. The proper vertex �12:::n
n (x1; x2; :::; xn) with n external gauge

bosons bi(x
i) (in con�guration space) is obtained from � through di�erentiation,

�12:::n
n (x1; x2; :::; xn) =

�n�

�b1(x1):::�bn(xn)

�����
~�=0

; (35)

kAlternatively, one could perform a BRST transformation; the resulting Ward identities would be the same.
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where we have introduced the short-hand notation

i!

8>><
>>:
�i

(�i; ai)

�i�i or (�i; ai)

bi !

8>>><
>>>:

~A�i in QED

~Aa
�i

in YM

~h�i�i or A
a
�i

in QG;

i = 1; 2; :::; n: (36)

The RHS has automatically the required boson symmetry in the identical particles, e.g. if all

the bi's are the same type of �elds

�i1i2:::inn (xi1; xi2; :::; xin) = �12:::n
n (x1; x2; :::; xn); (37)

where (i1; i2; :::in) is a permutation of (1; 2; :::; n). On account of the translation invariance

�1:::n
n (x1; :::; xn) = �1:::n

n (x1 + a; :::; xn + a), its multiple Fourier transform can be written as

�1:::n
n (p1; :::; pn)�4(

nP
i=1

pi); it contains a Dirac-� implementing the total momentum conservation.

Here and below our conventions for the Fourier transform will be f(p) :=
R

d4x
(2�)4

e�ip�xf(x),

f(x) =
R
d4p eip�xf(p). As a consequence of the general relation

Z
d4x

(2�)4
e�ip�x

�F

��(x)
= (2�)�4

�F

��(�p) (38)

one �nds

�4
 

nX
i=1

pi
!
�12:::n
n (p1; p2; :::; pn) = (2�)�4n

�n�

�b1(�p1):::�bn(�pn)

�����
~�=0

: (39)

Di�erentiating relation (34) with respect to b1(�p1); :::; bn(�pn) and setting thereafter ~� =

0, we obtain

0 =
Z
d4q

2
4(2�)4�4

0
@q + lX

j=1

pj

1
A�01:::n

n+1 (q; p1; :::; pn)��b0(q)

+
nX

h=1

�4

0
@q + nX

j=1; j 6=h

pj

1
A�01:::;h�1;h+1;:::n

n (q; p1; :::; ph�1; ph+1; :::; pn)
�(��b0(q))

�bh(�ph)

+
�n��SGF (~�)

�b1(�p1):::�bn(�pn)

#�����
~�=0

: (40)

In fact, only the terms with ~�A = b in the �rst term in eq. (34) contribute to eq (40), since

when ~�A 6= b then
�m(�� ~�A)

�b1:::�bm
j~�=0 = 0 (indeed, for any �A ���A is of degree � 1 in �A).

To get identities involving proper vertices with physical external bosons we will have to

contract their Lorentz indices with the ones of transverse polarization tensors/vectors (we will

choose them with well-de�ned helicity) e1(p1):::en(pn), where

e(p) = e�(p) :=

8<
:
"�� (p) when b = ~A�; ~A

a
�

("�� (p)"
�
� (p)) when b = ~h�� ;

with "�� (p)p
� = 0: (41)
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Now it is easy to realize that in all cases the following property holds:

�n��SGF (~�)

�b1(p1):::�bn(pn)

�����
~�=0

e11(�p1):::enn(�pn) = 0; (42)

where contraction of the Lorentz indices hidden in the symbols 1; :::; n and e1; :::; en is under-

stood. In fact, the terms of non-zero degree in the ghosts contained in ��SGF vanish after

setting ~�0 = 0; the other terms depend on the longitudinal modes of the bosons, and vanish

after contraction with the polarization vectors/tensors. We prove explicitly this statement in

the appendix, for the Feynman (harmonic) gauge �xings.

Introducing the notation

�1:::ei:::n
n := �1:::i:::n

n � ei; (43)

where again contraction of the Lorentz indices hidden in the symbols i and ei is understood,

the Ward identities (44) will therefore reduce to

0 =
Z
d4q

2
4(2�)4�4

0
@q + lX

j=1

pj

1
A�0e1:::en

n+1 (q; p1; :::; pn)��b0(q)

+
nX

h=1

�4

0
@q + nX

j=1; j 6=h

pj

1
A

�0e1:::;eh�1;h+1;:::en

n (q; p1; :::; ph�1; ph+1; :::; pn)
�(��b0(q))

�bh(�ph)
eh~�=0:(44)

The identity above is one essential ingredient that we need in order to prove the main

property of this section. In order to formulate this property, we need now a notion of \ vicinity

" of a \decay con�guration" parametrized by one regularization parameter !. Therefore, we

introduce some useful de�nitions.

A con�guration !-converging to the decay con�guration (k̂i; "̂i)i=0;:::;n (! � 0) is a one-

parameter family (ki(!); "i(!))i=0;:::;n such that "
i(!) �ki(!) = 0, ki(!)� k̂i = o(!), "i(!)� "̂i =

0(!), ki � ki0 = o(!2) 8i; i0 = 0; 1; :::; n. Examples of these families will be given in formulae

(74), (81).

It is easy to show that in the mentioned hypotheses the 3-momenta are in general no more

collinear, but form angles <� !; consequently,

"i(ki) � "j(kj) =
(
either o(1)

or o(!)
"i(ki) � kj = o(!): (45)

We are now able to prove the following fundamental property of the vertices, which is the

main result of this Section and adds to the kinematical properties of Section 1:
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Property 10. { On any con�guration (ki(!); "i(!))i=0;:::;n !-converging to the decay con�gu-

ration (k̂i; "̂i)i=0;:::;n

�e
0::::en

n+1 (k0; :::; kn) = o(!n+1) in QED; (46)

�e
0a0:::e

nan
n+1 (k0; :::; kn) = o(!4�n�1) in YM; (47)

�e
0:::en

n+1 (k0; :::; kn) = o(!m+�(my)(4�my)+2�(mg)�
mg

0 ) in QG. (48)

where in the third equation m;my;mg denote the number of external photons, YM bosons

and gravitons respectively (m +my +mg = n + 1), and �(x) :=

(
0 if x = 0

1 if x > 0
.

Proof.

The claim is evidently true when n = 0. In fact, ��01 / (k0)�0 in QED, YM, but this

vanishes since momentum conservation imposes the condition k0 = 0; in QG still it could be

��0�01 = const���0�0, but this vanishes after contraction with e�0�0 (which is a traceless tensor).

The rest of the proof is by induction and divided in three parts. Let us assume that the

claim is true when n = m � 1. We will prove that it is true when n = m. For the sake of

simplicity, we explicitly prove the claim (48), which is the most general possible, in the simpler

case m = 0 = my,

�e
0 :::en

n+1 (k0; :::; kn) = o(!2) in QG; (49)

at the end of this section we will briey sketch how the proof goes in the general case.

Part 1 Here we prove the equations

�e
0:::ei�1;�i;e

i+1:::en

n+1 (k0; :::; kn)ki�i = 0 in QED; (50)

�
e0a0:::e

i�1ai�1;�iai;e
i+1ai+1:::e

nan
n+1 (k0; :::; kn)ki�i = o(!4�n) in YM; (51)

�e
0:::ei�1;�i�i;e

i+1:::en

n+1 (k0; :::; kn)ki�i = o(!2) in QG. (52)

We drop in the sequel the tilde and write A�; A
a
�; g�� instead of ~A�; ~A

a
�; ~g�� . We treat separately

the cases of QED, YM and QG.

{ QED. From ��A�(p) = ip��(p) (eq. (27)), and eq. (44), from di�erentiating w.r.t. q it imme-

diately follows

p0�0�
�0e

1:::en

n+1 (p0; p1; :::; pn) = 0 (53)

(we have factored out �4(
nP
i=0

pi)), whence formula (50) follows at once (using boson symmetry),

if we choose pi so that the sets fp0; :::; png, fk0; :::; kng coincide. Actually we can derive directly
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from eq. (40) the stronger property

ki�i�
�0:::�i:::�n
n+1 (k0; :::; ki; :::; kn) = 0; n � 2 (54)

{ YM. From

��A
a
�(p) = ip��

a(p) + efabc
Z
d4q Ab

�(p� q)�c(q) (55)

(eq. (28) in momentum space), and from di�erentiating formula (44) (with n = m) w.r.t. �(p0),

it immediately follows

ip0�0�
�0a0;e

1a1;:::;e
mam

m+1 (p0; p1; :::; pm) +

+
mX
l=1

ef blala0�e
1a1;:::e

l�1al�1;e
lbl;e

l+1al+1;:::;e
mam

m (p1; :::; pl�1; pl + p0; pl+1; :::; pm) = 0 (56)

(again, we have factored out �4(
mP
i=0

pi)). This formula holds for any con�guration
mP
i=0

pi = 0,

ei(pi) � pi = 0. On a con�guration !-converging to the decay con�guration we deduce from the

induction hypothesis that the second term is o(!4�m).

{ QG. The gauge transformation (29) in momentum space reads

��g��(p) = i

Z
d4r

n
g��(p � r)r��

�(r) + g��(p � r)r��
�(r) + ��(p � r)r�g��(r)

o
; (57)

implying

��g��(p)jg��(p)=����4(p) = ifp���(p)��� + p��
�(p)���g: (58)

Moreover, we note that
�g��(p)

�g��(�q) = �4(p + q)
h
����

�
� + ����

�
�

i
: (59)

After di�erentiation w.r.t. ��0 (p0), Eq. (44) with n = m reads:

0 = ���;e
1;:::;em

m+1 (p0; p1; :::; pm)2(p0)����0

+
mX
h=1

h
�e

1:::eh�1;��;eh+1 :::en

m (:::; ph�1; p0 + ph; ph+1; :::)4(p0)�("
h)�("

h)�0

+ (ph)�0�
e1:::en

m (:::; ph�1; p0 + ph; ph+1; :::)
i���
g��(p)=����4(p)

: (60)

(once again, we have factored out �4(
mP
i=0

pi)). This formula holds for any con�guration
mP
i=0

pi = 0,

ei(pi) � pi = 0. On a con�guration !-converging to the decay con�guration we deduce from the

induction hypotheses (52), (49) that the second, third terms are o(!2), which proves eq. (52)

for n = m.
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Part 2: We prove the factorization formulae

�e
0::::en

n+1 (k0; :::; kn) =
X
P

Ai0i1:::inE
i0i1:::Ein�1in in QED, (n+1) even: (61)

�e
0a0:::e

nan
n+1 (k0; :::; kn) =

X
P

Aa0:::an
i0i1:::in

Ei0i1:::Ein�1in + o(!3�n) in YM, (n+1) even;(62)

�e
0:::en

n+1 (k0; :::; kn) =
X
P

Ai0i1:::i2ni2n+1E
i0i1 :::Ei2ni2n+1 + o(!) in QG. (63)

and

�e
0 ::::en

n+1 (k0; :::; kn) =
X
P

nX
j0=0

A
j0
i0i1:::in

(kj0 � "i0)Ei1i2:::Ein�1in in QED, (n+1) odd; (64)

�e
0a0:::e

nan
n+1 (k0; :::; kn) =

X
P

nX
j0=0

A
j0;a0:::an
i0i1:::in

(kj0 � "i0)Ei1i2:::Ein�1in + o(!3�n) in YM (n+1), odd;(65)

where:

1)
P
P

means the sum over all the permutations P (P � (i0; i1; :::; in) is a permutation of

(0; 1; :::; n) in QED and YM, whereas P � (i0; i1; :::; i2n+1) is a permutation of (0; 1; :::; 2n+ 1)

in QG);

2) the A's are scalar functions depending on the scalar products ki � kj (and, in the Y.M.

case, on 2m Lie algebra indices ai);

3) we have introduced the shorthand notation

Eij :=
�
"i � "j ki � kj � "i � kj "j � ki

�
: (66)

In the RHS of eq. (63) it is tacitly understood that "2s+1 � "2s, k2s+1 = k2s, s = 0; :::; 2n.

We prove explicitly the �rst three (the proof of formulae (64), (65), is completely analogous):

let n+ 1 = 2m. We look for the most general �
�1::::�n+1
n+1 (k1; :::; kn+1) satisfying:

1) the constraint

�"
0:::"i�1;�i;"

i+1:::"n

n+1 (k0; :::; kn)ki�i = o(!d) (67)

in any con�guration (ki(!); "i(!))i=0;:::;n !-converging to the decay con�guration (k̂i; "̂i)i=0;:::;n;

2) symmetry under any replacement (�i; k
i)$ (�l; k

l), i; l = 0; :::; n.

If we set o(!d) � 0 this amounts to solving eq. (50) equipped with boson symmetry for

the (n+1)-photons vertex function of Q.E.D.; if we set d = 3 � n, this amounts to solving eq.

(51) equipped with boson symmetry for the (n+1)-gluons vertex function of Y.M., provided

we understand an implicit dependence of �n+1 on the Lie algebra indices ai and remind that

the latter have to be permuted along with the indices �i and the momenta ki when boson

symmetry is imposed; if we choose n+1 = 4r, d = 2, and add the additional symmetry
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conditions k2i+1 = k2i, "2i+1 = "2i (i = 0; :::; 2r � 1), this will amount to solving eq. (52)

equipped with boson symmetry for the 2r-gravitons vertex function of Q.G. In this way, we

can formally deal with eq.'s (50), (51), (52) simultaneously, by just dealing with one.

The dependence of �
�0::::�n
n+1 (k0; :::; kn) on Lorentz indices can only occur through the metric

tensors ��i�j and the 4-vectors k�l . Compactly, the most general dependence can be written in

the following way

�
�0::::�n
n+1 =

X
B0 �:::�| {z }

m times

+
X

B1kk �:::�| {z }
(m�1) times

+:::+
X

Bm k:::k| {z }
2m times

; (68)

where the B's denote Lorentz scalar functions. For our purposes, it will be more convenient

to expand �n+1 in terms of the 4-vectors k�l and of the tensors E�i�j(ki; kj) := ��i�jki � kj �
(ki)�j (kj)�i), which satisfy the relation

(ki)�iE
�i�j = 0 = (kj)�jE

�i�j (69)

The general expansion (68) can be replaced by

��0::::�nn+1 (k0; :::; kn) =
X
P

mX
l=0

nX
j0;:::j2l�1=0

A
l; j0:::j2l�1
i0:::in

(kj0)�i0 :::(kj2l�1)�i2l�1E�i2l�i2l+1 ::::E�in�1�in

(70)

where
P
P
means the sum over all the permutations P � (i0; i1; :::; in) of (0; 1; :::; n) and A

l; j1:::j2l
i0:::in

are scalar functions depending on the scalar products ki � kj (and, in the Y.M. case, on 2m Lie

algebra indices ai).

We have introduced a quite redundant set of scalars fAl; j1:::j2l
i0:::in

g to make formula (70) more

compact. The set is redundant in the sense that A
l; j0:::j2l�1
i0:::in

and A
l; ĵ0:::ĵ2l�1

î0:::̂in
will both contribute

to the same term (kj0)�i0 :::(kj2l�1)�i2l�1E�i2l�i2l+1 ::::E�in�1�in in the expansion (70), whenever

1) there exists a permutation P2l of 2l objects such that (̂i0; î1; :::; î2l�1) = P2l(i0; i1; :::; i2l�1),

(ĵ0; ĵ1; :::; ĵ2l�1) = P2l(j0; j1; :::; j2l�1);

2) (̂i2l; î2l+1; :::; în) = Pn+1�2l(i2l; i2l+1; :::; in), where P2m�2l is a permutation of n+ 1� 2l =

2m�2l objects which is the product: 2.a) of transpositions between the (2s)th and the (2s+1)th

object (s = 1; :::;m� l); 2.b) of transpositions between di�erent pairs (2s; 2s+ 1), (2r; 2r +1),

r; s = 1; :::;m� l.

We are free to set A
l; j0:::j2l�1
i0:::in

= A
l; ĵ0:::ĵ2l�1

î0:::̂in
in these cases.

Finally, boson symmetry (37) implies that the scalars Al satisfy the relations

A
l; ~j0:::~j2l�1
:::j:::i::: (ki $ kj) = A

l; j0:::j2l�1
:::i:::j:::

~h :=

8>><
>>:
j if h = i

i if h = j

h if h 6= i; j

(71)
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for any pair of indices i; j.

Plugging the general expansion (70) into Eq. (67) and using relation (69) we �nd

o(!d) =
X
P 0

mX
l=1

nX
j0;:::j2l�1=0

h
A
l; j1:::j2l
ii1:::in

+A
l; j1:::j2l
i1i:::in

+ :::+A
l; j0:::j2l�1
i1:::i2l�1ii2l:::in

i
�

(ki � kj0) "i1 � kj1:::"i2l�1 � kj2l�1Ei2li2l+1 :::Ein�1in; (72)

where
P
P 0

means the sum over all the permutations P 0 � (i1; :::; in) of (0; 1; :::; i� 1; i+1; :::; n),

whereas

�"
0:::"n

n+1 (k0; :::; kn) =
X
P 0

mX
l=0

nX
j0;:::j2l�1=0

h
A
l; j0:::j2l�1
ii1:::in

+A
l; j0:::j2l�1
i1i:::in

+ :::+A
l; j0:::j2l�1
i1:::i2l�1ii2l:::in

i
�

("i � kj0) "i1 � kj1:::"i2l�1 � kj2l�1Ei2li2l+1:::Ein�1in: (73)

Note that the term l = 0 has completely disappeared from the sum in eq. (72), due to eq. (69).

Let us �x the xyz axes so that k0 = (k00; 0; 0; k
0
0) [according to property 2 this implies

kj = �j(k00; 0; 0; k
0
0), j = 1; 2; :::n]; we can always assume that the polarization vectors "̂i are

real and have the form "̂i = (0; cos�i; sen�i; 0). We now start exploiting the available freedom in

the choice (1) of the angles �i characterizing the polarization vectors "̂i; (2) of the con�guration

(ki; "i) !-converging to (k̂i; "̂i)i=0;:::;n. A family of possible choices of the latter is

ki � k̂i + !bi"̂0
i

"̂0
i
:= (0;�sen�i; cos�i; 0) i = 0; 1; :::; n;

"i � "̂i; (74)

the family is parametrized by the 2n+2 parameters (bi; �i), which are only constrained by the

condition
nP
i=0

bi"̂0
i
= 0 (so that

nP
i=0

ki =
nP
i=0

k̂i = 0). As a consequence

ki �kj = �!2bibjcos(�i� �j); "i �kj = �!bjsin(�i� �j) "i � "j = �cos(�i� �j) (75)

�
"i � "j ki � kj � "i � kj "j � ki

�
= !2bibj (76)

By plugging these (ki; "i) into Eq. (72) we �nd

o(!d) = !n+2
X
P 0

mX
l=1

nX
j0;:::j2l�1=0

nX
i=1

h
A
l; j0:::j2l�1
ii1:::in

+A
l; j0:::j2l�1
i1i:::in

+ :::+A
l; j0:::j2l�1
i1:::i2l�1ii2l:::in

i

bibj0:::bj2l�1bi2l:::bincos(�i � �j0)sin(�i1 � �j1):::sin(�i2l�1 � �j2l�1): (77)

The coe�cients in the square brackets can depend on the angles �i only through the cosines

cos(�i � �j) (since ki � kj = �!2bibjcos(�i � �j)); since the above equation has to hold for all

�i's then all terms in the square brackets have to satisfy the relation

h
A
l; j0:::j2l�1
ii1:::in

+A
l; j0:::j2l�1
i1i:::in

+ :::+A
l; j0:::j2l�1
i1:::i2l�1ii2l:::in

i
= o(!d�n�2) l = 1; :::;m (78)
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independently.

Replacing the above results in formula (73) we �nd the factorization formula

�"
0:::"n

n+1 (k0; :::; kn) =
X
P

A
0;
i0i1:::in

Ei0i1:::Ein�1in + o(!d�1) (79)

whence formulae (61), (62), (63) follow.

Part 3: On any con�guration (ki(!); "i(!))i=0;:::;n !-converging to the decay con�guration

(k̂i; "̂i)i=0;:::;n we have E
ij = o(!2). To prove formulae (46), (47), (49) it remains to show that the

scalar functions A's appearing in eq.'s (61), (62), (63) can show poles in ! at most of degree so

high to yield the global !-dependence reported in the former formulae. For this purpose we use

a continuity argument, i.e. we argue that the claimed !-dependence is the only one compatible

with equations (61), (62), (63) if we require the LHS to be independent of the particular

con�guration (ki(!); "i(!))i=0;:::;n !-converging to the decay con�guration (k̂i; "̂i)i=0;:::;n.

For the sake of brevity we continue to use the factorization formula (79) to deal at once with

all three cases. We choose two di�erent multi-parameter families (ki(!); "i(!)), (~ki(!); ~"i(!))

of con�gurations !-converging to the decay con�guration, and we require that

lim
!!0

�
e0(k0):::en(kn)
n+1 (0; :::; kn) = lim

!!0
�
~e0(k0):::~en(qn)
n+1 (~k0; :::;~kn) (80)

In the xyz axes as before, the �rst is the family (74), the second is

~ki := k̂i+!(0; 0; ci; 0) ~"i := [(k̂i3)
2+(!ci)2]�

1

2 (0; 0; k̂i3; !c
i) i = 0; 1; :::; n; (81)

where
nP
i=0

ci = 0. This implies in particular ~ki � ~kj = �!2cicj .

With the �rst family we �nd

�"
0:::"n

n+1 (k0; :::; kn) = !n+1b0:::bn
X
P

A
0;
i0i1:::in

+ o(!d�1): (82)

Now we specialize our discussion to the case of QED and QG, where d � 1 � 1, so that

the second term vanishes when ! ! 0. Let us consider per absurdum the hypothesis that the

functions A's have poles of degree (n+1) in !. In order that the RHS has a limit independent

of the bi's when ! ! 0, the A's must have the form

A
0;
i0i1:::in

=

"X
P

ai0i1:::ink
i0 � ki1:::kin�1 � kin

#�1
; (83)
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where ai0i1:::in are constants, so that

A
0;
i0i1:::in

=
h
!n+1b0:::b

n
i�1 � const: (84)

On the other hand, plugging the family (81) into eq. (83) and replacing the result into

formula (79), we �nd

�
~e0(k0):::~en(qn)
n+1 (~k0; :::; ~kn) = const:�

X
P

 
di0

di1
+
di1

di0
� 1

!
:::

 
din�1

din
+

din

din�1
� 1

!
+ o(!2) (85)

where we have de�ned di :=
ki
3

ci
. This expression depends on the choice of the coe�cients ci, i.e.

depends on the way the family (~ki(!); ~"i(!)) approaches (k̂i(!); "̂i(!)), against the hypothesis.

In a similar way, one can exclude the hypothesis that the functions A's have poles in ! of degree

> (n+1), otherwise the RHS would diverge to either +1 or �1 according to the way the

families approach the decay con�guration

Summing up, we have discarded the possibility that the A's have poles in ! of degree � n+1,

so that consequently in QED,QG

�"
0:::"n

n+1 (k0; :::; kn) = o(!) (86)

In QED we can improve the bound (86) into the stronger bound (46). In fact, if one plugs

the general expansion (70) into eq. (54) [instead of eq. (67)] and argues as in part 2, one ends

up with a stronger form of the factorization,

��0::::�nn+1 (k0; :::; kn) =
X
P

Ai0i1:::inE
�i0�i1 :::E�in�1�in : (87)

Looking at the Feynman diagrams contributing at each order in the loops to ��0:::�nn+1 (k0; :::; kn),

it is easy to understand that they are continuous and �nite for all values of ki's, since the

fermion/scalar masses are infrared cuto�s[see �g. (3)]. Hence, the scalars A can have no poles

in ki � kj , because otherwise at least the terms

Ai0i1:::in(k
i0)�i1 :::(kin)�in�1 (kin�1)�in would diverge. The A's have dimension [mass]4�2(n+1),

since �n+1 has dimension [mass]4�(n+1). This can be accounted for without introducing poles

in ki � kj , but using the mass parameters of the charged particle interacting with the photon.

For instance, if the only charged particle is a fermion with mass m, then A = m4�2(n+1)o(1).

We have completed the proof of the claim (46).

In QG the o(!) in the RHS of (86) can be improved into a o(!2), since �e
0 :::en

n+1 (k0; :::; kn) can

be only of even degree in !, if we assume that the proper vertices depend analitically on the
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momenta ki. This follows from formula (45), because the LHS of eq. (86) has to be a function

of the Lorentz scalars ki � kj, "i(ki) � kj, of even degree in the latter. This completes the proof

of the claim (49).

In YM formula (79) and the continuity argument do not exclude that there exists a limit

lim
!!0

�"
0:::"n

n+1 (k0; :::; kn) =: L 6= 0 independent on the way the family (ki(!); "i(!)) approaches

(k̂i(!); "̂i(!)). In fact, if the functions A's have a pole of degree � (n+1) in !, the second term

in formula (79) (which in principle can be �nite or divergent) could compete with the �rst,

and �"
0:::"n

n+1 (k0; :::; kn) could have a family-independent limit even though the �rst term has not.

This is exactly what happens with the 4-gluon proper vertex, as one can already check at the

tree level

�"̂
0a0:::"̂

3a3
4;tree /

h
("̂0 � "̂1)("̂2 � "̂3)fa0a3efa1a2e + perm:

i
6= 0: (88)

By an explicit analysis of the general expansion (70) one can easily realize that a family-

independent limit L 2 R [ f�1g can be obtained only if equation (47) is satis�ed.

Finally, the proof of the general claim (48) can be done by an induction procedure in the

number of external photons (resp. of YM bosons) which mimics the one sketched so far for

QED (resp. YM), with the only di�erence that as starting input we do not use the value of

proper vertex with zero photons, zero YM bosons and zero gravitons, but the proper vertex

with mg > 0 gravitons or my > 0 YM bosons (resp. with mg > 0 gravitons or m > 0 photons).

We have thus completed the proof of property 10 }.

5 Concluding remarks.

We have seen that the decay probabilities for the photon, the graviton and the Yang-Mills boson

all vanish. The decay amplitudes involving only photons and/or gravitons are themselves zero;

we have �rst shown these properties by a simple power counting argument and then proved

them rigorously through the Ward identities, assuming only continuity of the Greens functions

in the infrared limit. In the case of the Yang-Mills boson, the power counting shows that the

amplitude does not vanish in the infrared limit; the decay probability is however suppressed by

the phase-space factor.

As mentioned at the end of Section 2, a partial decay probability ��1n di�erent from zero

can be only obtained when the squared amplitude is proportional to a su�ciently high hegative

power of !. If we admit (as is generally true in perturbation theory) that the coupling constants
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appear in the numerator, this means that the amplitude must contain a coupling constant with

positive mass dimension.

The only theory we are aware of, in which such a coupling occurs is gravity in the presence

of a cosmological constant. In this case the action of the gravitational �eld is written as

S =
1

16�G

Z
d4x

q
g(x) [��R(x)] (89)

or, rede�nig the metric in the form g��(x) = ��� + �~h��(x), with � =
p
16�G,

S =
Z
d4x

q
1 + �~h+ �2~h2 + �3~h3 + :::

�
�

�2
� ~R(2)(x) + :::

�
(90)

We have denoted symbolically with ~h; ~h2; ~h3 ::: in the square root terms which are linear,

quadratic, cubic ... in ~h, omitting the indices and the exact algebraic structure. ~R(2)(x) denotes

the part of the curvature quadratic in ~h. The term �3~h3, when is multiplied by �=�2, gives rise

to a vertex ��~h3 which couples three gravitons with a coupling constant �� of mass dimension

1 (unlike the corresponding three-vertex of the pure Einstein action, which is proportional to

�3 and contains 4 four-momenta, so that the infrared processes are strongly suppressed).

It is then possible to construct gravitonic loops with n external legs using these vertices;

the amplitudes will be proportional to positive powers of �� and { in our regularization scheme

{ to negative powers of !. This means that ��1n would be �nite in the limit ! ! 0, or even

diverge. But we should not forget the terms which are linear and quadratic in ~h in the square

root of eq. (90). In particular, the quadratic term gives rise to some graviton mass (if � < 0) or

to instability (if � > 0) [4]. In the �rst case, we end up with gravitons which are not massless

any more, so that all our preceding formalism does not apply.

On the other hand, it is known that the cosmological constant �, although possibly very big

in principle, is limited by astronomical observations to be less than j�j � 10120G�1. In order

to explain this vanishing, many mechanisms have been proposed [12]. In the non-perturbative

quantum Regge calculus [5] the e�ective value of the adimensional product j�jG depends on

the length scale and vanishes with a power law as the scale grows. In this sense, the constant �

could be non-vanishing on small scale, while the graviton would maintain asymptotically zero

mass.

The detailed dynamics of the decay would however in this hypotesis be unknown, and we

limit ourselves to apply the general kinematical considerations. Eq. (8) for the mean life takes

the form { supposed that only the constants G and � enter in the process [1] {

��1 =
1

GE

X
j=1;2;:::

cj(�G)
j: (91)
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We have also admitted that it is possible to de�ne a Lorentz-invariant scale for the process,

and that such scale enters into (91) only by determining the e�ective value of �. The scale

could be given, for instance, by the transversal size of the vawe packet describing the graviton,

which in turn is connected to the features of the measuring apparatus. The coe�cients cj are

unknown.
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Appendix

We prove eq. (42). In the case of QED with (for instance) Feynman's gauge-�xing 1
2�

R
d4x(@�A�)

2,

the LHS is zero when n > 1 because the gauge variation of the gauge-�xing above is of �rst

degree in A�, and is zero in the case n = 1 because

� 1

�
p
�
1 (p1)

2�(p1); (92)

vanishes after contraction with the polarization vector "�� (p1). In the case of YM with (for

instance) Feynman's gauge-�xing 1
�

R
d4x(@�A�)

2, the LHS is zero if n > 2 because the gauge

variation of the gauge-�xing above is of second degree in A�; if n = 1 it is zero for the same

reason as in the preceding case (92) ; if n = 2 it is zero because

� 2

�
(p1)

�1(p2)
�2�c(p1 + p2)f

a1a2c; (93)

vanishes after contractions with the polarization vector "��1(p1)"
�
�2
(p2). In the case of QG with

harmonic gauge-�xing 1
2�

R
d4x(@�h��)

2 we have

��

�
1

2�

Z
d4x(@�h��)

2

�
= � 1

�

Z
d4p(p�h��(p))p

�(�̂�;� + �̂
;�
� )(�p) (94)

(here ^ means Fourier transform). When some �
�g�i�i (�pi)

acts on p�h��(p) we get a factor �
4(p+

pi)[�
�i
� �

�i
� + ��i� �

�i
� ] (see formula (59)), which makes zero after contraction with the polarization

tensor e�i�i(pi). }
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