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Abstract

By using the method of hyperspherical functions within the appropriate for this

method Kmin approximation, the simple three-cluster model for description of the

ground state and the continuous spectrum states of 6He is developed. It is shown that

many properties of 6He (its large rms radius and large values of the matrix elements of

electromagnetic transitions from the ground state into the continuous spectrum) follow

from the fact that the potential energy of 6He system decreases very slowly (as ��3)

and the binding energy is small.

1 Introduction

The 6He nucleus is an example of a three-cluster system whose lowest threshold (�+n+n) is a

three-particle one. Such systems have a number of remarkable properties determined mainly

by two factors|the Pauli principle and the character of the potential energy dependence

due to the three-body structure.

The Pauli principle imposes essential restrictions on the wave function of a system allow-

ing it to contain only the components antisymmetric with respect to nucleon permutation.

Thus, if we are using the expansion over the harmonic-oscillator basis, we must solve the

problem of excluding the states forbidden by the Pauli principle [1]. This, in particular,

leads to the fact that the simplest wave function of the 0+-state of 6He obtained with the

translation-invariant shell model (it coincides with the lowest oscillator-basis function) is

a superposition of states with three-particle hypermomentum K = 0 (� 5%) and K = 2

(� 95%). This function generates an in�nite set of states di�ering by a number of oscillator

quanta and having almost the same ratio of K = 0 and K = 2 components. The approxi-

mation using only this set of functions can be appropriately called the Kmin-approximation.

Other basis states contain components with K > 2 whose weight is small, as shown in [2].

Notice that for 2+-states, wave functions of the Kmin-approximation contain only K = 2

components, while for the 1�-states they are the superpositions of K = 1 (>
�
25%) and

K = 3 (<
�
75%) components.

The second characteristic feature of systems under consideration is the slow decrease of

their potential energy for large values of the hyperradius �. As known (see for example
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[3]), in three-body systems, the potential energy has the asymptotical behaviour const=�3 as

�!1, even if the two-body forces acting between any two of constituent particles are short-

range. This fact leads to two important results. First, the boundary of a system is extremely

loose and the rms radius is signi�cantly larger compared with that of those neighbouring

nuclei whose three-particle threshold is much higher than the binary one. Second, the phase

shift of the three-body scattering rises sharply at low energies (it is proportional to
p
E

as E ! 0) which directly a�ects the behaviour of the electromagnetic transitions matrix

elements between the ground state of 6He and its continuous spectrum.

The aim of the present paper is to give a detailed quantitative analysis of general regu-

larities in 6He structure, based on a simple model taking into account the main features of

a loosely-bound system with the lowest three-particle threshold.

2 The Model

The allowed basis functions for states with zero angular momentum 'n(L = 0) of the

Kmin-approximation have the following form

'n(L = 0) = A0(n)'n0(�)u0(!) +A2(n)'n2(�)u2(!); (1)

where the superposition coe�cients are

A0(n) =

s
4(n + 1)

29n + 104
; A2(n) =

s
25(n + 4)

29n + 104
; (2)

uK(!) are the hyperspherical functions,

'nK(�) = Nnk�
Ke��

2=2LK+2
n (�2) (3)

are the normalized hyperradial harmonic-oscillator basis functions, L�n(�
2) are the Laguerre

polynomials, Nnk are the normalizing coe�cients, n = 0; 1; : : : Therefore, the wave function

of the L = 0 state in the Kmin-approximation is reduced to the expansion

	(L = 0) =
1X
n=0

Cn'n(L = 0): (4)

For all n, the contribution of K = 2 states is signi�cantly greater than that of the K = 0

states

0:86 < A2
2(n) < 0:96; A2

0(n) = 1 �A2
2(n);

hence, in a simple model, the contribution of K = 0 states can be neglected. Then, for the

expansion (4) the following relations hold

	(L = 0) =
1X
n=0

Cn'n2(�)u2(�) = �(�)u2(
) =
�(�)

�5=2
u2(
): (5)

The function �(�) should satisfy the one-dimensional Schr�odinger equation

�h2

2m

"
�d

2�

d�2
+

�
K +

3

2

��
K +

5

2

�
�

�2

#
+ V (�)� = E�; (6)
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where m is the nucleon mass, K is the hypermomentum (K = 2 for L = 0), V (�) is the

e�ective three-body potential.

The equation (6) is a starting point for the subsequent discussion. It was solved by a

numerical integration over � from zero to a certain su�ciently large cuto� radius �max. The

e�ective potential is modelled by a function

V (�) =
V0

1 +

�
�

a

�3 ; (7)

having correct asymptotics and without a singularity at � = 0. To reproduce the states with

zero angular momentum, we have chosen the parameters V0 and a such that the equation (6)

would give experimental values for the 6He binding energy and the rms radius, E = �E =

�0:97 MeV,
q
hr2i = 2:57 Fm. The appropriate values of the parameters are

V0 = �87 MeV; a = 3:073 Fm: (8)

With these values we have calculated the wave function of the 6He ground state and 0+-states

of its continuous spectrum.

3 The Ground State of 6He

The wave function of the ground state of 6He together with the e�ective potential V (�) are

presented in Fig. 1. The horizontal line below the �-axis corresponds to the ground state

energy, its intersection with the potential energy curve marks the classical turning point.

The vertical line separates the values of � less than
q
h�2i = 5:59 Fm. The wave function

falls as �K+5=2 for small �, due to the strong kinematical barrier, while for large �, the long-

range character of the potential V (�) leads to the slow decrease of the wave function and,

respectively, to a signi�cant di�useness of the boundary of a nuclear system.

As known, loosely-bound binary systems with a short-range potential can be rather well

approximated outside the potential range by the exponential function

�(�) '
p
2� exp(��r); � =

s
2m

�h2
E ; (9)

where E is the bound state energy, r is the radial variable of the binary channel. The formal

criterion of validity of such an approximation (the zero-range approximation) is the smallness

of a ratio of the potential range and the cluster radii to the system radius 1=
p
2� expressed

in terms of binding energy. It seems useful to compare the exact wave function obtained

after the solution of Eq. (6) with the approximation given by Eq. (9) (for � � 0:22 Fm�1,

dashed line in Fig. 1). It can be seen that the nucleon system is much more loose than it is

predicted by the wave function (9). The reason for that is not only that the function �(�)

at small � behaves as �K+5=2 as � ! 0, but �rst of all that the e�ective potential energy

decreases slower than the exponential, while the formula (9) is obtained by supposing that

the potential is short-range. As a result, the estimates of the square of hyperradius mean

value
q
h�2i based on (9) are about three times less than the experimental value.

Of course, for su�ciently large � the function �(�) has the asymptotics

�(�) ' C
p
��K4(��) ' C exp(���); (10)
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where K4(�) is the Macdonald function, and the value of the coe�cient C (it is related to

the so-called nuclear vertex constants, see [4]) is considerably less than that of
p
2�

C � 0:12 Fm�1=2 <
p
2� � 0:66 Fm�1=2: (11)

This asymptotics is denoted by short-dashed line in Fig. 1.

4 0+-States of the Continuous Spectrum

Of the special interest are the solutions of Eq. (6) for the continuous spectrum for rela-

tively low over-threshold energies. In particular, attention must be paid to the question

of the behaviour of the three-to-three scattering phase � as a function of energy in a po-

tential �eld with the asymptotical behaviour const=�3 and the powerful kinematic barrier

(�h2=2m)(63=4�2) corresponding to K = 2. According to the estimates [5, 6], at low energies,

the phase shift, as is also demonstrated by our calculations, is proportional to k (or
p
E)

� ' Ak + : : : ; A = 3:95 Fm: (12)

The low-energy values of tan � calculated with di�erent values of the cuto� radius �max are

presented as functions of k in Fig. 2. As seen, �max should be rather large, at least 1000 Fm

for energies below 10 keV. The obtained value of A gives a rather reasonable prediction for

the ground-state energy of 6He

Eapprox: = �h2

2m

1

A2
� 1:3 MeV; (cf: Eexp: = 0:97 MeV): (13)

The three-body phase shift � calculated with di�erent �max as functions of energy E

in an interval up to 5 MeV are presented in Fig. 3. As seen, for reliable calculations for

medium-energy region (� 1 MeV) �max may be taken about 50 Fm and only for the lowest

energies it must be increased. The phase shift rises steeply from zero to values exceeding

90� for E � 2:5 MeV and then slowly goes down. When the phase shift is near 90� the

�rst maximum of the wave function moves closer to zero so that the matrix element of the

isoscalar transition from the ground state into the continuous spectrum increases (see Fig. 4).

This matrix element reaches its maximal value for E � 1:3 MeV which could directly a�ect

the electrodisintegration cross-section of 6He.

5 2+-States of the Continuous Spectrum

The Kmin-approximation satisfying the Pauli principle for the 2+-states of 6He contain only

the hyperspherical function with K = 2. Therefore, to obtain the wave functions �(�) of

2+-states, we again turn to the equation (6) with K = 2 but with the other parameters of

the potential V (�).

The 6He nucleus has no 2+ bound state but it has a 2+-resonance at the energy of

0.822�0.025 MeV with the width 0.113�0.020 MeV [7]. The energy and the width of the

resonance can be reproduced with the following parameters of potential:

V0 = �92 MeV; a = 2:834 Fm: (14)
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The wave function �(�) of the resonance state and the potential energy with the param-

eters (14) are presented in Fig. 5. For small � the resonance wave function behaves similarly

to the wave function of the ground state (dashed line in Fig. 5) but for larger �, in the

asymptotical region it, as it should be, oscillates.

The scattering phase shift in the 2+-state obtained by solving the equation (6) with the

new potential parameters is presented in Fig. 6. At the energy of about 1 MeV the phase

shift has a typical behaviour for a resonance region.

We have also calculated the matrix element of the operator of the isoscalar E2 transition

from the ground state of 6He to the 2+-states of its continuous spectrum. The dependence

of this matrix element upon the energy is presented in Fig. 7. The narrow peak observed

for the energy about 0:8 MeV again demonstrates the small width of 2+ resonance and the

large value of the matrix element.

6 Conclusion

The simple three-cluster model based on the phenomenological long-range potential with

the Pauli principle taken into account has allowed us to reveal a number of regularities both

for the weakly-coupled ground state of 6He and for the states of its continuous spectrum

for the relatively low (up to a few MeV) energies. The large value of the rms radius in the

ground state can be explained by the considerable di�useness of the wave function caused

by the slowly-decreasing e�ective potential. The asymptotic region, where the wave function

decreases exponentially begins only at the hyperradius values greater than 15{20 Fm.

The phase shift of elastic scattering (3 ! 3) is proportional to k or
p
E at low energies

which leads to the sharp maximum of the matrix element of the isoscalar transition from the

ground state to the 0+-states of the continuous spectrum. Finally, our calculations predict

a considerable enhancing of the probability of the radiative capture of two neutrons by the

alpha-particle for the energy corresponding to the 2+-resonance of 6He.

We thank Dr. A. A. Korsheninnikov for stimulating discussions.
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Figure 1: The wave function of 6He ground state, its asymptotic behaviour (Eqs. (9) and

(10)) and the e�ective potential. The ground-state energy is marked by a horizontal line,

the vertical line corresponds to � =
q
h�2i = 5:59 Fm).

Figure 2: Low-energy behaviour of tan � as a function of k.
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Figure 3: The scattering phase shift in the 0+-state.

Figure 4: The matrix element of the isoscalar transition from the ground state to the 0+

states of the continuous spectrum. (Results for �max = 50 Fm and 100 Fm are almost

identical.)
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Figure 5: The wave function of the 2+ resonance and the ground state (scaled) and the

e�ective potential in the 2+ state

Figure 6: The scattering phase shift in the 2+-state.
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Figure 7: The matrix element of the isoscalar E2 transition from the ground state to the

2+ states of the continuous spectrum. (Results for �max = 50 Fm and 100 Fm are almost

identical.)
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