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Abstract

Non-equilibrium phase transitions of a scalar �eld in an expanding

spacetime are discussed. These transitions are shown to lead, for

appropriate potential energy functions, to a biased choice of vacuum

structure which can be analytically described using percolation theory.

The initial domain wall networks, which form between di�erent vacua,

are evolved in time by computer simulation and their behavior in time

analyzed. It is shown that, unlike systems in thermal equilibrium,

domain walls formed in biased systems persist for only a short time

before decaying exponentially away. This result opens the door to a

complete re-analysis of domain walls in cosmology.

1 The \Structuron" Field

We begin by considering a real scalar �eld, �, which lives in an expanding
Friedman-Robinson-Walker (FRW) spacetime. We will assume that this �eld
interacts with other �elds by gravitation alone, and interacts with itself via
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a potential energy of the form

V (�) = V0

 
cos

�

v
+ 1

!
; (1)

where
V0

v2
� H2

i ; (2)

V0 � v4;

and Hi is the initial Hubble parameter during the epoch of ination. One
minimum of this potential occurs at �0 = �v. Expanding V around this
minimum gives

V =
1

2

�
V0

v2

�
�2 +

1

4!

�
V0

v4

�
�4 + ::: (3)

De�ning mass m � V0
v2

and coupling � � V0
v4
, then the conditions in equa-

tion (2) imply that
m� Hi; (4)

�� 1:

It follows that �eld � is not in thermal equilibrium. Many such �elds appear
naturally in various \beyond the standard model" scenarios. Here we will
simply discuss such a �eld in the abstract, referring to it by the generic
name \structuron" since, as we will see, it can play a role in creating large
scale extra-galactic structure. The behavior of a structuron is determined
by considering the quantum mechanics of a real scalar quantum �eld, �̂, in
expanding FRW spacetime. This quantum �eld can be expanded as

�̂ = �c1̂ + �̂q: (5)

Field �c satis�es the classical equation of motion

��c + 3H _�c +
@V

@�c

= 0: (6)

During ination, when H = Hi, and long afterward during the expansion
epoch, the conditions in equations (4) imply that one can drop the potential
energy term to leading order. The result is that, to leading order

�c = V (7)
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where V is a completely arbitrary constant. To the next order, the classical
�eld develops a tiny damped velocity

_�c
�=

V

Hv
(8)

which can safely be ignored. The quantum operator, �̂q, and its physical ef-
fect, is a more complicated issue. It is well known that the quantum uctua-
tions associated this �eld lead, during the inationary epoch, to the formation
of a \weakly inhomogeneous, quasi-classical" scalar �eld, �. This consists,
just at the end of ination, of a quantum induced zero mode, plus a part
which can be Fourier decomposed into wavelengths satisfying the condition

H�1
i � � � L: (9)

Here H�1
i is the radius of the event horizon at the end of ination and L

is the radius of the Universe. During the expansion phase, the radius of
the event horizon increases with time. At redshift z, this radius is given by
lc(z) = H(z)�1. As wavelengths of the quasi-classical �eld come within the
growing horizon, they rapidly decay in amplitude and can be ignored. At
any given redshift z, only those wavelengths satisfying

lc(z) � � � L (10)

remain \frozen" and compose the quasi-classical �eld. Field �, at any redshift
z, has an interesting spatial decomposition that will be useful in our later
analysis. To discuss this we �rst must introduce the two-point correlation
function, �(l), de�ned by

�(l) � h0j�̂q(x+ l)�̂q(x)j0i (11)

where the wavelengths in the quantum operators are to be cut o� as in equa-
tion (10) and l is arbitrary. The translational invariance of the Bunch-Davies
vacuum j0i implies that � is independent of coordinate x. Expression (11)
can be evaluated, and for lc � l� L, we �nd that

�(l) �=
H2

i

4�2
ln
L

l
: (12)
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This result is completely dominated by the long wavelength modes satisfying
l � � � L. Secondly, we must introduce a measure of the random uctuations
between two points, �(l), which is de�ned by

�(l) =
H2

i

4�2
ln

l

lc
: (13)

This function is completely dominated by the short wavelength modes satis-
fying lc(z) � � � l. Note that

�(l) + �(l) =
Hi

4�2
ln
L

lc
(14)

which is the mean square value of all the uctuations in �. We are now in
a position to decompose �eld �, as alluded to above. Consider the universe
at some �xed redshift z. Let us \coarse-grain" the universe into spheres of
radius l. To �rst approximation, all of these spheres are correlated by the
longer wavelength modes, which they share in common. Therefore, they all
share an approximate zero mode background, Bl, de�ned by

Bl = +
q
�(l): (15)

However, within each sphere there are uctuations due to the shorter wave-
length modes. Since these uctuations arise in a causally independent way
from one sphere to the next, each sphere exhibits an independent uctuation,
Fl, whose value is determined probabilistically from the Gaussian distribu-
tion function

P (Fl) =
1q

2��(l)
e
�

F

2
l

2�(l) : (16)

Note that the root mean square value of this distribution is given by

rms(Fl) = +
q
�(l): (17)

Unlike Bl which is a spatial constant, Fl varies randomly over the coarse-
grained manifold. It follows that for any length scale l, the weakly inhomo-
geneous, quasi-classical scalar �eld can be decomposed as

�(x) = Bl + Fl(x): (18)
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Figure 1: Distribution function, P (Fl) and potential, V (�).

At any point in space, the relationship between the total shared zero mode
background V + Bl, the quantum uctuation Fl and the potential energy
is shown in Figure 1. As long as the potential energy in equation (6) can
be ignored, no phase transition takes place. However, after a long time, the
redshift is such that the kinetic energy density becomes comparable, and then
smaller than, the potential energy. Let us say that they become comparable,
and the potential energy no longer ignorable, at redshift zt. At this time, at
each point in space, the �eld must roll either toward vacuum (+) or toward
vacuum (�). It is clear from Figure 1 that the the probability that it roles
to the (+) vacuum is given by

p =
Z
1

0
dFlP (Fl): (19)

It is important to note that, since classical background V is arbitrary, p can
take any value in the range 0 � p � 1. In general, p 6= 1/2. Similarly,
the probability that the �eld rolls to the (�) vacuum is given by 1 � p.
Putting everything together, we see that at the time of the phase transition,
zt, in any spatial sphere of radius l (that is, at any coarse-grained point)
the system settles into vacuum (+) with arbitrary probability p, or vacuum
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(�) with probability 1 � p, and that the choice of the vacuum in any two
spheres is statistically independent [1]. Now between any two neighboring
spheres which have a di�erent vacuum choice, the scalar �eld � will form a
topological kink; that is, a domain wall. Hence, at zt an initial domain wall
network will form over all space. Can we determine the spatial structure of
this initial domain wall network? Yes, using percolation theory.

2 Percolation Theory

Percolation theory predicts statistical characteristics and topological prop-
erties of a \typical" vacuum pattern formed on a lattice. If we partition
space into a cubic lattice, with each cube having volume l3, then percolation
theory becomes applicable to the prediction of the initial distribution of do-
main walls. In the following, we will always restrict our discussion to three
dimensional, cubic lattices. Percolation theory tells us that there exists some
critical probability, pc. If the population probability for a vacuum exceeds
this critical value, that vacuum will percolate the lattice; that is, one can
trace a path from one face of the lattice to another without crossing a do-
main wall. If the bias probability of a vacuum is less than the critical value,
however, that vacuum will not percolate, and domain wall \bags", or clus-
ters, of this vacuum will form. Whether one, both or neither vacua percolate
depends on the relative values of p, 1� p and pc.

It has been shown that pc = 0:311 is the critical probability for a cubic
lattice in three dimensions [2]. Thus, for p < pc, the (+) vacua are in �nite
clusters while the (�) vacua sites lie predominantly in a large percolating
cluster, since necessarily 1 � p > pc. It follows that the associated domain
walls are relatively small, forming around the compact boundaries of the
�nite clusters. Figure 2 shows this behavior in the case of a small bias
probability, p = 0:1 < pc. Note that there exist only �nite, disconnected
domain wall bags, the number and size of which can be shown to grow as
p approaches pc from below. For the case that both p and 1 � p exceed
pc, both vacua will percolate the lattice, and in�nite (that is, lattice sized)
domain walls separating the vacua will form. A small number of domain wall
bags, disconnected from the percolating cluster, also form but their number
decreases as p approaches 0:5. Figure 3 shows this \in�nite" domain wall
structure in the limiting case of p = 0:5. The crucial lesson to be learned
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Figure 2: Initial distribution of domain walls in three dimensions with bias
probability, p = 0:1. Here we show a (10�)3 grid.

Figure 3: Initial distribution of domain walls in three dimensions with bias
probability, p = 0:5. For clarity we show here only a (5�)3 grid.

7



from all this is that when both vacua percolate, the topology of the post-
transition vacuum is one of long, convoluted domain walls stretching across
all space, whereas, when p < pc, the vacuum is composed of small, compact
domain wall bags.

Percolation theory allows one to give a reasonably accurate mathematical
description of the number of �nite s-clusters, their radius and the size of their
boundary. Here s denotes the number of neighboring lattice sites that are
occupied by the same vacuum. Let ns be the probability that a given lattice
site is an element of an s-cluster. This is a fundamental quantity, given
by the ratio of the total number of s-clusters, Ns, over the total number of
lattice sites, N . An analytical expression for this quantity has been found
using scaling arguments and Monte Carlo simulations [3]. The result is

ns = :0501s�� e�:6299(
p�pc
pc

)s�[(
p�pc
p

)s�+1:6679]; (20)

where � = 2:17 and � = :48. Similarly, the average radius of gyration for an
s-cluster Rs(p), for p < pc and s > s�, is found to be

Rs(p) = :702(pc � p):322s:55�; (21)

where

s� =

 
:311

jp� :311j

!2:08

: (22)

It can also be shown, for p < pc and s�>5, that every s-cluster has a boundary
composed of

ts =

 
1� p

p

!
s (23)

sites. One can easily check using the formula for ns that, on a given lattice,
the number of s-clusters falls rather quickly with growing s. Hence there
is an smax such that the total number of smax-clusters is 1. In other words,
formation of clusters with s much larger than smax is extremely improbable.
This means that on a given lattice there exists an upper statistical cut-o� on
the size of observable clusters..

Using the above formulae, as well as other results found in [3], it is pos-
sible, for a �xed lattice and a given value of p, to compute the surface area
for the domain walls between the (+) and the (�) vacua. In particular, we
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have attempted to compute the domain wall surface area for the three di-
mensional cubic lattice case. However, this calculation is very di�cult when
there are two percolating vacua and hence, we are restricted to a calculation
for p < pc. This di�culty arises from the fact that the associated large do-
main walls are highly fractalized and hence their surface area is di�cult to
characterize. The �nite size of the lattice further reduces the value of p for
which we can perform a reasonable calculation to p�<0:25. Furthermore, for-
mula (20) for ns is not very accurate for p < 0:175. This puts a lower bound
on the calculation. A very reasonable calculation can be performed in the
range 0:175 � p � 0:25 but, even in this range, we estimate an error of about
10%. Our results for the domain wall surface area are plotted, along with the
10% error bars, as curve (a) in Figure 4. These results can be checked, and
extended to any values of p, simply by letting the computer evaluate wall
surface area. The solid line (b) in Figure 4 represents the mean initial surface
area generated for 0 � p � 0:5. The initial area grows monotonically with
p, approaching the maximal value of 1:5 � V at p = 0:5. Note that in the
region where we can compare the percolation prediction with the computer
experiment, there is good agreement.

We conclude that, by using percolation theory, we can analytically de-
termine the structure of the initial network of domain walls. The principal
result is that for p < pc the domain walls form small, compact bags whereas
when p � pc the domain walls become very long and stretch across the entire
universe. These results have been veri�ed, and made numerically more accu-
rate, using computer simulations. However, the initial domain wall networks
do not satisfy the static equation of motion and, therefore, must evolve in
time. The role of dynamics in propagating or erasing these initial conditions
is discussed in the following section.

3 Evolution of Domain Walls

To investigate the evolution of the initial domain wall networks described
above, we choose to follow Press, Ryden and Spergel (hereafter PRS)[4]. The
dynamics of the scalar �eld, �, are determined by the equation of motion

@2�

@�2
+

2

�

d ln a

d ln �

@�

@�
�r2� = �a2@V

@�
; (24)
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Figure 4: The number of links across which a domain wall falls per lattice site.
Points (a) are the 3d percolative predictions in the regime 0:175 � p � 0:25,
with their associated uncertainty (� 10%). Line (b) shows the measured
values (averaged over 20 three dimensional samples) for 0 � p � 0:5.

where � is the conformal time co-ordinate, a is the scale factor of the uni-
verse (a � � in the radiation era, and a � �2 in the matter era), V is
the scalar potential and the spatial gradients are with respect to co-moving
co-ordinates. The scalar potential determines the topology of the vacuum
manifold. Instead of the periodic potential given in 1, we will use the quartic
potential

V (�) = V0

 
�2

�2
0

� 1

!2

: (25)

This potential has two degenerate vacua, � = ��0, separated by a potential
barrier V0 and closely approximates the cosine potential in the region between
any two minima.

Following PRS we can de�ne a physical domain wall thickness w0 given
by

w0 � �
�0p
2V0

: (26)

The ratio of the wall thickness to the horizon size at the time of the phase
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transition

W0 �
w0

a(�0)

1

�0

d ln a

d ln �

�����
�0

(27)

then sets �0, the conformal time of the phase transition and the time at which
we begin the simulation.

In order to avoid some technical di�culties, we will use a generalization
of equation (24) given by

@2�

@�2
+
�

�

d ln a

d ln �

@�

@�
�r2� = �a� @V

@�
: (28)

Henceforth, � = � = 2 which reproduces equation (24) will be replaced with
� = 3, � = 0. We refer the reader to PRS for a full justi�cation of this
change.

We evolve equation (28) on a regular Cartesian grid with periodic bound-
ary conditions. Our �nite di�erence scheme is second order accurate in both
space and time, with the lattice equations

� � 1

2
�
��

�

d ln a

d ln �
; (29)�

r2�
�
i;j;k

� �i+1;j;k + �i�1;k;k + �i;j+1;k + �i;j�1;k

+ �i;j;k+1 + �i;j;k�1 � 6�i;j;k; (30)

_�
n+1=2
i;j;k =

(1 � �) _�n�1=2
i;j;k +��

�
r2�n

ijk � a� @V
@�n

ijk

�
1 + �

(31)

�n+1
i;j;k = �n

i;j;k +�� _�
n+1=2
i;j;k : (32)

Here, subscripts refer to the spatial lattice co-ordinate, superscripts refer to
the time co-ordinate, and _� � @�=@�. The spatial grid size will be chosen
to be �x = 1. In this paper, we will set �0 = 1. The scalar �eld initial
conditions are then chosen using the prescription described above for various
bias probabilities, p. That is, in the following we will use percolation theory
with allowed �eld values of �1 at any lattice site. We will also choose the
initial �eld \velocity", _�, to be zero everywhere on the lattice.

Simulations were run in the radiation dominated epoch, with a = (�=�0)
and the initial time, �0 = 1. We chose a wall thickness w0 = 5, making the
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ratio W0 = 5. This value was used to ensure that the wall thickness was
well above the lattice resolution scale (recall �x = 1), while ensuring that
for most of the dynamic range of the simulation, the wall{wall separation
exceeded the wall thickness. The results are the following.

We present the evolution of the energy density of the network of domain
walls in the radiation dominated epoch. As each simulation is evolved, the
comoving wall area is determined (according to the prescription of PRS) and
a plot of this area, A, per co-moving volume V versus conformal time is
produced. The simulations are run on a cubic lattice with L3 sites where
L = 128. They were run until a time � = 128, or until no more walls
remained in the box. The domain wall thickness was again set to w0 = 5,
leaving us with only modest dynamical range in which to follow the network
evolution.

A plot of A=V for these runs is shown in Figure 5. The self-similar
evolution seen in PRS for the p = 0:5 case is well reproduced in the time
range 2w0 < � < L=2. Fitting the scaling portion (10 < � < 64) of the curve
to the power law

A=V / ��� ; (33)

we �nd �� = �0:89 � 0:06. This is to be compared with the value found
in PRS of �� = �0:92 � 0:06 for their three dimensional simulations in a
matter-dominated epoch.

Moving away from the p = 0:5 case, one sees a dramatic departure from
self-similar scaling. In each case there is an exponential cut-o� in the ratio
A=V at some characteristic time. For the cases of p close to 1=2, that is for
0:49 � p < 0:5, we �nd that the curves are well �tted by a function of the
form

A=V / ���e��=��: (34)

However, for the cases where p < 0:49 a simple exponential su�ces

A=V / e��=��: (35)

Values for �� and ��, averaged over 5 runs for each value of p, are given in
Table 1.

For p close to 0:5 the domain wall network appears to enter a quasi-scaling
regime in which A=V scales / ��� , before eventually being exponentially cut-
o� at � = ��. In particular, for the bias p = 0:499 we see that the network
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Figure 5: Evolution of the comoving area, A, of domain walls per volume,
V , with conformal time, �, in three dimensional runs. For each bias, p, we
show the evolution of one realization.

p �� ��

0.5 -0.89 {
0.499 -0.43 38:7y

0.49 { 5.4
0.48 { 2.8
0.47 { 1.8

Table 1: Fits to the plots of A=V against � for di�erent initial bias probabil-
ities, p, in three dimensions using the functional forms (34) and (35) given
in the text. y: for the p = 0:499 case we report the best �t to equation (34),
although the late time decay was found to be somewhat steeper than an
exponential.
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scales exactly as the p = 0:5 case in the epoch 2w0 � � � 30, before the
exponential decay is established. As p ! pc = 0:311, however, �� rapidly
approaches the resolution size of the grid, and no evidence of early scaling is
seen. This behavior continues as p drops below the critical threshold.

To conclude, in the three-dimensional simulations we see persistent scal-
ing behavior precisely at p = 0:5. For p below 0.5 but above p ' 0:49,
we see scaling for a �nite time which is then exponentially cut-o� at some
conformal time ��. The value of ��, which becomes very large as p ! 0:5,
decreases rapidly as p approaches 0.49. For p below this value no scaling
behavior is seen and the behavior is well described by a simple exponential
for all conformal time.

4 Discussion

We conclude that domain walls formed during a biased non-equilibrium phase
transition do not, in general, persist in time. For p 6= 1/2 they scale for a
relatively short time before decaying away exponentially. Only when p = 1=2
exactly does persistent scaling behavior set in. It follows that biased domain
walls evade the \no-go" arguments that apply to walls in thermal equilibrium.
Since domain walls exhibit localized energy density, they will act as the seeds
for the formation of large scale structure. A �rst attempt to analytically
calculate the precise form of this structure, using percolation theory and the
spherical matter collapse model, has been presented in [5]. The lesson learned
there is that domain wall induced structure leaves a distinctive signature
which could well open a cosmological window onto the microscopic structure
of particle physics.
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