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Abstract

The pure electroweak three-loop mechanism for the induced electric and chromo-

electric dipole moments of quarks is studied in the Kobayashi-Maskawa model with

three and four generations. In the standard three generation case, this mechanism is

found to produce a negligible contribution to the electric dipole moment of neutron.

In the presence of the fourth heavy generation, however, pure electroweak corrections

are important and might be several times larger than the corresponding QCD con-

tribution for the masses of heaviest quarks � 500-600 GeV. The resulting electric

dipole moment of neutron naturally arises at the level of 10�29 e � cm. The e�ects of

the fourth generation physics are parametrized at standard electroweak scale by the

presence of the e�ective charged right-handed currents.
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1 Introduction

In this letter, we consider the pure electroweak three loop contribution to the neutron elec-

tric dipole moment in the Kobayashi-Maskawa (KM) model with four generations. Besides

its interesting predictions for B-meson physics [1], the enlarged variant of the KM model

leads to the enhancement of the neutron electric dipole moment (EDM) in comparison with

Standard Model case [2]. This enhancement is linked with the short distance contribution

to the electric and chromoelectric dipole moments (CEDM) of quarks.

The origin of CP-violation in the Kobayashi-Maskawa (KM) model resides in the com-

plexity of the quark mixing matrix. This requires four semi-weak vertices to generate a

avour-diagonal CP-odd amplitude. It was shown that the EDMs and CEDMs of quarks

cannot be generated at the lowest possible two-loop order [3]. Thus, the QCD corrections

are brought in to prevent these quantities from the identical cancellation. The detailed

study of these operators at three loop order (two electroweak plus one gluonic) was done

in SM by Khriplovich [4] and by us for its four generation modi�cation [2].

Here, we replace the hard gluon loop by another one of electroweak in the EDM inducing
graphs. Speci�cally, we concentrate on the large renormalization factor of the axial coupling
of Z-boson with fermion proportional to m2

t in SM and its relevance for the induced EDM
in the presence of an extra heavy generation of quarks [5].

The purpose of this work is to compute EDMs and CEDMs at three loop electroweak
order and then compare our results with corresponding QCD induced values [2, 4].

2 Electroweak corrections to EDM

At �rst glance the problem of this calculation appears to be very complicated. However,

taking into account the explicit mass hierarchy in this problem, we reduce the three-loop
calculation to one-loop integrals. We assume that:

m2
h; m

2
g � m2

t � m2
w � m2

i ; (1)

where we have denoted the heaviest quarks as h and g; i represents the standard set of

"light" avours: u, d, s, c and b. The �rst inequality is assumed in order to single out

parametrically the contributions proportional to m2
h or m

2
g.

The typical representatives of the diagrams to be calculated are depicted in Fig. 1. The

solid line represents the fermions; wavy lines are charged electroweak bosons and the dashed
line are the neutral ones. The position of an external photon or gluon is not indicated here.

In the following calculation, we consider the EDM and CEDM operators of the strange
quark. Then the arrangement of avours along the fermion line is determined in SM

uniquely by [4]:

iIm(V �

tsVtdV
�

cdVcs)s[t(b� d)u�u(b�d)t+u(b�d)c� c(b�d)u+ c(b�d)t� t(b�d)c]s: (2)
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The enlarged KM matrix possesses in general three independent CP-odd invariants, one of

which being distinguished by the dynamical enhancement [2]:

iIm(V �

tsVtbV
�

hbVhs)s[t(b�g)h�h(b�g)t+U(b�g)t�t(b�g)U+h(b�g)U�U(b�g)h]s: (3)

The capital U here denotes the propagation of u and c quarks which we are free to regard

massless and degenerate inside the loops. This degeneracy is the factor which leads to

the identical cancellation of the amplitude (2) in the SM. Therefore (2) is forced to be

proportional to m2
c whereas (3) is determined by heavy mass scale like m2

t [2]. This is

the main source of the EDM enhancement in the KM model with four generations. The

additional source of the enhancement probably lies in the numerical signi�cance of the

CP-odd combination Im(V �

tsVtbV
�

hbVhs) which could naturally reach the level of �5, where �

is the Wolfenstein parameter [1, 2].

We begin from the shortest distances and calculate �rst the e�ective one-loop induced

avour changing neutral currents "electroweak penguin", which is well known from the

kaon physics:

L(1) =
X
i;j;f

ajVijV
�

fj �qi�(1 � 5)qfZ� (4)

To a good accuracy, it is su�cient to take only leading contribution to the coe�cients aj
which are proportional to the square of the heaviest masses:

L(1) =
gw

cos �W

�w

16�
Z�

2
4m

2
h

m2
w

X
i;f

VhiV
�

hf �qf�
(1� 5)

2
qi �

m2
g

m2
w

X
i0;f 0

Vi0gV
�

f 0g�qf 0�
(1� 5)

2
qi0

3
5 ;

(5)
in analogy to the SM expression with dependence on m2

t . The heavy mass dependence here
originates from the longitudinal part of W-boson propagator or from the equivalent graph
with charged non-physical higgs boson [5]. Taking the new e�ective vertex generated by
(5), we reduce the remaining computation to the one presented in Fig. 2.

The second step is to integrate out the neutral boson, which could be done along the

same line. At this point, however, it is useful to treat the three and four generation models
separately.

In the four generation case, the characteristic loop momenta are large, which allow us
again to take only the longitudinal part of the Z-boson propagator. This leads us to obtain

e�ective charged right handed currents in an easy way. Taking into account the avour

structure in (3), we obtain the e�ective lagrangian for the s - t transition:

L(2) ' � gwp
2
VtbV

�

hbVhs(
�w

16�
)2
mtms

m2
w

(m2
h +m2

g)

m2
w

log(
m2

h(g)

m2
t

)�qt�
(1 + 5)

2
qsW

+
� + (h:c:); (6)

where we have omitted all constants in comparison with "large" logarithmic factors. This

logarithmic accuracy is motivated by theoretical considerations. However, in the �nal

numerical result, we set all logarithms to unity. This allows us to avoid the problem of
a true two-loop calculation which is not reducible to two independent integrations. It is

important to remember that the vertices (5) and (6) are indeed e�ective and do not survive
if the incoming momenta are larger than all masses of particles owing inside the loops.

For this reason, the upper limit for logarithmic integral over the loop momentum coincides
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with mh if mh < mg and with mg if mg < mh. The analysis of the precision electroweak

data suggests that h and g quarks must be su�ciently degenerate in masses. From here

to below, we put mg ' mh. It is worth to note also the constructive interference between

the two terms in (6) proportional to m2
g and m2

h, in contrary to the mass dependence of

the electroweak parameter � [5]. The contribution of the fourth generation to � vanishes

at mh = mg.

The situation is quite di�erent in the SM. Due to the presence of right-handed currents

in the s-c or d-c transition, those transition amplitudes are suppressed not only by ms(d)

and mc but also by the factor m2
b=m

2
Z reecting the GIM property of (2). Taking into

account that the result for EDM of s or d quark must be proportional to m2
c , although the

interchange of a gluon loop by an electroweak one replaces �s(q
2 ' m2

b) by �w
m2

t
m2

b

m4
w

, we

deduce that the total e�ect is negligibly small.

The presence of right-handed currents itself does not necessarily imply CP-violation.

The latter arises through the complex phase of VLV
y

R, the product of right- and left-handed

KM matrices,

L =
gw

2
p
2
W+

�

X
f;i

[�qf(VL)fi�(1� 5)qi + �qf(VR)fi�(1 + 5)qi] + (h:c:); (7)

and is known to exist even in two generations. This is exactly what happens at the last
stage of our calculation. EDM and CEDM of s-quark results from the mixing between

second and third generations in the presence of right-handed currents given by (6) depicted
in Fig. 3. The results are:

ds = �
5e

3
Im(V �

tsVtbV
�

hbVhs)(
�w

4�
)2

1

16�2

GFp
2
ms

m2
tm

2
h

4m4
w

log(
m2

h

m2
t

) (8)

~ds = �gsIm(V �

tsVtbV
�

hbVhs)(
�w

4�
)2

1

16�2

GFp
2
ms

m2
tm

2
h

4m4
w

log(
m2

h

m2
t

); (9)

where ds and ~ds are determined as the coe�cients in front of 1
2
�q(F�)5q and

1
2
�qta(Ga�)5q

respectively. Due to the inequality (1), we have taken into account only the longitudinal

part of W-propagator. The use of longitudinal parts of gauge boson propagators throughout
the calculation of EDM in four generation case maximizes the size of CP-violation. This also
means that the obtained result arises entirely from the Higgs sector phenomenon. Then,

the whole calculation could be performed in the t'Hooft-Feynman gauge and therefore only
scalar bosons should be taken into account. Thus, we can rewrite the results given in (9)
and (8) in terms of Yukawa couplings fi = mi=v of heavy quarks:

~ds

gs
=

3ds

5e
= �Im(V �

tsVtbV
�

hbVhs)
1

1024�6

GFp
2
msf

2
t f

2
h log(

f2h
f2t
); (10)

where v = 246GeV is the vacuum expectation value of the scalar �eld.

The extraction of the EDM of neutron resulting from the e�ective interaction (9) de-

pends on our understanding of low-energy hadronic physics. Based on the chiral perturba-

tion estimation proposed in [6], we �nd the EDM of neutron at the level:

dN � eIm(V �

tsVtbV
�

hbVhs)f
2
t f

2
h � 2 � 10

�26 cm (11)
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The comparison of (11) with the corresponding QCD-induced contribution to EDM ob-

tained earlier in Ref.[2] shows, in principle, the same order of magnitude for both results.

In the most optimistic scenario about the values of CP-odd phase invariant, combined with

the masses of heavy quarks around 500GeV, we obtain the neutron EDM to arise at the

level:

dN � 10�29 e � cm: (12)

The main source of the numerical smallness is connected with the tiny numerical coe�cient

in expression (10).

3 Discussions and Conclusions

We would like to point out that there exists another contribution to the EDM of neutron

from the physical Higgs boson loop which should be taken into account as well. One

may undertake that calculation along the same line and obtain the e�ective right-handed

currents as well. This means that the value of EDM depends not only on unknown mg and
mh but also on the mass of real Higgs boson. To our logarithmic accuracy, these corrections
are unimportant if we believe that mHiggs is also very large, somewhere around mh(g).

The last diagram which could contribute to EDM at this order is the "rainbow" graph,
Fig. 4, where all wavy lines are W-bosons. It could be checked, however, that even if this

diagram provides any nonvanishing contribution, it cannot generate an m2
h(g)-dependence

in the result.

Our estimate shows that the electroweak contributions to the EDM of neutron are
comparable with QCD ones in the case of four generations and negligibly small in SM.
The QCD e�ects dominate over pure electroweak contribution at mh(g) � mt, whereas at

mh(g) � 500 � 600GeV the latter dominates. The numerical result (12) then could be
regarded as the maximal value of EDM which can be obtained through the Kobayashi-
Maskawa type of CP-violation in the presence of an additional heavy generation. Despite
the signi�cant enhancement in comparison with SM case, it is too low to be detected even
at the future generation of experiments aiming at the search of EDM. This implies also that
the reliable information and limits on the parameter of the model with four generations

may come only from the analysis of the electroweak precision data and K, B-meson physics

[1]. The latter case requires a further analysis on the role of large electroweak radiative
corrections.

As a concluding remark, we have emphasized the main mechanism for the induced
EDM of neutron in the hypothetical case of two or more additional heavy generations,

(h, g); (h', g');..., with large mixing between them. Then the maximum of CP-violation
at low energies comes from Weinberg operator [7] which is known to exist in KM model

at the lowest possible three-loop order [8]. In the four generation case, this operator is
suppressed by the factor m2

b=m
2
w [2], which disappears at �ve or more generations. At the

same time, there is no severe limits on the mixing between heavy generations from the low
energy phenomenological data and one may expect the corresponding CP-odd invariant,

Im(V �

tg0VtbV
�

hbVhg0) to be large.
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