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ABSTRACT. We apply and compare various Arti�cial Neural Network (ANN) and

other algorithms for automatic morphological classi�cation of galaxies. The ANNs are

presented here mathematically, as non-linear extensions of conventional statistical meth-

ods in Astronomy. The methods are illustrated using di�erent subsets from the ESO-LV

catalogue, for which both machine parameters and human classi�cation are available. The

main methods we explore are: (i) Principal Component Analysis (PCA) which tells how

independent and informative the input parameters are. (ii) Encoder Neural Network which

allows us to �nd both linear (PCA-like) and non-linear combinations of the input, illustrat-

ing an example of unsupervised ANN. (iii) Supervised ANN (using the Backpropagation

or Quasi-Newton algorithms) based on a training set for which the human classi�cation is

known. Here the output for previously unclassi�ed galaxies can be interpreted as either a

continuous (analog) output (e.g. T -type) or a Bayesian a posteriori probability for each

class. Although the ESO-LV parameters are sub-optimal, the success of the ANN in re-

producing the human classi�cation is 2 T -type units, similar to the degree of agreement

between two human experts who classify the same galaxy images on plate material. We also

examine the aspects of ANN con�gurations, reproducibility, scaling of input parameters

and redshift information.

1 INTRODUCTION

The exponential growth of data in extragalactic Astronomy calls for new approaches

to analysis and interpretation. Observations with large ground-based telescopes, auto-

matic measurement machines and satellites have produced large data bases of imaging and
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spectroscopy of galaxies. However, the advance in producing 'Gigabytes of data' has not

been matched by Arti�cial Intelligence techniques of classi�cation and interpretation. In

spite of several attempts (e.g. Murtagh & Heck 1987; Thonnat 1989; Lauberts & Valentijn

1989; Okamura, Kodaira & Watanabe 1984; Spiekermann 1992; Storrie-Lombardi et al.

1992; Doi, Fukugita & Okamura 1993; Abraham et al. 1994; Lahav et al. 1995; Naim et

al. 1995b), morphological classi�cation of galaxies still remains a human-intensive process

dependent on the eyes of a handful of dedicated individuals.

The motivation for classifying galaxies is two-fold:

(i) RC3-like catalogues for millions galaxies are needed for statistical studies (e.g.

correlation functions or density-morphology relation) and as target list of selected type for

observational projects, such as Tully-Fisher measurements.

(ii) Classi�cation is important for quantifying the Astrophysics of galaxies, in analogy

with the H-R diagram for stars. It allows us to incorporate multi-wavelength and dynamical

properties of the galaxies, with the hope that a new 'physical Hubble Sequence' may

emerge.

Automated procedures are the only practical way of classifying the enormous amount

of data produced by machine scans like those obtained in the Cambridge Automated Plate

Measuring (APM) facility and the Sloan Digital Sky Survey (SDSS). The Arti�cial Neu-

ral Network (ANN) method is a novel technique to classify objects which has only little

been explored in Astronomy. In a pilot-study (Storrie-Lombardi et al. 1992; hereafter

SLSS) we have investigated the ANN technique to classify galaxies. Using a Backpropaga-

tion algorithm, we have shown that we could reproduce the ESO-LV classi�cation (into 5

classes) at a success rate of 64 % 'perfect match'. More recently, we have shown (Naim et

al. 1995b; Lahav et al. 1995) that ANNs can replicate the human classi�cation of APM-

selected galaxies to the same degree of agreement as that between two human experts, 1.8

T -type units. This paper provides the theoretical framework and mathematical details of

the methods used in these studies.

Other recent applications of ANNs in astronomy include adaptive optics (e.g. Angel et

al. 1990), star/galaxy separation (e.g. Odewahn et al. 1991), meteors monitoring (Fraser

1992), and classi�cation of stellar spectra (von Hippel et al. 1994). For review of astronom-

ical applications see also Serra-Ricart et al. (1993), Miller (1993) and Storrie-Lombardi &
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Lahav (1994, 1995). Non-astronomical applications somewhat similar to our problem are

speech recognition and identi�cation of hand-written characters. ANNs have several prac-

tical advantages compared with traditional techniques. ANN algorithms make no prior

assumptions about the statistical distribution of test objects, and invoke no heuristics to

de�ne class membership. The algorithms are general-purpose and can be applied to a

variety of problems.

Surprisingly, in spite of the wide application of CCD imaging and the theoretical

interest in the Hubble Sequence, there is no large uniform data set of galaxy images

available. The largest available uniform samples include no more than 200 galaxies (e.g.

Kent 1985, Simien & de Vaucoleurs 1986, Kodaira et al. 1986). The recent APM-selected

sample of Naim et al. (1995a) includes 830 galaxy images. Here we use the ESO-LV

data sets, although they are far from being optimal for our problem. They are based on

plate material, the galaxies were not classi�ed uniformly by one expert (but by Lauberts,

Valentijn and Corwin over a decade) and the machine parameters do not optimally reect

structural parameters like spiral arms which are so apparent to the human eye. However,

this is a large data set (more than 5000 galaxies) which includes both machine parameters

and human classi�cation. The results presented here should be regarded as a lower limit

to what can be done with the ANN approach to classi�cation in the future, e.g. with

uniform large samples of CCD images which are currently measured (e.g. Madore et al. ,

in preparation; White et al. , in preparation).

In this paper we shall also address briey astrophysical implications of our ANN

results. One open question is whether galaxies were formed in a self-similar way, or in a

way which mainly depends on the their total mass or potential well. For example, Simien

& de Vaucoulerus (1986) showed a tight correlation between the disk-to-bulge ratio (a

distance independent property) and the Hubble type, while Meisles & Ostriker (1984)

argued that the absolute luminosity of the spheroidal component (a distance dependent

property) is the major parameter determining the Hubble Sequence. We shall examine

this question using ESO-LV diameters.

The structure of the paper is as follows. As the ANN methods are general and are

currently scattered in the ANN literature (e.g. in journals of Engineering and Biology),

we present them mathematically in Appendices A (Principal Component Analysis and its
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non-linear extensions), B (Backpropagation and Quasi-Newton minimization algorithms)

and C (Bayesian classi�cation, Wiener �ltering and weight decay). The main text of the

paper gives examples of applications of these methods to the ESO-LV galaxies. Following

a general Introduction (x1), x2 presents the ESO-LV parameters. x3 illustrates the use of

Principal Component Analysis, while x4 presents a variety of applications of supervised

non-linear ANNs. Future work is discussed in x5.

2 THE DATA SETS

Here we illustrate the method using ESO-LV galaxies (Lauberts & Valentijn 1989;

hereafter LV89) at high Galactic latitude (jbj > 30o). We shall consider several samples.

There are three aspects in de�ning the samples for training by the ANN : the sample

selection (e.g. by apparent diameter), the galaxy machine parameters used, and the binning

into galaxy classes.

The �rst sample, composed of 13 galaxy parameters, hereafter called P13, is the same

as we used in SLSS, i.e. of galaxies with visual diameters larger than 1 arcmin (the claimed

completeness of the ESO-LV catalogue). Only galaxies with morphological classi�cation

performed by visual examination of the galaxy image were considered in our analysis. We

use the 13 catalogue parameters shown in Table 1 of SLSS to describe each galaxy. Briey

they are : (1) the average blue minus red colour, (2) the exponent in the generalized de

Vacouleurs law in the blue, (3) log of the ratio of diameters which include 80 % and 50 %

of the blue light, (4) an indicator of the degree of asymmetry of the galaxy image, (5) the

central blue surface brightness, (6) log of the ratio of minor to major diameters, (7) error in

ellipse �t to blue isophotes, (8) gradient of the blue surface brightness pro�le at half-light

radius, (9) log of the ratio of the blue 26 mag/arsec2 diameter and the half-light diameter,

(10) the exponent in the generalized de Vacouleurs law in the red, (11) average blue

surface brightness within 10 arcsec diameter circular aperture, (12) blue surface brightness

at half-light radius, (13) red surface brightness at half-light radius. These 13 parameters

were chosen because they are almost distance-independent, and they are very similar to

those used by LV89 to perform the automated classi�cation presented in the ESO-LV

catalogue. This allows us to compare meaningfully the success rate of the classi�cations

provided by our ANN with ESO-LV. After selecting only galaxies with all 13 parameters

4



available, our �nal data set has 5217 galaxies. We then randomly divided these galaxies

in two independent sets of 1700 and 3517 objects for training and testing. We have also

normalized our input data between 0 and 1 by using the minimum and maximum values

of each parameter (and also have tried normalizing by the variance). We have grouped the

ESO-LV catalogue sub-classes in three ways: (i) by keeping the original range of classes

�5:0 � T � 10:0 where T is the coded type; (ii) by binning into 5 major classes (as

in SLSS): E ( �5:0 � T < �2:5; 466 galaxies); S0 (�2:5 � T < 0:5; 851 galaxies);

Sa+Sb (0:5 � T < 4:5; 2403 galaxies); Sc+Sd ( 4:5 � T < 8:5; 1132 galaxies); and Irr

(8:5 � T � 10:0; 365 galaxies), and by splitting into two classes : early type, (E+S0,

T < 0:5, 1317 galaxies ) and late type (T � 0:5, 3900 galaxies).

The second sample, hereafter called D7, is also extracted from ESO-LV. It includes

galaxies larger than 2 arcmin (as de�ned by the old ESO sample) which also have redshift

information, and information of 7 diameters. De, D70, D80 and D90 are the major diam-

eters of ellipse at 50 %, 70 %, 80 % and 90 % total B light, while D25, D26 and D27 are

the major diameters of ellipse at B surface brightness of of 25, 26 and 27 mag=arcsec2.

We then converted them into metric diameters using their redshift. This sample includes

791 galaxies, which were mainly classi�ed by one expert, H. Corwin.

3 HOW INFORMATIVE ARE THE INPUT PARAMETERS ?

A key question when providing an ANN with an input is how many input parameters

to present, and how to compress them in an e�cient and informative way. There is of

course a trade-o� between keeping the number of parameters small and the amount of

information presented.

3.1 Standard PCA

Principal Component Analysis (PCA) is a widely used method which allows to judge

how many independent parameters are needed, by looking at directions along which the

variance is maximal. The formulation of PCA is given in Appendix A.1. It is worth em-

phasizing that PCA is only meaningful for linear parameters (or `the nearest to linear',

e.g. by taking log of the original variables), and may su�er from scaling problems. Never-

theless, it is a useful tool for reducing the dimensionality of the input parameter space. In
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the context of this paper it can be viewed as a data compression techinque for the input

to the ANN, as well as an `unsupervised method' for exploring the parameter space.

We begin by applying the method to the log of the 7 metric diameters given in the D7

sample (of 791 galaxies), each scaled to have zero-mean. We do not normalize here by the

variance of each variable, as they all have the same metric, and we wish to represent their

relative values. Not too surprisingly, the correlation matrix indicates strong correlation

between the log-diameters. Table 1 gives the eigen-values and the eigen-vectors for the

log-diameters. 95 % of the variance is in the �rst principal component (which is found

to be approximately the average of the 7 log-diameters). However, as we show in x4.4 ,

using the ANN, it is not su�cient to use just the �rst principal component to represent

the 7-dimensional data space for classi�cation.

We then applied PCA to the 13 distance-independent parameters of the P13 sample

of 5217 galaxies, with the parameters normalized to have zero-mean and unit-variance,

as here the parameters are made of `apples and oranges'. Indeed, one should be more

cautious about applying PCA to a set of parameters which are of di�erent character, and

may well be non-linear. However, the results give some insight into the amount of useful

information in this parameter space. Tables 2a and 2b give the 13 eigen-values and the

eigen-vectors corresponding to the largest 3 eigen-vectors. We �nd that the �rst 7 linear

combinations give 90 % of the variance.

The projection of the 13 parameters on the �rst and second Principal Components is

shown in Figures 1a,b. Although the distribution of all galaxies looks like a fuzzy cloud,

the di�erent morphological types actually occupy distinct regions in this new parameter

space. We see that even E and S0 galaxies can actually be separated. This plot illustrates

how PCA could compress a 13-dimensional parameter space into a 2-dimensional space.

Although the physical meaning of the new space is not easy to interpret, it allows to

segregate di�erent classes of objects.

3.2 Encoder and Neural PCA

Generally, a multi-layer ANN consists of nodes (analogous to human neurons) arranged

in a series of layers. The nodes in a given layer are fully connected to the nodes in the

next layer. The free parameters of the ANN are the weights wij which are determined by

least-squares of the di�erence between the input and the desired output, the so-called `cost
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function':

E =
1

2
h
X
k

(ok � dk)
2i; (1)

where the sum is over the components of the vector (k = 1;M) and the average is over

the galaxies. Layers between the input and the output layers are called `hidden layers'

and allow non-linear mapping. The least-squares minimization can be done by a variety

of e�cient algorithms, e.g. Backpropagation and Quasi-Newton, which are described in

detail in Appendix B.

We begin by demonstrating an encoder network in which the desired output is the

input itself, as explained in detail in Appendix A.2. Figure 2 shows anM :M 0 :M network

con�guration, where M 0 is the number of `neck' units (in the 'hidden layer'), or number

of linear combinations in the PCA language. While a linear network in this con�guration

simply reproduces a standard PCA, a non-linear transfer function can allow `non-linear

PCA'.

We now apply a non-linear encoder network, with a sigmoid threshold function. In

Figure 3 we plot the cost function (calculated over the 5217 ESO-LV galaxies) vs. the

number of hidden units M 0. Clearly when the input 13 parameters are uncorrelated, we

shall need 13 hidden units to fully recover the 13 parameters at the output layer. If, on

the other hand, the 13 parameters are identical, then one hidden unit will be su�cient.

The �gure shows that the cost function drops exponentially as a function of the number

of hidden units. This behaviour may serve for guidance in selecting the number of hidden

units for the classi�cation network (see below). Serra-Ricart et al. (1993) have developed

this unsupervised approach further, illustrating for our P13 data set that a non-linear

encoder can identify classes in this data set much better than a standard PCA. Other

algorithms for neural PCA such as Oja's rule are discussed in Appendix A.3 .

4 SUPERVISED CLASSIFICATION OF GALAXIES WITH ANNs

We now apply 'standard' supervised ANN for classifying the ESO-LV galaxies. In the

'training' process, the input vectors, containing the galaxy parameters, are presented to the

network. The weights ('free parameters') wij are computed by least-squares minimization

with the Backpropagation or Quasi-Newton algorithms (explained in detail in Appendix

B). The ANN is then ready to handle new unclassi�ed data for which only the machine
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parameters are available. We shall present 3 di�erent net con�gurations: (i) a single

output (`analog') network, (ii) a two-class classi�er, and (iii) a 5 -class classi�er. We wish

to emphasize that supervised ANNs do not produce an `objective' unique classi�cation.

Supervised networks replicate the choices of their trainer - a network trained according to

the classi�cation made by Hubble or de Vaucouleurs will classify new data in a manner

similar to the original expert.

4.1 Single Continuous Output

Although the galaxy morphology is probably a continuous sequence (Hubble 1936),

human experts provide us with a 'true answer' usually given in quantized units, to a �rst

decimal point, e.g. T = 5:3. It is to our bene�t that the single output con�guration of the

network can approximate a one-dimensional continuous sequence.

It is common in Astronomy to �t a model with several free parameters to the obser-

vations. This regression is usually done by means of �2 minimization. A simple example

of a model is a polynomial with the coe�cients as the free parameters. Consider now the

speci�c problem of morphological classi�cation of galaxies. If the type is T (e.g. on the

numerical system [�5; 10]), and we have a set of parameters x (e.g. isophotal diameters

and colours) then we would like to �nd the free parameters w (`weights') such that the

cost function

E =
1

2

X
i

[Ti � f(w;xi)]
2; (2)

is minimized. The function f(w;x) is the `network'. Commonly f is written in terms of

the variable

z =
X
k

wkxk; (3)

where the sum here is over the input parameters to each node. A `linear network' has

f(z) = z, while a non-linear threshold function could be a sigmoid f(z) = 1=[1 + exp(�z)]
or f(z) = tanh(z). Another element of non-linearity is provided by the the `hidden-

layers'. The `hidden-layers' allow curved boundaries around clouds of data points in the

parameter space. A typical con�guration with one `hidden-layer' and a single output is

shown in Figure 4. While in most computational problems we only have 10-1000 nodes,

in the brain there are � 1010 neurons, each with � 104 connections. We do not regard
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of course our simple ANN algorithm as a model for the human brain, but rather as a

non-linear statistical method.

The determination of many free parameters, the weights wi's in our case, might be

unstable. It is therefore convenient to regularise the weights, e.g. by preventing them from

growing too much. In the ANN literature this is called `weight decay'. This approach is

analogous to Maximum Entropy, and can be justi�ed by Bayesian arguments, with the

regularising function acting as the prior in the weight space. One possibility is to add a

quadratic prior to the cost function and to minimize

Etot = �Ew + �ED; (4)

where ED is our usual cost function, based on the data (e.g. eq. 2) and

Ew =
1

2

QX
i=1

w2

i (5)

is the chosen regularising function, where Q is the total number of weights. The coe�cients

� and � can be viewed as `Lagrange multipliers'. While sometime they are speci�ed ad-hoc,

it is possible to evaluate them `objectively' by Bayesian arguments in the weight-space.

We discuss this procedure in detail in Appendix C.3 .

To illustrate the above ideas, we built a network with con�guration 13:3:1, resulting

in 46 free weights (including the `bias' node, which represents an additive constant). In the

training process the network was presented with 13 parameters (from sample P13) for each

galaxy, using a subset of 1700 galaxies. Both the input parameters and the `true' answer

T -type (in the range �5 � T � 10) were scaled to the range [0; 1], so all the weights

were treated on equal footing in the regularisation process. The transfer function used

was a sigmoid. By the procedure outlined in Appendix C.3 we found the weight decay

regularization coe�cient to be �
�
= 0:001. We then applied least-square minimization

using a Quasi-Newton method (as implemented in a code kindly provided to us by B.D.

Ripley).

As in other optimization problems, it is crucial to decide when to stop the minimiza-

tion. One approach is to stop when the cost function drops below a certain value, or

changes little between successive iterations. However, in particular when the sample size is

small (relative to the number of weights) this may result in `over-�tting' (`memorising') of
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the data (including the noise). Usually, the cost function with respect to the training set

shows monotonic decline, and it is di�cult to de�ne a minimum for stopping. Instead, we

calculate at each iteration the cost function for the testing set (with the weights derived of

course from the training set). In this way we monitor the ability of the ANN to `generalize'

its choice of weights to data it was not trained on. Usually the cost function with respect

to the testing set decreases to a minimum and then increases, so it is easy to decide where

to stop according to this minimum.

Once the training phase was completed, we presented the network with a testing set (of

1700 galaxies), but for which a human classi�cation is known. On a Sun Sparc workstation

the training of the network on 1700 galaxies takes about 1 min (CPU), while testing on a

sample of similar size takes only 1 sec (CPU).

Figure 5 shows the network type Tnet versus the ESO-LV human classi�cation Teso.

The Spearman rank-order correlation coe�cient is rs = 0:83. As another way of quan-

tifying the network performance we calculate the variance between the network and the

ESO-LV type over the number of galaxies Ngal :

�2 =
1

Ngal

X
(Tnet � Teso)

2 (6)

and we �nd � � 2:0 T -units. By a similar statistics we can compare the run of similar

network con�guration which start the minimization with di�erent random weights. Figure

6 shows the results of the two runs. The scatter between two runs is much smaller than

that in Figure 5. Here the Spearman coe�cient is rs = 0:98 and typical `reproducibility'

scatter is � � 0:6 T -units. In Figure 6 we note a `break' in the transition from early type

(T < 0) to late type (T > 0). It may be that the non-linearity of the network was not

su�cient to �t both classes by the same weights (i.e. in each minimization the net �nds a

di�erent compromise of weights to satisfy both early and late type galaxies), or that the

quality of parameters for early and late types is di�erent.

In the study of the blue APM images (Naim et al. 1995b, Lahav et al. 1995) we

have shown that ANNs can replicate the classi�cation by a human expert to the same

degree of agreement as that between two human experts, to within 1.8 T -units (based on

a comparative study where the same images were classi�ed by 6 experts independently).

The ESO-LV data give a slightly weaker result, 2 T -units, probably due to the parameters
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being less informative, although they include blue minus red colour as a parameter, which

is lacking in the APM sample.

4.2 Two-Class (E, S) Classi�er

In a network with multiple outputs, the output vector can be interpreted in a proba-

bilistic way. The j� th component of this vector can be viewed as the probability for class

j given the input parameters, P (Cjjx). In fact, it can be proved theoretically (Appendix

C.1) that the output of an ideal ANN is indeed a Bayesian a posteriori probability. More-

over, as our experiments con�rm, the sum of the output vector components is
P

k ok � 1, as

expected for a probabilistic classi�er. It is worth noting that, unlike discrete classi�cation

of hand-written characters, galaxies form a continuous sequence. Hence the combination

of probabilities assigned to di�erent `eigen-classes' may reect an intermediate class. The

`most likely class' can be de�ned as the class associated with the largest output component.

Here we do not include weight decay, as when included the interpretation of the output is

not anymore strictly Bayesian (see Appendix C.1).

To classify into early type (�5 � T � 0:5) and late type ( 0:5 < T � 10) galaxies

we have used a Backpropagation algorithm (Appendix B) and a network con�guration

of 13:10:2 with a tanh threshold function, a learning coe�cient � = 0:01, a momentum

coe�cient � = 0:9 (see Eq. B6). The network was trained on 1700 ESO-LV galaxies, and

was tested on the remaining 3517 galaxies. Of the 898 galaxies classi�ed as early type by

ESO-LV, 681 were classi�ed as such by the network, while 217 were classi�ed as late type.

Of the 2619 galaxies classi�ed as late type by ESO-LV, 2471 were classi�ed as such by the

network, while 148 were classi�ed as early type type. This means a success rate of 90%.

Breaking down the early class into ellipticals and lenticulars (SOs) demonstrates that

the vast majority of the variance is in the classi�cation of S0s. Of the 311 galaxies classi�ed

as ellipticals (�5 � T < �2:5) by ESO-LV the ANN agreed on 94% of them and disagreed

for only 6%. On the other hand, of the 587 galaxies classi�ed as S0 (�2:5 � T < 0:5)

by ESO-LV, the ANN agreed only for 66% and disagreed for 34%. This is yet another

indication that the S0s form a `transition class' along the Hubble sequence.

4.3 Five-Class Classi�er

This is essentially the network we presented in SLSS. The input layer consists of the

13 parameters and the output layer consists of the 5 classes described in section 2. The
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con�guration used was (13;13,5) with sigmoid as our nonlinear transfer function. The

learning and momentum coe�cients were kept constant at � = 0:5 and � = 0:2, for all

layers.

During training (using 1700 ESO-LV galaxies of the P13 sample), the ANN compared

the output of these �ve nodes to the visual classi�cation decisions of LV89. We then

tested the ANN against the remaining 3517 galaxies of the P13 sample. Morphological

classi�cation was performed by assigning the galaxy to the class corresponding to the

maximal output component. Further experiments we carried out with a variety of network

con�gurations showed little e�ects of the number of hidden units and layers, the epoch, the

size of training set, the number of iterations, and the learning and momentum coe�cients.

Our main result, shown in table 2 of SLSS still stands. The percentage of galaxies

correctly classi�ed was 64 % (and 96 % to within nearest class; If either the �rst or the

second highest outputs are considered in the comparison with the visual classi�cation, the

success rate is 90 %). On the other hand, a simple Bayesian classi�er we constructed

(assuming Gaussian multi-variate function, see Appendix C.1, eqs. C1 and C2) only gave

56 %. This is the same success rate reported by LV89 by their linear classi�er. This clearly

shows that non-linear ANNs can be superior to linear classi�ers, and that the classi�er itself

is of great importance, not only the parameters.

4.4 PCA data compression as input to ANNs

In this section we address the question how many Principal Components are needed to

recover the same classi�cation achieved with ANN using the full input data. To illustrate

this point we use the D7 sample of 791 ESO-LV galaxies, where the input parameters

are the log of 7 metric diameters. The network architecture is 7:3:1, with both input and

output scaled to [0; 1], and using the Quasi-Newton algorithm, with weight decay coe�cient

�
�
= 0:001. Training was done on 600 galaxies, and testing on the remaining 191 galaxies.

The resulting rms scatter (eq. 6) evaluated over several runs is � = 2:2. Using as input

only the �rst Principal Component, which was derived in section 3.1 and accounts for 95%

of the variance, we �nd a much larger scatter, � = 3:6. Only when the �rst 3 PC's are

used, does one recover the scatter achieved by using all 7 diameters. This shows that the

fractional variance on its own is not su�cient to tell us how many PC's are needed for

classi�cation.
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The failure of the �rst Principal Component to recover on its own the classi�cation

might be due to non-linearity in the data, the e�ect of noise on the deduction of Principal

Components, or the fact that classi�cation requires more information than that given just

by the maximal variance (i.e. the second moment of the distribution function). We note

that commonly the fractional variance of the eigen-values is used as the sole criterion

in compressing the data prior to applying a classi�cation procedure (e.g. in deriving

the 'concentration parameter', of Okamura et al. 1984). However, this criterion may

underestimate the importance of the minor Principal Components. It may well be that

classi�cation can be improved by using more principal components. Furthermore, our

experience shows that in some cases minor Principal Components are more important

than major Principal Components.

4.5 Scaled parameters vs. absolute parameters

So far, in this paper as well as in our previous studies (SLSS, Naim et al. 1995b, Lahav

et al. 1995), we have not used the distance (as estimated from the redshift) to the galaxies.

Our input parameters were always scaled, such that they were distance independent. In

a sense, we have assumed that what matters in classi�cation are the relative properties

of the galaxies. e.g., that two ellipticals with high and low absolute luminosities will be

classi�ed as the same type if one is a scaled down (or up) version of the other.

The astrophysical question whether galaxies were formed in a self-similar way, or

in a way which mainly depends on the their total mass or potential well is still open.

For example, Simien & de Vaucouleurs (1986) showed a tight correlation between the

disk-to-bulge ratio (a distance independent property) and the Hubble type, while Meisels

& Ostriker (1984) argued that the absolute luminosity of the spheroidal component (a

distance dependent property) is the major parameter determining the Hubble Sequence.

To test this question we have used the D7 data as described in x4.4 and fed the ANN

with the log of ratio of 6 diameters to the half-light diameter. The resulting scatter was

larger, � = 2:4, compared with scatter of 2.2 when all 7 metric diameters were presented.

Our tentative conclusion is that absolute parameters are not much more informative than

the scaled properties. However, the quality of the data and the parameters used (diameters)

are not su�cient to prove the theoretical prejudice some may have that only scaled (self-

similar) properties control the fate of a galaxy along the Hubble Sequence.
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5 DISCUSSION

In this paper we have attempted to de-mystify ANNs by showing how they generalize

other statistical methods commonly used in Astronomy and other �elds. The methods were

illustrated using the ESO-LV galaxy data, showing that ANNs can replicate successfully

human classi�cation. These results for ESO-LV are in accord with our results for the

APM sample of 830 galaxy images (Lahav et al. 1995, Naim et al. 1995b): an ANN

can replicate the classi�cation by a human expert to within 2 T -type units, similar to the

scatter between two human experts.

ANNs are sometime considered as being esoteric methods. Questions commonly asked

by `Neuro-sceptics' are: (i) Could we understand what the ANNs are doing, or are they

just `black boxes'? (ii) If one has already selected `good parameters', does it matter what

classi�er is to be used ? We have shown that the ANNs approach should be viewed as a

general statistical framework. Some special cases of ANNs are statistics we are all familiar

with. However, the ANNs can do better, by allowing non-linearity. There is of course

freedom in choosing what kind of `non-linearity' to apply, but sensible choices show that

signi�cant improvement can be achieved over the linear approaches. For cosmologists,

there is an analogy here with N-body simulations of gravitational systems. Linear theory

is reasonably well understood, but is not su�cient to describe complicated dynamics.

One needs to use then numerical simulations, producing results which are not always

understood by intuition or by analytic methods. However, one can verify what is happening

by considering simple cases (e.g. the spherical infall model) to gain con�dence in what the

simulations give. Our approach to the ANNs is similar.

This paper does not cover of course all possible approaches to classi�cation. For

example, as described in Appendix C.2, one can use just a linear network (in which the

weights e�ectively act like a Wiener �lter), but modify the input parameters to be non-

linear (in a somewhat ad-hoc way). In some case such networks can do as well as the

non-linear ANNs. Another important issue, not discussed here, is how to handle noisy

data.

An even more challenging task is to devise `unsupervised' algorithms, where there is

no external `teacher', and the data speak for themselves. Such methods could be either

`cooperative' (e.g. PCA, non-linear encoder, or the Kohonen 1989 self-organizing map) or

14



`competitive' (e.g. cluster analysis). For preliminary applications of unsupervised methods

to galaxy classi�cation see Naim (1995). These unsupervised algorithms may well explore

new features in the data set which were previously ignored by the human experts.

On the more astrophysical side, the goals are to incorporate dynamical properties of

galaxies (e.g. circular velocities) and multi-wavelength data (from radio to the UV). The

hope is that these methods will help de�ning a new physical space of galaxies, in analogy

with the H-R diagram for stars.
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APPENDIX A: PRINCIPAL COMPONENT ANALYSIS (PCA) AND

ANN

A.1 Standard PCA

A pattern can be thought of as being characterized by a point in an M-dimensional

parameter space. One may wish a more compact data description, where each pattern

is described by M 0 quantities, with M 0 � M . This can be accomplished by Principal

Component Analysis (PCA), a well known statistical tool, commonly used in Astronomy

(e.g. Murtagh & Heck 1987 and references therein). The PCA method is also known

in the literature as Karhunen-Lo�eve or Hotelling transform, and is closely related to the

technique of Singular Value Decomposition. By identifying the linear combination of input

parameters with maximum variance, PCA �nds M 0 variables (`Principal Components')

that can be most e�ectively used to characterize the inputs.

The �rst Principal Component is taken to be along the direction in theM-dimensional

input parameter space with the maximum variance. More generally, the k-th component is

taken along the maximum variance direction in the subspace perpendicular to the subspace

spanned by the �rst (k� 1) Principal Components. It is convenient to apply PCA to data

already standardized, e.g. transformed to zero-mean and unit-variance. However, while

this scaling is appropriate for data composed of `apples and oranges' as in the present

paper for the 13 ESO-LV parameters, in other problems such as the 7 ESO-LV diameters

and spectral analysis of quasars and galaxies (cf. Francis et al. 1992, Lahav 1995) it is

more sensible not to divide by the variance of each channel (over an ensemble of objects),

in order to keep the relative strength of the lines.

The formulation of standard PCA is as follows. Consider a set of N objects (i = 1;N),

each with M parameters(j = 1;M). If rij are the original measurements, we construct

normalized properties as follows:

xij =
rij � �rj

sj
; (A1)

where �rj =
1

N

PN
i=1

rij is the mean, and s2j =
1

N

PN
i=1

(rij � �rj )
2 is the variance. We then

construct a correlation matrix

Cjk =
1

N

NX
i=1

xijxik (A2)
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It can be shown that the axis along which the variance is maximal is the eigen-vector u1

of the matrix equation

Cu1 = �1u1; (A3)

where the �1 is the largest eigen-value, which is in fact the variance along the new axis.

The other principal axes and eigen-vectors obey similar equation. It is convenient to sort

them in decreasing order, and to quantify the fractional variance by ��=
P

� ��. It is also

convenient to re-normalize each component by
p
��, to give unit-variance along the new

axis. We note that the weakness of PCA is that it assumes linearity and also depends on

the way the variables are scaled. In contrast, ANNs generally allow non-linearity.

A.2 Principal Components from Encoder

PCA is in fact an example of `unsupervised learning', in which an algorithm or a

`linear network' discovers for itself features and patterns (see e.g. Hertz et al. 1991 for

review). A simple net con�gurationM :M 0 :M (see Fig. 2) with linear transfer functions

allows �nding M 0 linear combinations of the original M parameters. The idea is to force

the output layer to reproduce the input layer, by least-squares minimization (e.g. using

the Backpropagation algorithm, see Appendix B). If the number of `neck units'M 0 equals

M then the output will exactly reproduce the input. However, if M 0 < M , the net

will �nd, after minimization, the optimal linear combination. By changing the threshold

function from linear to non-linear (e.g. a sigmoid) one can allow `non-linear PCA'. Some

authors (e.g. Geva & Sitte 1992; Serra-Ricat et al. 1993) advocate a con�guration of

M : 2M + 1 : M 0 : 2M + 1 : M to get optimal reconstruction of non-linear shapes, e.g. a

circle.

A.3 Neural PCA: Oja's Neural Network

One interesting aspect of ANN theory is that a very simple arti�cial neuron can

be trained to extract the �rst Principal Component of the input parameters (Oja 1982).

Consider an arti�cial neuron which receives a set of n scalar-valued inputs x1; :::; xn through

n connections with coupling strengths (weights) w1; :::; wn and produces an output Y :

Y =

nX
i=1

wixi: (A4)
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During the training of this neuron, the weights wi can be changed after the presentation

of a pattern according to the Hebbian rule (Hebb 1949),

�wi = �Y xi (A5)

where � controls the rate of learning. Oja (1982) generalized this rule by incorporating a

normalization

wi(t+ 1) =
wi(t) + �Y xi

fPn
j=1

[wj(t) + �Y xj ]2g 1

2

; (A6)

where � is the `learning coe�cient'. Expanding this expression as a power series in � and

retaining only the �rst order term yields the learning equation known as Oja's rule:

wi(t + 1) = wi(t) + �Y (t)[xi � Y (t)wi(t)] (A7)

Oja's rule, after training, chooses the direction of the weights vectorw to lie in the maximal

eigenvector direction of the correlation matrix hxxTi (assuming zero-mean data, and using

here matrix multiplication notation; xT being the transposed vector ). Moreover, this turns

out to be also the direction which maximizes the variance of the output hY 2i = wThxxTiw
(see e.g. Hertz et al. 1991). Oja (1982) also showed that, after training, the normalizationPn

i=1
w2

i tends to be bounded and close to one. Other rules to extract the �rst and higher

Principal Components have been proposed e.g. by Sanger (1989) and Oja (1992). While

these learning rules give insight to the link between PCA and ANN, it is easier in practice

to extract the Principal Components by the standard method (Appendix A.1) or by a

linear encoder (Appendix A.2).

APPENDIX B: MINIMIZATION ALGORITHMS

B.1 The Backpropagation method

The Backpropagation algorithm has been re-invented several times (e.g. Werbos 1974;

Parker 1985; Rumelhart, Hinton & Williams 1986) and is one of the most popular ANN

algorithms. A typical con�guration is shown in Fig. 4. For a given network architecture the

�rst step is the `training' of the ANN. In this step the weights wij 's (the `free parameters')

are determined by minimizing `least-squares'. The novel aspect of Backpropagation is the

way this minimization is done, using the chain rule (gradient descent).
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Each node (except the input nodes) receives the output of all nodes in the previous

layer and produces its own output, which then feeds the nodes in the next layer. A node

at layer s calculates a linear combination over the input x
(s�1)

i from the previous layer

s� 1 according to

I
(s)
j =

nX
i=0

w
(s)
ij x

(s�1)

i (B1)

where the wij's are the weights associated with that node. Commonly one takes x0 = 1,

with w0j playing the role of a `bias' or DC level. The node then �res a signal

x
(s)
j = f(z); (B2)

where z here stands for I
(s)
j , and f is a non-linear transfer function usually of the sigmoid

form

f(z) = 1=[1 + exp(�z)] (B3)

in the interval [0,1], or

f(z) = tanh(z) (B4)

in the interval [-1,1].

For each object (pattern) in the training set, the network compares its output vector

in the `classi�cation space' o to the desired vector d determined by the `true answer' (e.g.

as given by a human expert). For example, the elements of the vector d can be de�ned

as zeros except for one element set to 1 corresponding to an actual class, e.g. we de�ne

d = (1; 0; 0; 0; 0) for Elliptical galaxies.

The comparison is done in terms of a cost function, usually of the form

E =
1

2

X
k

(ok � dk)
2 ; (B5)

where the sum is over the components of the vectors. This cost function, averaged over all

the training galaxies presented to the ANN is minimized with respect to free parameters,

the weights wij. The weights are updated by gradient descent backwards (hence the name

Backpropagation) from the output layer to one or more hidden layers, by a small change

in each time step,

�wij(t + 1) = �� @E

@wij
+ ��wij(t); (B6)
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where the `learning coe�cient' � and the `momentum' � are `knobs' which control the rate

of learning and the inertia from the previous iteration respectively (see e.g. Hertz et al.

1991).

The elegance of the Backpropagation algorithm is in the way the derivative is evalu-

ated. Let us consider the case of a sigmoid output

o
(s)
j = x

(s)
j = f(I

(s)
j ) (B7)

where

f(z) =
1

1 + e�z
: (B8)

In this case note that f 0 = f(1 � f) and the derivative can be written as:

@E

@wij
= o

(s�1)

i o
(s)
j (1 � o

(s)
j )�j ; (B9)

where

�j = (oj � dj) (B10)

for nodes in the output layer, and

�j =
X
k

wjkok(1� ok)�k (B11)

for nodes in hidden layers (the sum is over k nodes in the layer above node j).

The `hidden layers' allow curved boundaries around clouds of data points in the pa-

rameter space in a non-parametric way. The interpretation of the output depends on the

network con�guration. For example, a single output node provides a continuous output

(e.g. predicting the T -type as in x4.1 or the luminosity of a galaxy), while several output

nodes can be used to assign probabilities to di�erent classes (e.g. 5 morphological types

of galaxies), as explained in Appendix C.

B.2 The Quasi-Newton method

There are methods, other than Backpropagation, for minimizing the non-linear func-

tion eq. (B5). A more e�cient method is Quasi-Newton. In short, the cost function E(w)

in terms of the weights vector w is expanded about a current value w0 :
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E(w) = E(w0) + (w �w0) rE(w0) +
1

2
(w �w0) �H � (w �w0) + :::; (B12)

where H is the Hessain with elements Hij = @2E
@wi@wj

evaluated at w0. The minimum

approximately occurs at

rE(w) � rE(w0) +H � (w �w0) = 0: (B13)

Hence an estimation for the optimal weights vector is at

w = w0 �H�1rE(w0): (B14)

In the standard Newton's method a previous estimate of w is used as the new w0. Calcu-

lating the Hessian exactly is expensive computationally, and in the quasi-Newton method

an iterative approximation is used for the inverse of the Hessian (e.g. Press et al. 1992;

Hertz et al. 1991).

APPENDIX C: RELATIONS BETWEEN ANNs AND OTHER CLASSI-

FIERS

C.1 Bayesian Classi�cation and probabilities

A classi�er can be formulated from �rst principles according to Bayes theorem:

P (Tj jx) =
P (xjTj ) P (Tj)P
k P (xjTk) P (Tk)

(C1)

i.e. the a posteriori probability for a class Tj given the parameters vector x is proportional

to the probability for data given a class (as can be deduced from a training set) times

the prior probability for a class (as can be evaluated from the frequency of classes in the

training set). However, applying eq. (C1) requires parameterization of the probabilities

involved. It is common, although not always adequate, to use multivariate Gaussian:

P (xjTj) = (2�)�M=2 jCjj�1=2 exp[�1

2
x C�1

j xT ]; (C2)

where x is of dimension M and here has zero-mean, xT is its transposed vector, and

Cj = hx xT ij is the covariance matrix per class j. This matrix is similar to the one used in
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the PCA (Appendix A.1) for all the classes. As in PCA, the matrix Cj can be diagonalized,

hence simplifying eq. (C2).

It can be shown that certain ANN con�gurations behave like Bayesian classi�ers,

i.e. the output nodes produce Bayesian a posteriori probabilities (see e.g. Gish 1990;

Richard & Lippmann 1991), although it does not implement Bayes theorem directly. To

illustrate this important property of the networks we follow Gish (1990) for a simple

heuristic example. Let the network's single output be written as f(x;w) where x stands

for the input parameters and w stands for the weights (more generally these quantities are

vectors). We consider a two class problem for which the desired output of the network is

1 if x is in class T1 and 0 if it is in class T2. The cost function over all objects N is then

(cf. eq. B5)

E =
1

N
f
X
x2T1

[f(x;w) � 1]2 +
X
x2T2

[f(x;w) � 0]2 g: (C3)

For large N and if the number of samples from each of the classes is in proportion to the

a priori probability of class membership P (Tj) this can be replaced by an integral

E =

Z
[f(x;w) � P (T1jx)]2P (x)dx + P (T1) �

Z
P 2(T1jx)P (x)dx: (C4)

The minimum of this function with respect to w clearly occurs for

f(x;w) = P (T1jx); (C5)

so the output of the network can be interpreted as the a posteriori probability. This can

be generalised for multiple output. It is reassuring (and should be used as a diagnostic)

that the probabilities in an `ideal' network add up approximately to unity. Moreover, if

both the training and testing sets are drawn from the same parent distribution, then the

frequency distribution P (Tj ) for the objects as classi�ed by the ANN is similar to that of

the training set. The link between minimum variance and probability also illustrates why a

classi�cation scheme where one calculates the Euclidean distance of the ANN output from

the vector representing each of the possible classes and then assigns the object to the class

producing the minimum distance is equivalent to assigning a class according to the highest

probability (cf. Richard & Lippmann 1991). For a sigmoid output (eq. B3) it can be

shown (Gish 1990) that the argument of the sigmoid, z(x;w) = ln[f(x;w)=(f(x;w) � 1)],
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with f(x;w) = P (T1jx) (eq. C4) and P (T2jx) = 1� P (T1jx) gives

z(x;w) = ln
P (T1jx)
P (T2jx)

; (C6)

i.e. the argument of the sigmoid is modelling the log-likelihood ratio of the two classes.

With the transfer function tanh(z) = 2=[1+exp(�2z)]�1 the interpretation is similar. We

note that the above analysis (eq. C4) does not tell anything about the network architecture,

and it only holds for `idealized' network and data. For more rigorous and general Bayesian

approaches for modelling ANNs see MacKay (1992).

C.2 Linear Networks and Wiener Filtering

The weights, the free parameters of the ANN, can have a simple interpretation when

the network is linear [f(z) = z] without hidden layers, commonly called the `perceptron'.

For simplicity of notation we consider a network with a single continuous output, e.g.

yielding the type T . In this case we can write the cost function as :

E =
1

2

1

N

NX
�=1

[T� �
MX
k=0

wkx
�
k ]

2; (C7)

where � = 1; :::N labels the objects, and k = 0; :::M the parameters. The index k = 0

stands for the `bias' term (with x0 = �1), and it plays the role of an additive constant w0

in the network equation. The minimum of E with respect to the weights occurs at

@E

@wj
=

1

N

X
�

[T� �
X
k

wkx
�
k ]x

�
j = 0: (C8)

giving X
k

hxkxj i wk = hTxj i (C9)

where h:::i are averages over the N objects.

The solution of this set of linear equations (for j = 1; :::M) for the optimal weights

vector w can be written as

wopt = A�1 b; (C10)

where Ajk = hxkxji and bj = hTxji. More generally, if there are multiple output units

(say a vector s) so the weights form a matrix W (not necessarily square), the minimum

variance h(s �Wx)(s �Wx)T i with respect to the weights occurs for

Wopt = hsxT ihxxT i�1: (C11)
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This is in fact the standard Wiener (1949) �lter known in digital �ltering and image

processing, commonly applied for signal+noise problems with x = s + n (e.g. Rybicki

& Press 1992 for a review, and Zaroubi et al. 1995 and references therein for recent

cosmological applications). We note that the same result can be derived by conditional

probabilities with Gaussian probability distribution functions, as well as by regularisation

with a quadratic prior.

For an alternative, somewhat more complicated expression see Hertz et al. (1991, pg.

102), where the weights are given in terms of a covariance matrix of the objects (useful for

the case of many features and few objects).

One can go one step further to generalize the above to non-linear input. This can be

done e.g. by expanding the elements of the input vector as products of their powers. For

example, if the input parameters are x1 and x2 the expanded input vector is

[1; x1; x2; x
2

1
; x1x2; x

2

2
; :::]:

This is sometime called the Volterra Connectionist model (VCM; see e.g. Rayner & Lynch

1989, Pao 1989, Lasenby and Fitzgerald 1993). Other alternatives for non-linear input are

e.g. `radial basis functions' and spherical harmonics. In fact, this can be viewed as an

ad-hoc hidden layer which forces the input to a new non-linear form. The advantage of

VCM network is that the global minimum is unique. This provides a reproducible solution

and allows fast training. On the other hand, as the connections between input and `hidden'

layer are `hard wired', the freedom of the network for di�cult data sets is limited.

C.3 Regularisation and Weight Decay

As in other inversion problems, the determination of many free parameters, the weights

wi's in our case, might be unstable. It is therefore convenient to regularise the weights,

e.g. by preventing them from growing too much. In the ANN literature this is called

`weight decay'. This approach is analogous to Maximum Entropy, and can be justi�ed by

Bayesian arguments, with the regularising function acting as the prior in the weight space.

Note that this is a di�erent application of Bayes theorem from the one discussed in xC.1,
applied in the class-space.

One possibility is to add a quadratic prior and to minimize

Etot = �Ew + �ED; (C12)
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where ED is our usual cost function, based on the data (e.g. eqs. B5 and C6) and

Ew =
1

2

QX
i=1

w2

i (C13)

is the chosen regularising function, where Q is the total number of weights. The coe�cients

� and � can be viewed as `Lagrange multipliers'. While sometime they are speci�ed ad-hoc,

it is possible to evaluate them `objectively' by Bayesian arguments in the weight-space.

This has been done in the context of ANNs by MacKay (1992, see also Ripley 1993)

following earlier analysis in relation with Maximum Entropy by Gull(1989; see also Lahav

& Gull 1989). The Bayesian analysis gives the conditions on � and � as

�2w = 2�Êw =  (C14)

and

�2D = 2�ÊD = N �  (C15)

where N is the number of data points (objects) and

 =

QX
q=1

�q

�q + �
(C16)

where the �q's are the eigen-values of the Hessian (in the weight-space) �rrED, eval-

uated with the weights at which Etot is minimum. The parameter  has an interesting

interpretation, the number of `well-determined' weights. If �q � � then  � Q (the total

number of weights). In this case �2D � N � Q, which is similar to the usual condition of

�2 equals the number of degrees of freedom. Moreover, if Q� N then

Etot �
1

�2w
Ew +

1

�2D
ED (C17)

where �2w = 2Êw=Q =
P

w2

i =Q and �2D = 2ÊD=N , as expected for Gaussian probability

distribution functions. We note that this analysis makes sense if the input and output are

properly scaled e.g. between [0, 1] with sigmoid transfer functions, so all the weights are

treated in the regularisation process on `equal footing'. It can be generalized for several

regularising functions, e.g. one per layer.
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We note that the addition of the regularisation term Ew changes the location of the

minimum, now satisfying

rED = ��

�
rEw = ��

�
w; (C18)

as from eq. (C13) rEw = w. The e�ect of the regularisation term here reminds the

restoring force of harmonic oscillator: the larger w is the more it will get suppressed. The

addition of the regularisation term to eq. (C4), gives a minimum for the extended cost

function which does not satisfy eq. (C5), i.e. it violates the probabilistic interpretation

in the class-space. However, one could construct a network with regularisation which will

produce probabilities self-consistently (e.g. MacKay 1992). The weight decay term also

modi�es the Wiener solutions in xC.2
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FIGURE CAPTIONS

Figure 1a The distribution of 5217 ESO-LV galaxies of all morphological types (top

right) in the 2-dimensions de�ned by the �rst and second Principal Components as derived

from PCA using 13 galaxy parameters. The other three panels show subsets of this fuzzy

cloud according to their classi�cation labels Sa+Sb, Sc+Sd and E+S0 as given in ESO-LV.

The di�erent morphological types occupy distinct regions in this new parameter space.

Figure 1b The top-right panel is as in Figure 1a, and the other 3 panels are for the

classes E, S0, and Irr. Note that E and S0 galaxies are segregated.

Figure 2 A schematic diagram of an encoder network with M input parameters, N

(labeled as M 0 in the text) nodes on the hidden layer, and M output nodes. N will range

between 1 and M , depending on the desired data compression factor. During training, set

Input=Output to teach the encoder to reproduce a given input vector at the output layer.

This network performs PCA-like dimensionality reduction when the transfer function is

linear, and can be extended to perform non-linear mapping.

Figure 3 The cost function vs. the number of hidden units in encoder network

with a sigmoid transfer function. The network was trained on the 5217 ESO-LV galaxies,

each with 13 parameters. The cost function seems to drop roughly exponentially with the

number of hidden units.

Figure 4 An ANN con�guration with M input parameters, N hidden nodes and

a single `analog' output. Such a network can perform a non-linear regression, and is used

in our problem to predict the T -type, based on input galaxy parameters. All nodes in a

given layer are connected to all nodes in the next layer. The `bias' node allows additive

constants to the network equation.

Figure 5 The type Tnet predicted by the ANN for 1700 ESO-LV galaxies (based

on a di�erent set of 1700 galaxies) against the ESO-LV human classi�cation Teso. The

Spearman correlation coe�cient in this diagram is 0.83, and the average rms dispersion is

2.0 T -types.

Figure 6 ANN reproducibility: A comparison between the predicted T -type of the

network for 1700 ESO-LV galaxies from two runs, starting the minimization with di�erent

random weights. The Spearman correlation coe�cient is 0.98 and the rms dispersion is

0.6 T -types. Note the transition between early to late type, discussed in the main text.
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