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We discuss the utility of analytical and numerical investigation of spin models, in particular spin glasses, on

ordinary \thin" random graphs (in e�ect Feynman diagrams) using methods borrowed from the \fat" graphs of

two dimensional gravity. We highlight the similarity with Bethe lattice calculations and the advantages of the

thin graph approach both analytically and numerically for investigating mean �eld results.

1. INTRODUCTION

The analytical investigation of spin glasses on

random graphs of various sorts has a long and

honourable history [1,2], though there has been

little in the way of numerical simulations. Ran-

dom graphs with a �xed or �xed average con-

nectivity have a locally tree like structure, which

means that loops in the graph are predominantly

large, so Bethe-lattice-like [3] (ie mean �eld) criti-

cal behaviour is expected for spin models on such

lattices. Given this, the analytical solution for

a spin model or, in particular, a spin glass on

a Bethe lattice [4,5] can be translated across to

the appropriate �xed connectivity random lattice.

Alternatively, a replica calculation can be carried

out directly in some cases for spin glasses on var-

ious sorts of random lattices.

A rather di�erent way of looking at the problem

of spin models on random graphs was put forward

in [6], where it was observed that the requisite

ensemble of random graphs could be generated

by considering the Feynman diagram expansion

for the partition function of the model. For an

Ising ferromagnet with Hamiltonian

H = �
X
<ij>

�i�j ; (1)

where the sum is over nearest neighbours on

three-regular random graphs (ie �3 Feynman di-

agrams), the partition function is given by

Zn(�)Nn =
1

2�i

I
d�

�2n+1

Z
d�+d��

2�
p
detK

exp(�S)

where Nn is the number of undecorated graphs

with 2n points, K is de�ned by

Kab =

 p
g 1p

g

1p
g

p
g

!
(2)

and the action itself is

S =
1

2

X
a;b

�aK
�1
ab

�b �
1

3
(�3+ + �3�): (3)

where the sum runs over � indices. The coupling

in the above is g = exp(2�J) where J = 1 for

the ferromagnet and the �+ �eld can be thought

of as representing \up" spins with the �� �eld

representing \down" spins. An ensemble of z-
regular random graphs would simply require re-

placing the �3 terms with �z and a �xed average

connectivity could also be implemented with the

appropriate choice of potential.

This approach was inspired by the considerable

amount of work that has been done in recent years

onN�N matrix 1 versions of such integrals which

generate \fat" or ribbon graphs graphs with suf-

�cient structure to carry out a topological expan-

sion [7] because of the matrix index structure.

1N , the size of the matrix is not to be confused with n,

the number of vertices in the graph!
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The natural interpretation of such fat graphs as

the duals of triangulations, quadrangulations etc.

of surfaces has led to much interesting work in

string theory and particle physics [8]. The parti-

tion function here is a poor, \thin" (no indices,

so no ribbons), scalar cousin of these, lacking the

structure to give a surface interpretation to the

graph. Such scalar integrals have been used in

the past to extract the large n behaviour of vari-

ous �eld theories [9] again essentially as a means

of generating the appropriate Feynman diagrams,

so a lot is known about handling their quirks.

2. (ANTI)FERROMAGNETS AND SPIN

GLASSES

For the Ising ferromagnet on three-regular (�3)
graphs, solving the saddle point equations at large

n

�+ =
p
g�2+ +

1p
g
�2�

�� =
p
g�2� +

1p
g
�2+ (4)

shows that the critical behaviour appears as an

exchange of dominant saddle point solutions to

the saddle point equations. The high and low

temperature solutions respectively are

�+; �� =

p
g

g + 1

�+; �� =

p
g

2(g � 1)

�
1�

r
g � 3

g + 1

�
(5)

which give a low temperature magnetized phase.

The critical exponents for the transition can also

be calculated in this formalism and, as expected,

are mean �eld. In general a mean �eld transition

appears at

exp(2�FM ) = z=(z � 2) (6)

on �z graphs, which is the value predicted by the

standard approaches. Simulations nicely con�rm

this mean �eld picture for the ferromagnet [10].

Analysis of the Binder's cumulant for the magne-

tization also shows that the critical temperatures

are identical to the corresponding Bethe lattices

(ie g = 3 for �3 graphs). The speci�c heat is

shown in Figure.1 for various sizes of �3 graphs.

Figure 1. The speci�c Heat for the Ising ferro-

magnet on �3 graphs of various size.

There are various possibilities for addressing

spin glass order in the Feynman diagram ap-

proach. In [6] the entropy per spin was calculated

for the Ising anti-ferromagnet on �3 graphs and it
was found to become negative for su�ciently neg-

ative �, which is often indicative of a spin glass

transition. Simulations again con�rm the picture.

Taking a quenched distribution of couplings of the

form

P (J) = p �(J � 1) + (1� p) �(J + 1); (7)

which gives the antiferromagnet for p = 0, pro-

duces results for the spin glass order parameter,

the overlap, that are very similar to the in�-

nite range mean �eld (Sherrington-Kirkpatrick)

model. De�ning the overlap as

q =
1

n

X
i

�i�i: (8)

with two Ising replicas on each graph, �i; �i and
histogramming

Pn(q) =
h
h�(q � 1=n

X
�i�i)i

i
; (9)

where [ ] denotes the quenched disorder average,

we get the distribution shown in Figure.2 [10,11]
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in the putative spin glass phase at low tempera-

ture. The long tail stretching down to q = 0 is

characteristic of the mean-�eld spin glass picture

of many inequivalent states.

Figure 2. P (q) at � = 1:2 for various p on �3

graphs of size 500.

It is possible to make some analytical inroads

as well by looking at the solutions to the saddle

point equations for k Ising replicas [11]

~� =

Z
P (J)
k K dJ ~�2 (10)

where we have denoted the 2k �elds that now ap-

pear as ~�. The Hessian for these equations is

analytically calculable for any k

kY
m=0

�
2

Z
P (J) tanh(�J)mdJ � 1

�(k
m
)

(11)

and its zeroes show that the k = 0 transition tem-

perature observed in simulations or calculated by

using the analogy with the Bethe lattice is identi-

cal to the k = 2 transition temperature. This

also occurs in the �nite replica version of the

Sherrington-Kirkpatrick model [12], so yet again

the thin graph results are resolutely mean �eld.

For three or more replicas one does not see the

continuous transition because a �rst order transi-

tion occurs at higher temperature to a replica-

symmetric state. The situation appears to be

rather similar for Q > 2 state Potts models where

the saddle point calculation �nds a continuous

transition at one of the spinodal points and misses

a �rst order transition occurring at higher tem-

perature. The 3-state Potts model, for instance,

with action

S =
1

2
(�2

a
+ �2

b
+ �2

c
)� c(�a�b + �a�c + �b�c)

� 1

3
(�3

a
+ �3

b
+ �3

c
); (12)

gives high and low temperature solutions

�a;b;c = 1� 2c ;

�a;b =
1 +

p
1� 4c� 4c2

2
;

�c =
1 + 2c�

p
1� 4c� 4c2

2
(13)

where c = 1=(g + 1).

Figure 3. P (q) at � = 2:2 for the 3-state Potts

model for �3 graphs of size 1000 (labelled) and

500 (unlabelled).
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Calculations and simulations for Potts glasses

are just as easy as for the Ising spin glass. In

Figure.3 overleaf we have plotted the distribution

of overlaps for the three state Potts model at low

temperature. The overlap for a Q state Potts

model is now de�ned as

q =
1

n

nX
i=1

(Q��i;�i � 1) (14)

and the lack of an inversion symmetry in the

spins gives a di�erent pattern of replica symmetry

breaking in mean-�eld theory to the Ising model.

The numerical results are still consistent with a

mean �eld picture.

3. Conclusions

In summary, spin models on thin graphs o�er a

promising arena for the application of ideas from

matrix models, large-n calculations in �eld the-

ory and bifurcation theory. In the spin glass case

the tensor (or near-tensor) product structure of

the inverse propagator allows some quite general

expressions to be derived for the Hessian in the

saddle point equations and o�ers a powerful line

of attack on questions such as replica symmetry

breaking. As a subject for numerical simulations

they o�er the great advantage of mean �eld re-

sults with no in�nite range interactions and no

boundary problems.

The bulk of the simulations were carried out

on the Front Range Consortium's 208-node Intel

Paragon located at NOAA/FSL in Boulder. CFB

is supported by DOE under contract DE-FG02-

91ER40672, by NSF Grand Challenge Applica-

tions Group Grant ASC-9217394 and by NASA

HPCC Group Grant NAG5-2218. CFB and

DAJ were partially supported by NATO grant

CRG910091.
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