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Abstract

We study Radiative Electroweak Symmetry Breaking in the Minimal Supersymmetric Standard
Model (MSSM). We employ the 2-loop Renormalization Group equations for running masses
and couplings taking into account sparticle threshold e�ects. The decoupling of each parti-
cle below its threshold is realized by a step function in all one-loop Renormalization Group
equations (RGE). This program requires the calculation of all wavefunction, vertex and mass
renormalizations for all particles involved. Adapting our numerical routines to take care of the
succesive decoupling of each particle below its threshold, we compute the mass spectrum of
sparticles and Higgses consistent with the existing experimental constraints. The e�ect of the
threshold corrections is in general of the same order of magnitude as the two-loop contributions
with the exception of the heavy Higgses.
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The purpose of the present talk is to report briey on a treatment of low energy threshold
e�ects in the Renormalization Group equations of the parameters of the MSSM in the framework
of Radiative Electroweak breaking. Since we have employed the DR scheme in writting down
the one-loop Renormalization Group equations, which is by de�nition mass-indepedent, we
could \run" them from MX down to MZ without taking notice of the numerous sparticle
thresholds existing in the neighborhood of the supersymmetry breaking scale near and above
MZ . This approach of working in the \full" theory consisting of particles with masses varying
over 1-2 orders of magnitude has to overcome the technical problems of the determination of
the pole masses. Our approach, also shared by other analyses, is to introduce a succession of
e�ective theories de�ned as the theories resulting after we functionally integrate out all heavy
degrees of freedom at each particle threshold. Above and below each physical threshold we
write down the Renormalization Group equations in the DR scheme only with the degrees
of freedom that are light in each case. This is realized by the use of a theta function at
each physical threshold. The integration of the Renormalization Group equations in the \step
approximation" keeps the logarithms ln(m

�
) and neglects constant terms. The physical masses

are determined by the condition m(mphys) = mphys which coincides with the pole condition if
we keep leading logarithms and neglect constant terms. The great advantage of this approach
is that the last step of determining the physical mass presents no extra technical problem and
it is trivially incorporated in the integration of the Renormalization Group equations.

A dramatic simpli�cation of the structure of the supersymmetry breaking interactions is
provided either by Grand Uni�cation assumptions or by Superstrings. The simplest possible
choice at tree level is to take all sparticle and Higgs masses equal to a common mass parameter
mo, all gaugino masses equal to some parameter m1=2 and all cubic couplings avour blind and
equal to Ao. This situation is common in the e�ective Supergravity theories resulting from
Superstrings but there exist more complicated alternatives. For example Superstrings with
massless string modes of di�erent modular weights lead to di�erent sparticle masses at tree
level[2]. The equality of gaugino masses can also be circumvented in an e�ective supergravity
theory with a suitable non-minimal gauge kinetic term[3]. Note however that such non-minimal
alternatives like avour dependent sparticle masses are constrained by limits on FCNC pro-
cesses. In what follows we shall consider this simplest case of four parameters mo, m1=2, Ao

and Bo. The scalar potential of the model is
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the one-loop radiative corrections obtained in the DR scheme,
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we end up with an E�ective Potential that upon minimization supports a vacuum with spon-
taneously broken electroweak symmetry[1][4]. A reasonable approximation to (3) would be to
allow only for the dominant top-stop loops. Note that although the Renormalization Group
improved tree level potential depends on the scale Q this is not the case for the full 1-loop
E�ective Potential which is Q-independent up to, irrelevant for minimization, Q-dependent but
�eld-independent terms.



We shall assume that at a very high energy scale MX the soft supersymmetry breaking
is represented by four parameters mo, m1=2, Ao and B of which we shall consider as input
parameters only the �rst three and treat B(MZ) as determined by minimization conditions of
the one loop e�ective potential. Actually we can treat �(MZ) as input parameter and both
B(MZ); �(MZ) are determined by solving the minimization conditions with the sign of � left

undetermined. The top-quark mass[5], or equivalently the top-quark Yukawa coupling, although
localized in a small range of values should also be considered as an input parameter since the
sparticle spectrum and the occurrance of symmetry breaking itself is sensitive to its value.Thus,
the input parameters are mo, m1=2, Ao, �(MZ) and mt(MZ) as well as the sign of �.

In our notation, for a physical mass M ,

�M � �(Q2 �M2) (4)

Also t stands for t = lnQ2 and �� �
d�
dt

for each parameter �. Note also that we assume
diagonal couplings in family space.

As an example consider the one loop �-function of the trilinear coupling[6] A� ,

dA�

dt
=

1

(4�)2
f�3g2

2M2� ~W ~H1
�
3

5
g1

2M1(2 + � ~H1
)� ~B

+ 3Yb
2Ab� ~D ~Q + 4Y�

2A� +A� [Z�1g1
2 + Z�2g2

2 + Z��Y�
2]g (5)

Where Z�1, Z�2 and Z�� are displayed in Table I.
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Table I: Threshold coe�cients appearing in the renormalization group equation
of the trilinear scalar coupling A� .

Note that the threshold corrections introduced in our approximation by the theta-functions
at 1-loop are expected to be comparable to the standard 2-loop RG corrections. In our nu-
merical analysis that we follow we shall employ the 2-loop RG equations which have not been
presented here due to their complicated form but can be found elsewhere[7]. The problem at
hand consists in �nding the physical masses of the presently unobserved particles, i.e. squarks,
sleptons, Higgses, Higgsinos and gauginos, as well as their physical couplings to other observed
particles. This will be achieved by integrating the Renormalization Group equations from a
superheavy scale MX, taken to be in the neighbourhood of 1016GeV , down to a scale Qo in
the stepwise manner stated. If the equation at hand is the Renormalization Group equation



for a particular running mass m(Q), then Qo is the corresponding physical mass determined
by the condition m(Qo) = Qo. If the equation at hand is the Renormalization Group equa-
tion for a coupling the integration will be continued down to Qo = MZ . Acceptable solutions
should satisfy the minimization conditions at MZ, i.e. describe a low energy theory with broken
electroweak symmetry at the right value of MZ ' 91:187GeV .

The boundary condition at high energy will be chosen as simple as possible, postponing
for elsewhere the study of more complicated alternatives. Thus at the (uni�cation) point MX ,
taken to be 1016 GeV, we shall take

m ~Q(MX) = m ~Dc(MX) = m ~Uc(MX) = m~L(MX) = m ~Ec(MX)

= mH1
(MX) = mH2

(MX) � mo (6)

and
M1(MX) = M2(MX) = M3(MX) � m1=2 (7)

In addition we take equal cubic couplings at MX , i.e.

Ae(MX) = Ad(MX) = Au(MX) � Ao (8)

Our set of constraints includes the low energy experimental gauge coupling values which
we have taken to be MZ = 91:187Gev , �(MZ)�1

MS = 127:9� 0:1 and (sin2�W )MS = 0:2316�
:8810�7(Mt

2 � 1602)Gev�2. The knowing, average experimental value of �3 is 0:117 � 0:010.
These MS values for the couplings are related to the relation, DR1ones through the relations
gMS = gDR(1�Cg

2=96�2), where C = 0; 2; 3 respectively for the three factor gauge groups. For
the b-quark and � -lepton masses we have taken mb = 5:0 Gev and m� = 1:8 Gev.The recent
evidence[5] for the top quark mass has motivated values in the neighborhood of 176�8 Gev.The
physical top quark mass Mt is related to the running top-quark mass through the approximate
relation

mt(Mt) =
Mt

(1 + 5�3
3�
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(9)

As stated previously the B;� are not inputs in the approach we are following but are
determined through the equations minimizing the scalar potential. For their determination at
the scale MZ we take into account the one loop corrected potential considering the dominant
top and stop contributions. This procedure modi�es the tree level values B(MZ), �(MZ) . It is
well known that the value of � a�ects the predictions for the physical masses especially those
of the neutralinos and charginos. In approaches in which the e�ect of the thresholds is ignored
in the RGE's the determination of B;� is greatly facilitated by the near decoupling of these
parameters from the rest of the RGE's. However with the e�ects of the thresholds taken into
account such a decoupling no longer holds since the thresholds themselves depend on B;�,
or equivalently on �;m2

3. Thus, as initial inputs for B(MZ) and �(MZ) we take those arising
from the minimization equations assuming that theshold e�ects are absent. At this stage our
analysis is identical to those of other authors. Subsequently we run our numerical routines
switcing on the threshold contributions to the RGE's keeping �xed the inputs for Ao,mo, m1=2,
tan � and all couplings. This procedure corrects the initial inputs for B(MZ), �(MZ) in each
run until convergence is reached. This is unecessary of course in cases where the thresholds are
neglected. The next step regarding the mixing parameters �;m2

3 is to correct them taking into
account the one loop e�ective potential in the way prescribed earlier.

1Note that at the 2-loop order the DR scheme needs to be modi�ed so that no contribution to the scalar

masses due to the\�-scalars"[8] shows up.



We have displayed some of our results in tables II and III. We have taken �(MZ) positive
and hence B(MZ) negative. Their mirror values �(MZ) < 0, B(MZ) > 0 lead to qualitatively
similar results. In the table II, for a characteristic set of values Ao = 400 GeV, mo = 300
GeV and m1=2 = 200 GeV we have varied tan� between 2 and 25. Note the well known[9]

approximate equality between the masses of one of the neutralinos and one of the charginos.
The lightest Higgs turns out to be heavier than the Z - boson. Althought not displayed, for
negative � its mass drops below MZ for small values of the angle tan� ' 2.

Finally, Table III compares for a characterestic choice of parameter values, three dinstict
cases.Case [a] indicates one loop predictions, case [b] two loop predictions with thresholds only
in couplings, and case [c] the complete two loop with thresholds everywhere.Comparison of the
�rst two cases [a] and [b] point out the fact that thresholds in couplings a�ect only by small
ammount (1% � 2%) the spectra, except from the neutralino and chargino states, where the
di�erences are of order 10% due to di�erent evolutions of the soft gaugino masses M1;2.

Comparing cases [b] and [c], we observe quite large e�ects in states labeled as ~�o3;4, ~�
c
1

as well as in heavy Higgs states.This discrepancy is due mainly to the evolution of m2
3, whose

values a�ect substantially the masses of the pseudoscalar and charged Higgses,and in particular
on it's dependense on the gaugino masses[10].



mt = 175 ; Ao = 400 ; mo = 300 ; m1=2 = 200 ; �(MZ) > 0
tan� 25 20 15 10 2

MGUT 2.632 2.633 2.633 2.632 2.515
(1016GeV )
�GUT .04161 .04161 .04161 .04161 .04134
��1
em 127.9 127.9 127.9 127.9 127.9

sin2�W .2311 .2311 .2311 .2311 .2311
�3 .13128 .13129 .13129 .13126 .12909

Mt 177.0 177.0 177.0 177.0 176.8

~g 495.6 495.8 495.9 495.9 492.4

~�o1 77.1 77.0 76.8 76.4 74.7
~�o2 139.1 138.9 138.5 137.6 136.0
~�o3 350.5 352.3 354.7 359.1 487.8
~�o4 -337.2 -338.6 -340.3 -343.2 -467.7

~�c1 352.3 354.0 356.0 359.9 484.5
~�c2 138.8 138.6 138.1 137.0 134.7

~t1,~t2 527.3,315.4 531.9,315.2 535.9,314.4 539.4,312.3 543.9,285.3
~b1,~b2 506.2,441.0 514.2,451.4 520.9,459.4 525.8,465.0 525.9,462.4

~�1,~�2 328.0,266.5 330.4,281.0 331.7,292.9 331.9,302.1 329.4,309.2
~�� 306.4 311.5 315.6 318.6 323.4

~u1;2,~uc1;2 537.8,528.9 537.8,528.9 537.8,528.9 537.7,528.8 535.4,525.8
~d1;2, ~dc1;2 543.3,529.6 543.3,529.6 543.3,529.6 543.2,529.5 538.6,525.8

~e1;2,~ec1;2 330.1,311.7 330.1,311.7 330.0,311.7 330.0,311.6 328.8,310.3
~�1;2 321.0 321.0 320.9 321.0 323.5

A 630.7 612.0 588.1 560.1 669.0
ho,Ho 114.1,630.6 114.2,611.9 114.2,588.0 113.8,560.2 92.1,672.8
H� 635.4 616.9 593.1 565.4 673.5

Table II: MSSM predictions for mt = 175GeV; Ao = 400GeV ,mo = 300, m1=2 = 200GeV
and for values of tan� ranging from 2 to 25. Only the � > 0 case is displayed.



mt = 175, tan� = 10, Ao = 250, mo = 200, m1=2 = 150, �(MZ) > 0
Case [a] Case [b] Case [c]
1-loop 2-loop Complete 2-loop

(thresholds in couplings)
MGUT 2.1881 2.8876 2.8766

(1016GeV )
�GUT .04127 .04201 .04202
��1
em 127.9 127.9 127.9

sin2�W .23105 .23110 .23110
�3 .11767 .13284 .13289

Mt 181.0 177.0 177.0

~g 398.4 381.4 382.6

~�o1 59.2 55.0 54.4
~�o2 109.0 98.3 96.7
~�o3 302.8 304.1 279.6
~�o4 -284.1 -287.7 -260.1

~�c1 304.0 305.5 280.9
~�c2 108.0 97.4 95.3

~t1,~t2 443.6,247.0 442.0,235.2 440.2,234.7
~b1,~b2 401.7,357.2 395.4,352.8 394.9,352.6

~�1,~�2 235.3,203.6 232.2,201.6 231.3,202.7
~�� 216.6 212.6 212.5

~u1;2,~uc1;2 410.5,401.4 400.1,394.1 400.1,394.1
~d1;2, ~dc1;2 417.8,402.4 407.5,395.7 407.5,395.7

~e1;2,~ec1;2 231.6,212.6 227.7,211.6 227.5,211.8
~�1;2 218.1 214.2 214.1

A 412.1 421.0 394.5
ho,Ho 113.0,412.2 110.7,421.1 110.5,394.7
H� 419.5 428.1 402.1

Table III: MSSM mass spectrum for the inputs shown in the �rst row (� > 0). We compare 1
- loop (case [a]), 2 - loop with thresholds in couplings (case [b]) and complete 2 - loop predictions
(case [c]) with thresholds in both couplings and dimensionful parameters.
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