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Abstract

The (g
(1)
2 ; d

(3)
4 ) pair of non simply laced a�ne Toda theories is studied from

the point of view of non perturbative duality. The classical spectrum of each

member is composed of two massive scalar particles. The exact S-matrix

prediction for the dual behaviour of the coupling dependent mass ratio is

found to be in strong agreement with Monte Carlo data.
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I. INTRODUCTION

A�ne Toda �eld theories are two-dimensional models described by the Euclidean action

S =
Z
d2x

 
1

2
@�� � @��+ m2

�2

rX
a=0

nae
��

(a)
��

!
: (1.1)

The r-dimensional vectors f�(a)g are the simple roots of an a�ne Kac-Moody algebra [1]

and fnag are positive integers depending on the algebra and satisfying

X
a

na�a = 0; n0 = 1: (1.2)

The �eld � is a set of r real scalar components. Finally, m and � are a mass scale parameter

and the coupling constant. The Coxeter number is the positive integer h = n0 + � � �+ nr.

Under the transformation T : � ! 2�=j�j2, the lattice of the simple roots transforms

into the lattice of another a�ne algebra. The invariant algebras are called self-dual; they

belong to the untwisted a-d-e series a(1)
n
, d(1)

n
, e(1)

n
and to the twisted series a

(2)
2n . The other

algebras are the pairs (b(1)
n
; a

(2)
2n�1), (c

(1)
n
; d

(2)
2n�1), (g

(1)
2 ; d

(3)
4 ), and (f

(1)
4 ; e

(2)
6 ); they are invariant

under T .

At the classical level, a�ne Toda theories have no coupling; � can be scaled away, the

spectrum is proportional to m, independent of � and moreover it is given by simple universal

formulae in terms of the Coxeter number. The interest of the classical theory is that the �eld

equations of motion admit a Lax pair and therefore there is an in�nite hierachy of conserved

currents with increasing spin.

At the quantum level, this property is inherited in the form of a factorized S-matrix.

The dependence on � which plays the role of Planck's constant becomes non trivial; on the

other hand the parameter m becomes unphysical due to renormalization e�ects and only

mass ratios are observables.

Since the S-matrix is expected to be factorizable, its explicit form may be sought. One

can make a guess and impose physical constraints like unitarity or crossing symmetry and

the additional bootstrap principle. In the case of the self-dual theories, perturbation theory
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suggests that the mass ratios do not renormalize. Indeed, the bootstrap equations close on

an ansatz for the S-matrix based on the tree level spectrum and on the fusings allowed by

the three-point couplings [2].

Perturbation theory and the structure of the bootstrap suggest conjectured expressions

for the exact � dependence of the S-matrix which show a remarkable duality between weak

and strong coupling in terms of the transformation � ! 4�=�.

For the non self dual pairs the picture is more complicated. Mass ratios deform already

at the lowest order of perturbation theory and the simplest ansatz for the S-matrix fails.

However, a non trivial solution to the bootstrap equations can be found with the feature

of predicting � dependent mass ratios [3,4]. The predictions are then formally the same as

in the classical theory, but in terms of a \renormalized" Coxeter number H(�).

Again, the explicit non perturbative form of H(�) is not known. The simplest conjec-

ture [8], consistent with low order perturbation theory [7] and current algebra [5] predicts a

new kind of duality. Under � ! 4�=� the S-matrices of the pair members get exchanged.

Hence, the strong coupling regime in one theory should be given by the weak coupling regime

in the other.

In [6] a Monte Carlo study of duality in the pair (g
(1)
2 ; d

(3)
4 ) was performed by mean of the

Metropolis algorithm. The authors determined the mass ratio in the g
(1)
2 theory over a wide

range of couplings and they did �nd agreement with the duality conjecture. Speci�cally,

they checked that the mass ratio in g
(1)
2 ranged between its classical values and the classical

value of d
(3)
4 .

In this paper I carried over the above simulation on larger lattices with higher statistics

in order to pin down the precise dependence on �. Moreover, I have used the Hybrid Monte

Carlo algorithm [11]. Finally, I have extended the simulation to the d
(3)
4 theory in order to

have a complete picture.

The plan of the paper is the following: Section II describes the pair (g
(1)
2 ; d

(3)
4 ) ; Section III

shows the one loop deformations of the mass ratios; Section IV gives some detail on the

numerical simulation; �nally, in Section V the results are discussed.
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II. THE DUAL PAIR (G
(1)
2 , D

(3)
4 )

The pair (g
(1)
2 , d

(3)
4 ) has r = 2 and its action is

S =
Z
d2x

(
1

2
@�� � @��+ m2

�2

2X
a=0

na exp(� �a � �)
)
; � = (�1; �2): (2.1)

The integers na and the simple roots are

g
(1)
2 : n = f2; 3; 1g; � =

8<
:
�p

2; 0
�
;

 
� 1p

2
;
1p
6

!
;

0
@� 1p

2
;�
s
3

2

1
A
9=
; ; (2.2)

d
(3)
4 : n = f2; 1; 1g; � =

8<
:
�p

2; 0
�
;

0
@� 3p

2
;

s
3

2

1
A ;

0
@� 1p

2
;�
s
3

2

1
A
9=
; : (2.3)

The two sets of roots are related by the duality � ! 2�=j�j2.
The two corresponding models are very di�erent at the tree level. The explicit expansion

of the mass-potential exponential term up to the fourth order for the g
(1)
2 model is

V (�1; �2) = m2
�
3�21 + �22

�
+

+m2�
9�31 � 9�1 �

2
2 � 2

p
3 �32

9
p
2

+ (2.4)

+m2�227�
4
1 + 18�21 �

2
2 + 8

p
3 �1 �

3
2 + 7�42

72
+O(�3):

For the d
(3)
4 model we utilize the tree level mass eigenstates by transforming the �elds

� ! R�; R =

0
BB@ cos � sin �

� sin � cos �

1
CCA ; � =

5�

12
(2.5)

and obtain the expansion

V (�1; �2) = m2
�
(3 �

p
3)�21 + (3 +

p
3)�22

�
+

+m2�

 
�31
2
�
p
3 �31
2

+
3�21 �2

2
�

p
3�21 �2

2
+

3�1 �
2
2

2
+

p
3�1 �

2
2

2
+

�32
2
+

p
3 �32
2

!
+ (2.6)

+m2�2

 
7�41
8

� 5�41

4
p
3
+

�31 �2

2
� �31 �2p

3
+

3�21 �
2
2

4
+

�1 �
3
2

2
+

�1 �
3
2p
3

+
7�42
8

+
5�42

4
p
3

!
+O(�3)

As one can see, the sets of possible fusings are completely di�erent and duality is far from

being obvious. The classical mass ratios are
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m2

m1

����
g
(1)
2

=
p
3;

m2

m1

����
d
(3)
4

=

vuutp
3 + 1p
3� 1

=

p
3 + 1p
2

(2.7)

which agree with the general formula in terms of the Coxeter number h (6 for g
(1)
2 , 12 for

d
(3)
4 )

m2

m1
=

sin(2�=h)

sin(�=h)
= 2 cos(�=h) (2.8)

The duality conjecture states that the correct quantum ratio g
(1)
2 is given by substituting

h ! H(�) in the model g
(1)
2 and h ! H(4�=�) in the d

(3)
4 model. The form of H(�) is

constrained but not �xed by perturbation theory and the conjectured expression is

H(�) = 6 +
�2=2�

1 + �2=12�
: (2.9)

Let us clarify these statements by considering the one loop mass ratios.

III. ONE LOOP MASS RATIOS

Let us denote the three diagrams of Figures (I-II-III) by

�
(1)
abc
; �

(2)
abcd

; �
(3)
abcd

(3.1)

where a, b, c and d are particle labels in the range f1; 2g. The mass ratio is observable

since renormalization amounts to a normal ordering of the exponentials and its e�ect is a

rede�nition of the bare mass. We must check that in a bare renormalization scheme all

the divergent tadpole graphs cancel. Let us utilize dimensional regularization and let us

introduce

Zi =
Z

ddp

(2�)d
1

p2 +m2
i

: (3.2)

The pole part of Zi is mass independent, hence the cancellation is a matter of couplings. At

the one loop level the mixed propagator corrections are irrelevant and we can restrict to the

diagonal ones. Let us write the interaction lagrangian in the form
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V (�1; �2) =
1

2
(m2

1�
2
1 +m2

2�
2
2) + V111�

3
1 + V112�

2
1�2 + � � � : (3.3)

Then, the corrections to the propagator of particle 1 are

�
(1)
111 = �12 V1111 Z1;

�
(1)
112 = �2 V1122 Z2;

�
(2)
1111 = 18 V 2

111 Z1 m
�2
1 ; (3.4)

�
(2)
1112 = 6 V111 V122 Z2 m

�2
1 ;

�
(2)
1121 = 2 V 2

112 Z1 m
�2
2 ;

�
(2)
1122 = 6 V112 V222 Z2 m

�2
2 :

The corrections to the propagator of particle 2 are obtained by exchanging the 1 and 2

labels. If we denote the full divergent correction by

�m2
1 = �

(1)
111 + �

(1)
112 + �

(2)
1111 + �

(2)
1112 + �

(2)
1121 + �

(2)
1122 (3.5)

then the desired cancellation is equivalent to the condition

�m2
1

m2
1

=
�m2

2

m2
2

(3.6)

which is indeed satis�ed by the couplings of the two theories which can be read in the

expansions of the previous section.

Besides the consistency check, let us turn to the mass ratio deformation. At one loop,

we must determine the quantity

�
m2

1

m2
2

=
m2

1

m2
2

 
�m2

1

m2
1

� �m2
2

m2
2

!
: (3.7)

Let us introduce the �nite integral

Zij(p
2) =

Z
d2q

(2�)2
1

(q2 +m2
i
)((q + p)2 +m2

j
)
: (3.8)

Then the �nite contributions to the propagators of particle 1 are
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�
(3)
1111 = 18V 2

111Z11(p
2);

�
(3)
1112 = 4V 2

112Z12(p
2); (3.9)

�
(3)
1122 = 2V 2

122Z22(p
2):

Evaluation on the tree mass shell gives

��m2
1 = 18V 2

111Z11(�m2
1) + 4V 2

112Z12(�m2
1) + 2V 2

122Z22(�m2
1) (3.10)

with analogous expressions for the particle 2. We need only the following particular values

Zii(�m2
i
) =

1

4
p
3

1

m2
i

; (3.11)

Zij(�m2
i
) =

1

2�
q
m2

j
(m2

j
� 4m2

i
)
ArcTanh

vuutm2
j
� 4m2

i

m2
j

(3.12)

and the �nal result is

g
(1)
2 : �

m2
1

m2
2

=
1

12
p
3
�2 +O(�4); d

(3)
4 : �

m2
1

m2
2

= � 1

16
�2 +O(�4): (3.13)

The renormalized Coxeter number is thus

g
(1)
2 : H(�) = 6 +

�2

2�
+O(�4); d

(3)
4 : H(�) = 12 � 9�2

2�
+O(�4) (3.14)

and a consistent, simple and natural conjecture is

g
(1)
2 : H(�) = H0(�); d

(3)
4 : H(�) = H0(4�=�) (3.15)

where

H0(�) = 6 +
�2=2�

1 + �2=12�
6 < H0 < 12: (3.16)

The result for g
(1)
2 is in agreement with that quoted by [3]. The result for d

(3)
4 gives perturba-

tive support to the duality conjecture � ! 4�=�. We remark that the discrepancy with [7]

is due to the fact that they use the form of H0 which is correct for the simply laced models.
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IV. DETAILS OF THE SIMULATION

The lattice action for the pair (g
(1)
2 , d

(3)
4 ) expressed in terms of pure numbers is

SToda =
X

n2sites

8<
:1

2

X
�=1;2

(�n+� � �n)
2 +

m2

�2

3X
a=1

na exp(� �a � �)
9=
; ; � = (�1; �2): (4.1)

I have simulated the Toda theory with the Hybrid Monte Carlo algorithm (see [11] for the

details). Let us consider the extended action

S = Sp + SToda; (4.2)

Sp =
1

2

X
n

�n � �n; � = (�1; �2): (4.3)

The free parameter of the algorithm are Nhmc and �. The �rst is the number of molecular

dynamics steps. The second is the time step in the integration of the equations of motion

_�n = �n; (4.4)

_�n =
X
�

(�n+� � 2�n + �n��)� m2

�

X
a

na�a exp(��a � �n): (4.5)

The vacuum expectation value of the �eld is a non physical quantity. However, it is inter-

esting to measure it since it is an indicator of thermalization and also because it is in a sense

a dynamic minimum of the Toda potential.

Mass ratios can be determined by studying the eigenvalues of the two point function

h0j�i(0)�j(� )j0i � h0j�ij0ih0j�j j0i (4.6)

where t is the lattice time ranging from 0 to T and the wall �eld �i(t) is obtained by

averaging � over space.

V. RESULTS

I have used a 802 lattice for all �s because the correlation lenght may be adjusted by

varying m. The continuum mass ratio is independent of the bare mass m. However, on a

�nite lattice, it must be chosen in order to have correlation lenghts large with respect to one
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lattice spacing and small compared to the lattice size. This is the correct procedure which

minimizes discretization and �nite size corrections. Thanks to the work of [6] I had good

values in the case of the g
(1)
2 theory. In the other model, I started with the same values of

m adjusting them for some �.

I utilized di�erent measurement of the wall-wall two-point function for each bin in the

separation � . This is necessary in order to avoid strong correlation between data.

Table I shows the Hybrid Monte Carlo parameters which we found to be optimal for

each couple (�;m). The time step � must be reduced almost exponentially as � is increased.

This is reasonable since at larger � the potential pro�le becomes steeper.

Table II shows the measure of h0j�ij0i which can be useful as a check of the code and

which is needed in order to subtract the two-point function.

Table III shows the two lattice masses, their ratio and the conjectured prediction.

Finally, tables IV, V, VI show the same results in the case of the d
(3)
4 model.

Figures I-II-III show the self energy diagrams which are needed in order to compute the

one loop mass ratio deformations.

Figure IV shows a summary plot of the measured mass ratios in the two models together

with the conjectured ones and the asymptotic values holding in the classical limit.

VI. CONCLUSIONS

In this paper I have investigated numerically the conjectured duality in the pair (g
(1)
2 ; d

(3)
4 )

of non simply laced a�ne Toda theories. I have shown that the � dependence of the mass

ratios in g
(1)
2 does follows the behaviour conjectured in [6] and that the data of d

(3)
4 agree

with the � ! 4�=� duality.

As in the case of more realistic �eld theories like QCD, the numerical approach could

be useful in studying other interesting features of quantum Toda theories. For instance,

one could try to �nd direct evidence of the boundary bound states which appears when the

theory is restricted to a half-line [9]; work is in progress on this topic. Moreover, it could be
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valuable a non perturbative study of the solitons which appear at imaginary �, and which

suggests that a unitary theory can ultimately be found by restricting the state space of the

hamiltonian [10]; their stability is indeed still questionable [12].

VII. ACKNOLEDGEMENTS

I gratefully acknowledge G. M. T. Watts and R. A. Weston for useful suggestions and

interest.

10



REFERENCES

[1] V. Kac, In�nite dimensional Lie algebras, Cambridge U. P., Cambridge, 1985.

[2] H. W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, Phys. Lett. B227 (1989) 411;

H. W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, Nucl. Phys. B338 (1990) 689.

[3] G. W. Delius, M. T. Grisaru, D. Zanon, Phys. Lett. B277 (1992) 414;

G. W. Delius, M. T. Grisaru, D. Zanon, Nucl. Phys. B382 (1992) 365.

[4] E. Corrigan, P. E. Dorey and R. Sasaki, Nucl. Phys. B408 (1993) [FS] 579.

[5] H. G. Kausch and G. M. T. Watts, Nucl. Phys. B386 (1992) 166.

[6] G. M. T. Watts and R. A. Weston, Phys. Lett. B289 (1992) 61.

[7] H. S. Cho, I. G. Koh and J. D. Kim, Phys. Rev. D47 (1993) 2625.

[8] P. Dorey, Phys. Lett. B312 (1993) 291.

[9] E. Corrigan, P. E. Dorey, R. H. Rietdijk and R. Sasaki, Phys. Lett. B333 (1994) 83.

[10] T. J. Hollowood, Nucl. Phys. B384 (1992) 523. Just one of the earlier works.

[11] S. Duane, A. D. Kennedy, B.J. Pendleton e D. Rowan, Phys. Lett. 195B (1987) 216.

[12] S. P. Khastgir and R. Sasaki, Instability of Solitons in imaginary coupling a�ne Toda

Field Theory, hep-th/9507001.

11



CAPTIONS

Fig. I-II-III : self energy one loop diagrams.

Fig. IV : summary of the numerical results.
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TABLES

TABLE I. g
(1)
2 : HMC parameters.

� Nhmc �

1.0 10 0.1

2.0 10 0.08

3.5 10 0.07

5.0 10 0.06

10.0 5 0.05

20.0 10 0.025

TABLE II. g
(1)
2 bare mass and dynamical minimum.

� m h�1i h�2i

1.0 0.1 -0.0982(6) 0.225(1)

2.0 0.1 -0.1542(4) 0.3768(8)

3.5 0.05 -0.2073(5) 0.5300(9)

5.0 0.01 -0.2752(4) 0.6866(8)

10.0 5E-5 -0.3396(7) 0.843(1)

20.0 5E-7 -0.2362(4) 0.7023(7)
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TABLE III. g
(1)
2 : mass ratio.

� m1 m2 R R�

1.0 0.1595(2) 0.27839(5) 1.745(2) 1.74509

2.0 0.2133(2) 0.3784(1) 1.775(2) 1.77605

3.5 0.2262(5) 0.41192(5) 1.821(5) 1.82579

5.0 0.1615(4) 0.3004(1) 1.861(5) 1.86150

10.0 0.1379(3) 0.2630(2) 1.908(5) 1.90870

20.0 0.2896(3) 0.5576(1) 1.926(3) 1.92562

TABLE IV. d
(3)
4 : HMC parameters.

� Nhmc �

1.0 10 0.07

2.0 10 0.08

3.5 10 0.05

3.5 10 0.06

5.0 10 0.05

10.0 10 0.02

10.0 10 0.03

20.0 10 0.0125
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TABLE V. d
(3)
4 bare mass and dynamical minimum.

� m h�1i h�2i

1.0 0.1 0.1530(5) -0.1930(9)

2.0 0.1 0.2014(3) -0.2210(6)

3.5 0.05 0.2305(2) -0.2174(4)

3.5 0.01 0.3163(5) -0.3687(9)

5.0 0.01 0.2701(3) -0.2552(5)

10.0 5E-5 0.3061(3) -0.2729(6)

10.0 1E-7 0.4410(8) -0.504(1)

20.0 5E-7 0.2488(2) -0.1489(4)

TABLE VI. d
(3)
4 : mass ratio.

� m1 m2 R R�

1.0 0.2166(1) 0.4149(1) 1.916(2) 1.91665

2.0 0.3363(2) 0.6323(1) 1.880(1) 1.88120

3.5 0.3427(1) 0.6280(1) 1.832(1) 1.82840

3.5 0.2150(1) 0.3931(3) 1.829(1) 1.82840

5.0 0.3850(2) 0.6903(4) 1.793(2) 1.79398

10.0 0.3506(6) 0.6155(3) 1.756(4) 1.75193

10.0 0.1201(3) 0.2106(1) 1.753(6) 1.75193

20.0 0.5727(6) 0.9966(6) 1.740(2) 1.73740
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