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Abstract. Two-particle correlation functions are calculated for bosons emitted
from a localized thermal source (the “glow” of a “hot spot”). In contrast
to existing work, non-equilibrium effects up to first order in gradients of the
particle distribution function are taken into account. The spectral width of
the bosons is shown to be an important quantity: If it is too small, they do
not equilibrate locally and therefore strongly increase the measured correlation
radius.

In memoriam of Eugene Wigner and Hiroomi Umezawa.

1. Introduction

In the field of relativistic heavy-ion collisions the analysis of Bose-Einstein corre-
lations [1] has attracted much attention recently. The general hope is to extract
information about the size of a source radiating mesons by studying their two-
particle correlation function [2, 3]. These correlations are typical quantum effects,
hence quantum field theory is a proper framework to describe the problem the-
oretically. Such efforts have been undertaken with great success for many years
[4, 5, 6, 7], with a big emphasis on the quantum properties of mesons that were
emitted from a distribution (in space and time) of classical currents. The merger of
these theoretical considerations with space-time distributions of quasi-particles gen-
erated by simulation codes for relativistic heavy ion collisions has led to predictions
of correlation radii that are in rough agreement with experimental data.

The problem of a free quantum field radiating from a classical current is ex-
actly solvable [8, pp.438], also at finite temperature [9]. However, in the original
field where Bose-Einstein correlations have been used to measure source radii, i.e.,
in the Hanbury-Brown–Twiss analysis of star”light”, as well as in the analysis of
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relativistic heavy-ion collisions, the radiation source is a localized thermal distri-
bution. Such a state is a non-equilibrium state, hence somewhat difficult to handle
theoretically.

As was pointed out above, the usual way to circumvent this problem is the ap-
proximation of a non-equilibrium state as the superposition of an infinite number
of classical currents, with a certain current distribution in space and time (mostly
assumed to be gaussian) [5]. From the viewpoint of quantum field theory this ap-
proximation is somewhat unsatisfactory, if not questionable: True non-equilibrium
effects on the propagating particles are neglected, only local equilibrium effects are
maintained.

Since also in relativistic heavy-ion collisions the radiating system is off equi-
librium, one question arises immediately: Are there non-equilibrium effects on the
quantum Bose-Einstein correlation ? A secondary question is, whether the corre-
lation effects generated by a distribution of classical currents and those generated
by a thermal source are equivalent or not.

To address these questions we consider a stationary temperature distribution
with limited spatial extension, and calculate the two-particle correlation function
of bosons emitted thermally from such a distribution. In other words, we are
investigating correlations in the “glow” from a hot spot – in close analogy to the
physical situation present in astrophysics, but on the quantum level.

To this end we formulate the two-particle correlation problem in a field theoret-
ical method suited to handle non-equilibrium states. However, since the solution of
the full problem is beyond our capabilities, we restrict ourselves to the same order
of accuracy that is reached in standard transport theory: Our correlation function
incorporates non-equilibrium effects beyond the local equilibrium function, but only
up to first order in the gradients of the “temperature” distribution of this system.
Furthermore, the discussion is limited to a static non-equilibrium system.

In another sense we treat the correlation problem more consistently than in
standard transport theory: We take into account a nonzero spectral width for the
particles we consider. This is necessary, because at nonzero temperature every
excitation acquires a finite lifetime due to collisions with the medium [10]. We
describe this finite lifetime by attributing a certain spectral width γ > 0 inside the
hot spot also to asymptotically stable particles. For strongly interacting particles,
like e.g. pions, we may assume that such a spectral width is due to the coupling to
∆33-resonances.

Quantum field theory for non-equilibrium states comes in two flavors: The
Schwinger-Keldysh method [11] and thermo field dynamics (TFD, see [12, 13] for
references to the original work). For the purpose of the present paper, we prefer
the latter method: The problem of an inhomogeneous temperature distribution has
been solved explicitly in TFD up to first order in the temperature gradients [12].
This solution includes a nontrivial spectral function of the quantum field under
consideration. It employs a perturbative expansion in terms of generalized free



fields with continuous mass spectrum [10].

The paper is organized as follows. The next section contains a brief introduction
to the formalism of thermo field dynamics for spatially inhomogeneous systems.
In section 3 we derive expressions for the two-boson correlation function in non-
equilibrium states as well as its local equilibrium approximation. Section 4 contains
a study of the effect that is exerted on the correlation function by a nonzero spectral
width, section 5 contains an example with semi-realistic pion spectral function in
hot nuclear matter. Finally we draw some conclusions and discuss the experimental
relevance.

2. Outline of the method

In ”ordinary” quantum mechanics, a statistical state of a quantum system is de-
scribed by a statistical operator (or density matrix) W , and the measurement of
an observable will yield the average〈

E(t,x)

〉
=

Tr [E(t,x) W ]

Tr [W ]
, (1)

where the trace is taken over the Hilbert space of the quantum system and E is
the hermitean operator associated with the observable. In thermo field dynamics
(TFD), the calculation of this trace is simplified to the calculation of a matrix
element 〈

E(t,x)

〉
=

((1|| E(t,x) ||W ))

((1||W ))
, (2)

with ”left” and ”right” statistical state defined in terms of the two different com-
muting representations (see refs. [13, 12] for details).

In this state, we consider a complex, scalar boson field describing spinless
charged excitations in a statistical system not too far from equilibrium. In the
spirit of the first remark, one could think of this field as describing positive and
negative pions in nuclear matter.

According to the reasoning above, this “thermal” boson field is described by
two field operators φx, φ̃x and their adjoints φ?x, φ̃?x, with canonical commutation
relations

[φ(t,x), ∂tφ
?(t,x′)] = iδ3(x− x′)[

φ̃(t,x), ∂tφ̃
?(t,x′)

]
= − iδ3(x− x′) (3)

but commuting with each other. These two fields may be combined in a statistical
doublet, see ref. [12, 14] for details.



The free as well as the interacting scalar field can be expanded into momentum
eigenmodes

φx =

∫
d3k√
(2π)3

(
a†k−(t) e−ikx + ak+(t) eikx

)
φ̃x =

∫
d3k√
(2π)3

(
ã†k−(t) eikx + ãk+(t) e−ikx

)
. (4)

k is the three-momentum of the modes, therefore in this notation a†k−(t) creates a
negatively charged excitation with momentum k, while ak+(t) annihilates a positive
charge. Henceforth the two different charges are distinguished by an additional
index l = ± whenever possible.

For the free case the commutation relations of the a-operators at different times
are simple, while they are unknown for the interacting fields. However, we want to
go only one step beyond the free field case, i.e., we approximate the fully interacting
quantum fields by generalized free fields [10]. In this formulation, the operators a,ã
do not excite stable on-shell pions. Rather, they are obtained as an integral over
more general operators ξ, ξ̃ with a continuous energy parameter E [15, 14]:(

akl(t)

ã†kl(t)

)
=

∞∫
0

dE
∫
d3q A1/2

l (E,k)
(
B−1
l (E, q,k)

)? ( ξEql
ξ̃#
Eql

)
e−iEt

(
a†kl(t)
−ãkl(t)

)T
=

∞∫
0

dE
∫
d3q A1/2

l (E,k)

(
ξ#
Eql

−ξ̃Eql

)T
Bl(E, q,k) eiEt , (5)

where B is a 2 × 2 matrix, the weight functions Al(E,k) are positive and have
support only for positive energies, their normalization is

∞∫
0

dEEAl(E,k) =
1

2

∞∫
0

dEAl(E,k) = Zkl . (6)

The principles of this expansion have been discussed in ref. [10], its generalization
to non-equilibrium states was introduced in ref. [12]. For equilibrium states the
combination

A(E,k) = A+(E,k)Θ(E) −A−(−E,−k)Θ(−E) (7)

is the spectral function of the field φx and the limit of free particles with mass m
is recovered when

A(E,k) −→ sign(E) δ(E2 − k2 −m2) = sign(E) δ(E2 − ω2
k) . (8)

For non-equilibrium systems, the existence of a spectral decomposition cannot be
guaranteed [13]. We may expect however, that close to equilibrium the field prop-
erties do not change very much. Thus, with this formalism we study a quantum



system under the influence of small gradients in the temperature, with local spec-
tral function A(E,k). Corrections to such a picture only occur in second order of
temperature gradients [14, 12].

A thorough discussion of the 2× 2 Bogoliubov matrices was carried out in ref.
[12]. For the purpose of the present paper, we simply state their explicit form as

Bl(E, q,k) =

( (
δ3(q − k) +Nl(E, q,k)

)
−Nl(E, q,k)

−δ3(q − k) δ3(q − k)

)
, (9)

where N(E, q,k) is the Fourier transform of a space-local Bose-Einstein distribution
function

Nl(E, q,k) =
1

(2π)3

∫
d3z e−i(q−k)z nl(E, z)

nl(E, z) =
1

eβ(z)(E−µl(z)) − 1
. (10)

Here we have assumed a distribution function that only depends on the energy pa-
rameter E and on the space coordinate z. The expansion allows for a generalization
of this, to more general distribution functions depending also on the momentum
(q + k)/2.

We have argued, that our ansatz for the fields gives rise to a local spectral
function. A moving particle however feels an influence also of the gradients of this
local equilibrium distribution. Consequently also the propagator for the fields we
consider is correct beyond a local equilibrium situation, to be precise it is correct
to first order in the gradients of nl(E, z).

To complete the brief description of the TFD formalism, we specify the com-
mutation relation of the various operators in our expressions. The ξ-operators have
commutation relations[

ξEkl, ξ
#
E′k′l′

]
= δll′ δ(E − E

′) δ3(k − k′) . (11)

Similar relations hold for the ξ̃ operators, all other commutators vanish, see [10].
It follows from these definitions, that[

akl(t), a
†
k′l′(t)

]
= Zkl δll′ δ

3(k − k′)[
ãkl(t), ã

†
k′l′(t)

]
= Zkl δll′ δ

3(k − k′) (12)

are the equal-time commutation relations for the a, ã operators.
The ξ, ξ̃ operators act on the ”left” and ”right” statistical state according to

ξEkl||W )) = 0, ξ̃Ekl||W )) = 0, ((1||ξ#
Ekl = 0, ((1||ξ̃#

Ekl = 0 ∀E,k, l = ±1 . (13)

With these rules, all bilinear expectation values can be calculated exactly. Higher
correlation functions have a perturbative expansion in the spectral function.



3. Two-particle correlation function

Of the higher correlation functions, we are interested in the two-particle correlation
function, which is the probability to find in the system a pair of pions with mo-
menta p and q. For the non-equilibrium system we are considering, this correlation
function is

cll′ (p, q) =

〈
a†pl(t)a

†
ql′(t)aql′ (t)apl(t)

〉
〈
a†pl(t)apl(t)

〉 〈
a†ql′(t)aql′(t)

〉 = 1 + δll′
F(p, q)F(q,p)

F(p,p)F(q, q)
. (14)

For simplicity, we abbreviate the mean momentum of this pair by Q = (q + p)/2.
The function F(q,p) is calculated using the standard rules of thermo field dynamics
given above. One obtains

F(p, q) =

∞∫
0

dE

∫
d3z (Al(E,p)Al(E, q))

1
2 ei(p−q)z nl(E, z) , (15)

where one may also insert a z-dependent spectral function without violating the
accuracy to first order in the gradients.

How these gradients enter the above expressions may be seen when performing
an expansion of A around the mean momentum Q.

F(p, q) = F0(p, q)

+

∞∫
0

dE

∫
d3z ei(p−q)z (i∇QAl(E,Q, z)∇znl(E, z))

+ O(∇2
zn) . (16)

Here, the lowest order term

F0(p, q) =

∞∫
0

dE

∫
d3z ei(q−p)zAl(E,Q, z)nl(E, z) (17)

is the local equilibrium contribution to the F we have obtained above.
For a possible generalization, i.e., to explicitly momentum dependent nl, it is

worthwhile to note that the gradient term in (16) is just one half of the Poisson
bracket of A and n [12]. Furthermore, we find that F(p,p) = F0(p,p), i.e., the
denominator of the correlation function is not affected by the gradient expansion.

We therefore obtain as the local equilibrium two-particle correlation function
the expression

cloc
ll′ (p, q) = 1 + δll′

F0(p, q)F0(q,p)

F0(p,p)F0(q, q)
. (18)



However, the full non-equilibrium correlation function cll′ (p, q) is the one measured
experimentally.

The exact correspondence between the local equilibrium result and other cal-
culations of the correlator [4, 5, 6, 7] may be found when inserting the free spectral
function from (8):

cfree
ll′ (p, q) = 1 + δll′

∣∣∣∣∫ d3z ei(q−p)z nl(ωQ, z)

∣∣∣∣2(∫
d3z nl(ωp, z)

)(∫
d3z′ nl(ωq, z

′)

) . (19)

Obviously, one may not insert the free spectral function into equation (15) for F .
This is not a flaw of the derivation, but suggests – as expected – that the limit of
zero spectral width at finite temperature is ill-defined [16].

4. Simple spectral function

In this section we study the difference between the local equilibrium correlation
function (18) and the non-equilibrium result (15) in more detail. To this end we
calculate the correlation functions with a simple parameterization of a boson (pion)
spectral function,

Al(E,p) =
2Eγ

π

1

(E2 −Ω2
p)

2 + 4E2γ2
(20)

where Ωp =
√
m2
π + p2 + γ2 and mπ = 140 MeV. To gain information about the

maximal influence exerted by the occurrence of a nonzero spectral width, we use
an energy and momentum independent γ equal for both charges.

The temperature distribution is taken as a radially symmetric gaussian,

T (z) = T (r) = T0 exp

(
−
r2

2R2
0

)
, (21)

with chemical potential µ = 0 and R0 = 5 fm.
The local equilibrium pion distribution for a given momentum k is obtained by

folding n(E, z) with the spectral function. Hence, the mean radius of the particle
distribution function acquires a γ-dependence. We define the rms radius orthogonal
to the direction of k as

Rrms =

√
I2

I0
Ij =

∞∫
0

dr rj
∞∫

0

dEA(E,k)
(

eE/T (r) − 1
)−1

. (22)

Note, that Rrms is not the 3-dimensional rms radius of the distribution function
(which would be I4/I2). Rather, Rrms is half the product of angular diameter and



distance between detector and source. A constant temperature over a sphere of
radius R0 would yield an Rrms = R0/

√
3, while its 3-D rms radius is R0

√
3/5.

In fig. 1 we have plotted the correlation functions for two different constant
values of the parameter γ. Clearly, for γ=50 MeV the correlation function cll′(p, q)
agrees quite well with the local equilibrium result, and very closely resembles a
gaussian.

However, for smaller γ=5 MeV the non-equilibrium correlation function is much
narrower in momentum space than the local equilibrium result, it also deviates from
a gaussian form. Nevertheless we may approximate it by such a simple functional
form in order to extract quantitative information, i.e.,

cll′ (p, q) ≈ 1 + exp
(
−R2(p− q)2

)
(23)

and similarly for cloc
ll′ (p, q) with parameter Rloc.

In figure 2 we show the two fit parameters R and Rloc as function of γ, together
with the γ-dependent rms radius of the particle distribution. We find that the
measured correlation radius R is always larger than Rloc, with a minimum reached
at γ ≈ 26.7 MeV.

The plot may be divided in two regions, with a boundary at 2γRrms[γ] = 1⇔
γ ≈ 30.2 MeV. For these two regions we find

2γRrms � 1 ⇒ R ≈ Rloc + 1/γ � Rrms > Rloc

2γRrms � 1 ⇒ R ≈ Rloc
>
∼ Rrms > Rloc .

(24)

For larger γ, the small differences between R, Rloc and Rrms may be attributed
to our use of a gaussian temperature distribution: n(T (r)) is not strictly gaussian,
only in the (unphysical) limit γ →∞ one reaches R = Rloc = Rrms = R0/

√
2

The interpretation of this result is straightforward: A finite lifetime or nonzero
spectral width γ > 0 of the bosons inside the source is essential, if one wants to
infer the thermal source radius R0 from correlation measurements. To be more
precise, only for 2γRrms ≥ 1 the correlation function measures the mean diameter
of the particle distribution function n(E, z).

This result is in agreement with our view of the relaxation process of a non-
equilibrium distribution function: The relaxation rate is, to lowest order, given by
the spectral width of the particle [12]. Consequently, zero γ corresponds to a system
without dissipation. In such a system, only quantum coherence effects exist, and
thus the correlation function approaches the “quantum limit”

lim
γ→0

cll′ (p, q) = 1 + δll′ δp q . (25)

For this case, the correlation radius obtained by a gaussian fit becomes infinite.
We may also view, for a given energy, 1/γ as a measure for the spatial size of the
pion “wave packet”, which must be smaller than the object to be resolved. In other
words, the mean free path of the bosons must not exceed the object size to produce
correlations.



fπN∆ g′ mπ MN M∆ Γ ρ0

2 0.5 0.14 GeV 0.938 GeV 1.232 GeV 0.12 GeV 0.155 fm −3

Table 1: Coupling constants and masses used in the calculations of this work.
The value of g′ was chosen to allow for a direct comparison with simulation codes for heavy-

ion collisions, a more realistic value to describe pion scattering data would be g′ ≈ 1/3.

5. Semi-realistic spectral function

To get a more realistic result for the non-equilibrium two-pion correlation function
measured in the thermal radiation from a hot spot in nuclear matter, we use the
the spectral function derived in [12, 17]. It includes the coupling of pions to ∆33-
resonances in nuclear matter, which are taken to have a constant spectral width Γ
by themselves.

It was argued in ref. [12], that using such an approximate spectral width for
the ∆33 resonances constitutes the only way to achieve an analytical solution of
the ∆-hole polarization problem in nuclear matter. An even more realistic energy-
momentum dependent spectral width for the ∆33 resonance can be treated only in
a fully self-consistent numerical treatment involving dispersion integral techniques.

To first order in such a constant Γ, the pionic spectral function is

A(E,k, z) =
k2C(z)

π

ΓE ω∆

(E2 − ω′ 2+ )2 (E2 − ω′ 2− )2 + Γ2E2 (E2 −E2
π)2

. (26)

Note, that this function is coordinate dependent. The energies in the denominator
are

ω′ 2± =
1

2

(
E2
N∆ + (Γ/2)2 + E2

π ±

√
(E2

N∆ + (Γ/2)2 − E2
π)

2
+ 4k2C(z)ω∆

)
, (27)

with functions

ω∆ = E∆(k)−MN =
√
k2 +M2

∆ −MN

C(z) =
8

9

(
fπN∆

mπ

)2 (
ρ0
N (z)−

1

4
ρ0

∆(z)

)
EN∆(k) =

√
ω∆(k) (ω∆(k) + g′ C(z)) . (28)

The baryon number in each small volume and hence the baryon density is a constant
parameter of the calculations, for free particles with bare ”on-shell” energies

EN(p) =
√
p2 +M2

N and E∆(p) =
√
p2 +M2

∆ (29)



this baryon density is obtained as

ρ0
b = ρ0

N (z) + ρ0
∆(z)

= 4

∫
d3p

(2π)3
nN(EN (p), z) + 16

∫
d3p

(2π)3
n∆(E∆(p), z) . (30)

The distribution functions are taken as local Fermi-Dirac functions

nN,∆(E, z) =
1

e(E−µN,∆)/T (z) + 1
, (31)

with temperature T (z). As temperature distribution we use the same as in the
previous section, eq. (21), but with different central temperatures T0.

Since the temperature depends on the spatial coordinate, fixed baryon density
implies that the “baryochemical” composition of the hot spot changes with coordi-
nate z. In the center of the hot spot baryons are, to a large extent, present in the
form of ∆-resonances. Outside the hot region baryons are “only” nucleons – and
as shown before, the pion properties there do not influence our calculation.

In fig. 3, we have plotted the correlation function for a pair momentum of
Q = (p+ q)/2 = 100 MeV at the two values T0= 100 MeV and T0 = 160 MeV. In
this momentum region, the spectral width of the pion is small due to its pseudo-
vector coupling with baryons. This we assume to be a general feature of pions
in nuclear matter, although one may argue about the exact value of γ. We find,
that at higher temperature the non-equilibrium correlation function (which we had
assumed to be the one measured experimentally) is much narrower in momentum
space than the local equilibrium function.

The local equilibrium correlation function however is close to the the rms-
radius of the thermal source. The correlation radii obtained by a gaussian fit to
the non-equilibrium as well as the local equilibrium distribution are given in table
2. Following these results we conclude, that the effect we propose is absent at
higher momentum of the pions, where the p-wave coupling to nuclear matter is big
enough to give it a sufficiently large spectral width for local equilibration. In the
low momentum region, the measured correlation radius overestimates the source
size by as much as 30 - 40 %.

T (p+ q)/2 R Rloc Rrms R/Rrms
100 MeV 100 MeV 3.99 fm 2.89 fm 3.14 fm 1.27
160 MeV 100 MeV 4.86 fm 3.23 fm 3.51 fm 1.38
100 MeV 350 MeV 3.23 fm 3.16 fm 3.34 fm 0.97
160 MeV 350 MeV 3.57 fm 3.49 fm 3.73 fm 0.96

Table 2: Correlation radii obtained by gaussian fit to the correlation function with
semi-realistic spectral function.



6. Conclusions

Before we draw a final conclusion from our work, we must emphasize that it is
still too early to use our result for the correlation function in a direct comparison
to experimental data. For any realistic situation, we certainly have to take into
account also the partially coherent production of pions: A substantial fraction of
pions arriving in a detector stems from the free-space decay of ∆33 resonances, thus
forcing cll′ (p,p) < 2.

Furthermore it seems worthwhile to note that our derivation does not contradict
existing work on the correlation function. In an early semiclassical treatment, an
infinite lifetime (equivalent to γ ≡ 0) of an excitation was found to produce a
correlation function c ≡ 1 [4], whereas we find an infinitely narrow peak in this
“quantum limit”, see eq. (25.

Another paper based on the Schwinger-Keldysh method also finds that the
total production rate of particles is proportional to an energy integral over the off-
diagonal self-energy components, i.e., to the integral over γ · n in our formalism
[7]. However, due to their explicit quasi-particle approximation the authors of ref.
[7] lose the consistent treatment of the non-equilibrium effects to first order in the
temperature gradients.

Let us briefly remark on the physical situation present in stars emitting pho-
tons: For these we may assume a thermal width of the photon which is very small,
e.g., γ ≈ αT ≈ 0.5/137 eV. However, the source radiusRrms of a star is, in general,
so big that the condition 2γRrms � 1 is always satisfied. Hence our results do not
affect correlation radii measured for astronomical objects.

Having in-lined our calculation with existing work, we may now carefully con-
clude the following physical effect relevant for relativistic heavy-ion collisions: When
pion pairs with a relatively low momentum are created in hot nuclear matter, their
p-wave interaction with the surrounding medium is small. Hence, in their move-
ment outwards from the hot zone they do not have a sufficiently short mean free
path to be locally equilibrated. Thus, their correlation length is dominated by their
mean free path (≈ 1/γ) rather than by the thermal source radius.

As we have shown, this leads to a correlation function which is narrower in
momentum space than expected in a local equilibrium situation: Compare the solid
and the dashed curves in fig. 3. Consequently, measuring the correlation function
of low momentum pions in a non-equilibrium state overestimates the source radius.
For a semi-realistic pion spectral function and a pair momentum of 100 MeV, we
find this effect to be as large as 30 – 40%, depending strongly on the actual source
size.

Turning to experimental results of NA44, we learn that correlation measure-
ments of pions and K-mesons emanating from relativistic heavy-ion collisions yield
comparable fitted correlation radii of 3–4 fm [2]. As we have shown, it might be pre-
mature to conclude from these measurements that the source size for both mesons
is similar: One would have to compare the mean free path of both particle species



before such a conclusion.
More recently the experiment NA49 has measured pion correlation functions

in central Pb+Pb collisions at 33 TeV. Resulting was a correlation radius of 6-7
fm, as compared to 4.5 fm in S+Au collisions [3]. It is a particularity of our semi-
realistic pion spectral function that it is narrower for higher temperature and low
momenta. Physically, the first effect stems from the higher ∆33 abundance in the
hotter system: ∆-particle/nucleon-hole pairs are less easily polarized. The second
effect is due to the p-wave coupling of pions to nucleons, as was pointed out above.

Consequently, the effective γ of the pions drops with increasing temperature –
and one measures a higher correlation radius. If we presume this effect, which was
deduced for equilibrated matter, also to hold in the highly non-equilibrium situation
present in the experiments, we can state that the higher correlation radius of the
NA49 data might indicate a higher temperature of the reaction zone rather than
its bigger size. However, this interpretation depends crucially on the momentum
range where the pions are measured. The uncertainties in this statement indicate
the importance of calculations for mesonic spectral functions in hot nuclear matter.

The effect of narrowing the correlation function might be even more pronounced
due to the short time-scales of relativistic heavy-ion collisions, which may suppress
the spectral width (' collision rate) of pions even more. Indications for such a
behavior are obtained in simulation codes, where at high enough collision energies
one may reproduce experimental data with free particle collision rates. Thus, in-
stead of speaking about “temperature”, which always is connected with the notion
of a partial equilibrium, we may also reformulate our conclusion even more sharply:
Measured correlation functions become narrower due to non-equilibrium effects in
statistically radiating sources. A bigger correlation radius therefore is an indica-
tion, that a system of colliding heavy-ion collisions is farther from local equilibrium
in the collision zone.

Finally we point out that in common calculations of the correlation function
one has to introduce ad-hoc random phases between several classical sources and
then obtains only the local equilibrium correlator cloc

ll′ (p, q). Instead, we relied
on a proper field theoretical treatment which incorporates non-equilibrium effects
correctly up to first order in gradients of the temperature. We found, that the
non-equilibrium character of the system must be taken serious when calculating
the correlation function – which answers the secondary question we asked in the
introduction.

Coda

A large part of the work of E.Wigner was dedicated to the study of symmetries in
physical systems. The fact, that particles in a thermal state must have a nontrivial
spectral function rather than a sharp ”mass-shell constraint”, is connected to the
breaking of such a symmetry: A thermal state has a preferred rest frame and
therefore violates the Lorentz invariance of the usual field theoretical ground state
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Figure 1: Correlation function for a pion “hot spot” with temperature T0=100
MeV.
Simple spectral function from eq. (20), (p+ q)/2= 100 MeV.

Thin lines: γ=50 MeV, Thick lines: γ=5 MeV.

Solid lines: non-equilibrium correlation function (14).

Dashed lines: local equilibrium correlation function (18).



Figure 2: Correlation radius of a pion “hot spot” with temperature T0=100 MeV.
Simple spectral function from eq. (20), (p+ q)/2= 100 MeV.

Thick solid line: gaussian fit radius R of the correlation function (14).

Thick dashed line: gaussian fit radius Rloc of the correlation function (18).

Thin solid line: γ-dependent rms radius Rrms.



Figure 3: Correlation function for pions from a “hot spot” with different central
temperature.
Semi-realistic spectral function from eq. (26), (p+ q)/2= 100 MeV.

Top panel: Central temperature T0 = 100 MeV,

Bottom panel: Central temperature T0 = 160 MeV,

Solid thick line: non-equilibrium correlation function (14).

Dashed line: local equilibrium correlation function (18).

Solid thin line: gaussian with correlation radius equal to Rrms (see table).


