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Abstract

A novel approach to parton distributions parameterization in terms of quantum
statistical functions is here outlined. The description, already proposed in pre-
vious publications, is here improved by adding to the statistical distributions an
unpolarized liquid component. This new contribution to fermion partons is able to
reproduce the expected low x behaviour of structure functions. The analysis pro-
vides a satisfactory description of polarized and unpolarized deep inelastic data and
shows a possible connection between the Gottfried and Bjorken sum rules.
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1 Introduction

In a recent series of papers [1]-[8] the role of Pauli exclusion principle to explain the

experimental data on unpolarized and polarized structure functions of the nucleons has

been studied.

The relevance of the quantum statistics on the parton distribution is supported by

several phenomenological observations. The most relevant phenomenon is certainly the

measurement of a defect in the Gottfried sum rule [9, 10]. It can be explained in terms

of a Pauli blocking effect on the production of u sea quark with respect to d sea quark,

which yields a flavour asymmetry between ū and d̄ in the proton. Another interesting

observation is a relationship which seems to occur between the shapes of the quark parton

distributions and their first momenta, which is the typical characteristic of Fermi–Dirac

distribution functions.

These considerations naturally suggest to use quantum statistically inspired param-

eterizations for the parton distribution functions. In this description, the independent

variable which plays the role of the energy is the Bjorken variable x, and the distribu-

tions assumed will be of the Fermi–Dirac kind for quarks, and Bose–Einstein for gluons.

Interestingly, to properly describe the low x behaviour of the structure functions, a liquid

unpolarized component dominating the very low x region has to be added. It does not

affect the quark parton model sum rules (QPMSR) but it is necessary to reproduce the

antiquark distribution at low x.

The paper is organized as follow, in Section 2 we summarize the phenomenological

motivations behind our description for the parton distributions. In Section 3 the distri-

bution function parameterizations are shown in detail and discussed in connection with

a possible physical interpretation. Section 4 deals with the results of a fitting procedure

performed to get the free parameters of the distribution functions. The theoretical pre-

dictions are shown in comparison with the experimental data and the results for QPMSR

are also discussed. In Section 5 we give our conclusions and remarks.
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2 Evidence for quantum statistical effects in parton

distributions

As already stated, an experimental evidence for a central role played by the Pauli principle

in the physics of nucleon is the defect in the Gottfried sum rule [9]

IG =
∫ 1

0

1

x
[F p

2 (x)− F n
2 (x)] dx =

1

3
(u+ ū− d− d̄) , (1)

that for SU(2)I invariant sea quark distributions (d̄ = ū) gives IG = 1/3. Indeed NMC

experiment [10] measures for the l.h.s. of Eq. (1)

IG = 0.235± 0.026 , (2)

implying

d̄− ū = 0.15± 0.04 u− d = 0.85± 0.04 . (3)

This experimental result can be explained following the idea of Field and Feynman [11],

who suggested that, in the proton, the Pauli principle depresses the production of uū

pairs in the proton with respect to dd̄, since it contains two valence u quarks and only one

d. We will return on this fact in the following to focus on a possible connection between

the violation of the above sum rule and the Bjorken one [12].

From the previous considerations one expects a relevant role played by the statistics

in the whole phenomenology of deep inelastic scattering, and thus it suggests to look for

others typical characteristics of this behaviour.

A peculiar characteristic of a Fermi–Dirac statistical function is certainly the strong

connection between shape and abundance. This is an immediate consequence of the Pauli

exclusion principle which forbids two or more fermions to have the same quantum numbers

and implies that the more abundant is distribution the broader is in x the associated

function.

With the aim to check if this situation occurs in the nucleon structure let us consider

the abundances of valence quarks in the nucleons. As it is well-known, at Q2 = 0 they

are connected to the axial couplings of the baryon octet F and D, through the relations

u↑val = 1 + F u↓val = 1− F , (4)

d↑val =
1 + F −D

2
d↓val =

1− F +D

2
. (5)
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By using the experimental values obtained by the two bodies strong decays of hyperons

F = 0.464± 0.009 D = 0.793± 0.009 [13], [14], we get

u↑val '
3

2
' u↓val + d↑val + d↓val , (6)

which tells us that u↑val is the most abundant parton in the proton, at least at Q2 = 0.

Moreover, by observing that F ' 1/2 and D ' 3/4 one also gets

u↓val '
1

2
=
d↑val + d↓val

2
. (7)

In addition to this, the behaviour at high x of F n
2 (x)/F p

2 (x) [15], known since a long time,

and the more recent polarization experiments [16], [17], which show that at high x the

partons have spin parallel to the one of the proton, imply that u↑(x) is the dominating

parton distribution in the proton at high x. Thus, to the most abundant u↑ corresponds

effectively a broader distribution in the Bjorken variable x.

Eq. (7) has also another interesting implication. In a previous work we assumed that

the parton distributions at a given large Q2 depend on their first momenta (abundances)

computed at Q2 = 0 [2]

p(x) = F(x, pval) , (8)

with F an increasing function of pval and with a broader shape for higher values of pval.

From this assumption and by virtue of (7) we get

u↓(x) =
1

2

[
d↑(x) + d↓(x)

]
=

1

2
d(x) , (9)

which implies

∆u(x) = u↑(x)− u↓(x) = u(x)− d(x) . (10)

Note that, Eq. (10) connects the contribution of ∆u(x) to gp1(x), with the terms due to

up and down quarks in the unpolarized structure functions of nucleons F2(x) [2]

xgp1(x)
∣∣∣
∆u

=
2

3
[F p

2 (x)− F n
2 (x)]u+d . (11)

This relation should hold in good approximation for the total quantities xgp1(x) and

F p
2 (x)− F n

2 (x), since the contribution in gp1(x) due to ∆d(x) is depressed for the twofold

reason that e2
d = (1/4)e2

u and ∆dval ' −(1/4)∆uval. By integrating Eq. (11) one thus get

a connection between the spin sum rule and the Gottfried sum rule and in turn a relation

between their possible defects.
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3 Parton distributions as Fermi–Dirac and Bose–Einstein

statistical functions

The previous considerations on the role played by the Pauli principle in the nucleon

structure suggest to assume Fermi–Dirac distributions in the variable x, at least for large

x, for the quark partons [5]

pλ(x) = f(x)

[
exp

(
x− x̃(λ)

x̄

)
+ 1

]−1

, (12)

where the index λ denotes the different species of quarks, characterized by flavour and

polarization. In Eq. (12), f(x) is a weight function which accounts for the energy level

density, and because it is connected to the nonperturbative aspect of QCD results indepen-

dent of flavours and polarization. The universal parameter x̄ represents the temperature

for the system, whereas x̃(λ) stands the thermodynamical potential of the parton λ.

The expression chosen for f(x) is inspired by the expected power behaviour at x = 0,

and by the obvious kinematical cut which forces the function to vanish at x = 1. In order

to satisfy these constraints we assume for simplicity a power low dependence on x

f(x) = A xα(1− x)β . (13)

Indeed, the assumption that the form given in Eq. (12) for the quark distribution func-

tions, which requires different thermodynamical potentials in order to describe the ex-

perimental data, is valid in the low x limit as well has at least two unpleasant features.

Firstly, one gets in the nonperturbative region different behaviour for the different par-

ton distributions, where on the contrary one would expect an universal dependence on

x. Moreover, the power dependence on x of Eq. (13), fitted by the experimental data

mostly placed at the large x, is not suitable to reproduce the more divergent contribution

expected at low x. This most divergent part does not contribute to QPMSR as the ones

given by Gottfried and Bjorken [12] with I = 1 quantum numbers exchanged. To this aim

we add to (12) an unpolarized component, which we call liquid to stress the possibility

that it is connected to the presence, at low x, of a new phase in the quark-gluon plasma

due to the highly nonperturbative QCD regime

pλ(x) =
AL

2
xαL(1− x)βL +A xα(1− x)β

[
exp

(
x− x̃(λ)

x̄

)
+ 1

]−1

. (14)
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In the fitting procedure we take as free parameters, apart from the constants involved in

f(x) and in the liquid component of (14), the temperature x̄ and the x̃ for u↑(↓), d↑(↓), ū and

d̄ (the latters are assumed not polarized). We tried initially to introduce spin-dependent

x̃’s also for the q̄’s and to test the relationship

∆ū(x) = ū(x)− d̄(x) , (15)

assumed in previous works [2, 6], but unfortunately, we found practically the sameχ2 with

negative and positive values for ∆ū(x) and/or ∆d̄(x). Hence, for not loosing predictivity

in the fit procedure we have assumed unpolarized antiquarks.

As far as the strange quarks are concerned, we assume for simplicity unpolarized

distribution functions given by the empirical expression

s = s̄ =
ū+ d̄

4
, (16)

which experimentally is very well satisfied.

Analogously, for the gluons, if we neglect their polarization , the bosonic statistic

suggests the consider, at large x, the distribution function

G(x) =
16

3
A xα(1− x)β

[
exp

(
x− x̃G
x̄

)
− 1

]−1

, (17)

where the factor 16/3 is just the product of 2 (Sz(G) = ±1) times 8/3, the ratio of the

colour degeneracies for gluons and quarks.

4 Discussion of the results

By assuming for the parton distributions Eqs. (14) and (17), we fit the distribution

parameters from the experimental data for F p
2 (x)−F n

2 (x) [10], xF3(x) [18], xgp1(x) [16, 17]

and xgn1 (x) [19], which do not receive contributions from the liquid component, and from

F n
2 (x)/F p

2 (x) [10] and xq̄(x) [20].

The avaliable experimental data on deep inelastic scattering observables correspond

in general to different values of Q2. This would suggest, in order to use the data to

determine the distribution parameters, which in general will depend on Q2, to apply the

evolution equations to lead all the experimental results to the same Q2. In our analysis

we have neglected this Q2 dependence of the distribution parameters, since we expect
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from the evolution equations a smooth logarithmic dependence. As far as the polarized

distributions is concerned, in fact, the expected Q2 dependance [6] results to be smaller

than the experimental errors, and thus our analysis is slightly affected by neglecting this

dependance.

Indeed, the data on unpolarized nucleons structure functions are atQ2 = 4 GeV 2 [10],

the neutrino data at Q2 = 3 GeV 2 [18], and q̄ measures are performed at Q2 = 3 GeV 2

and 5 GeV 2 [20] and differ at small x, while our curve is intermediate between the two

sets of data. The data on gn1 (x) are at Q2 = 2 GeV 2 [19], whereas gp1(x) is measured at

Q2 = 10 GeV 2 by SMC [16] and at Q2 = 3 GeV 2 by E143 [17]; despite some narrowing

of the distribution at higher Q2 showing up in the data, the values of Ip are in good

agreement.

In Table 1 we report the parameters found in the present analysis [8]and compare them

with the results of a previous fit (without liquid) [5], and with the ones by Bourrely and

Soffer [6] found on similar principles, but with several different assumptions. In the Figures

1.-6., the predictions for the nucleon structure F p
2 (x) − F n

2 (x), F n
2 (x)/F p

2 (x), xgp1(x),

xgn1 (x), xF3(x) and xq̄(x) are shown, respectively, and compared with the experimental

data.

The parton distributions found in [8] are described in Figure 7. Since the total momen-

tum carried by fermion partons is 53%, we get x̃G = −1/15 by requiring that the gluons

carry out the remaining part of the proton momentum. In Ref. [8], the gluon distribution

is compared with the information found on them in CDHSW [21], SLAC+BCDMS [22]

and in NMC [23] experiments at Q2 = 20 GeV 2. The agreement is fair for x > .1, while

the fast increase at small x, confirmed also from the data at very small x at Hera [24],

confirms that a liquid component is needed also for gluons. The excess at high x of our

curve with respect to experiment may be, at least in part, explained by the expected nar-

rowing of the distribution from Q2 = 4 GeV 2, where we fit the unpolarized distributions,

to Q2 = 20 GeV 2.

The inclusion of the liquid term and the extension of our fit to the precise experimental

results on neutrinos has brought to substantial changes in the parameters [8] with respect

to the previous work [5].

The low x behaviour of f(x) become smoother (' x−.203±.013 instead of x−0.85), but this
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is easily understood since the previous behaviour was a compromise between the smooth

gas component and the rapidly changing liquid one to reproduce the behaviour of q̄(x).

The liquid component, relevant only at small x, carries only .6% of parton momentum

and its behaviour ∼ x−1.19, similar to the result found in [25], is less singular than the

one, suggested in the framework of the multipherial approach to deep-inelastic scattering,

proportional to ∼ x−1.5 [26]. The parameter x̃(u↑) took the highest value allowed by us

(1.), since the factor in f(x), (1− x)2.34, is taking care to decrease u↑(x) at high x. The

temperature x̄ is larger than the previous one and the one found by Bourrely and Soffer

[6]. Instead x̃(u↓) is slightly smaller than the previous determination [5] and about half

the value found in [6], where f(x) is different for u↑ and u↓.

The ratio r = u↓(x)/d(x) varies in the narrow range (.546, .564) in fair agreement with

the constant value 1− F = .536± .009 assumed in [5] and slightly larger than the value

1/2 taken in [2] and [6].

The central value found for the first moment of ūgas(x), .03, is smaller than d̄gas(x)/2,

.08, while Eq. (15) implies ū(x) ≥ d̄(x)/2. However, the large upper error on ūgas and

the uncertainty in disentangling the gas and liquid contributions for the q̄’s do not allow

to reach a definite conclusion about the validity of Eq. (15).

Finally, we can compare the predictions of [8] with the measured asymmetry for Drell-

Yan production of muons at y = 0 in pp and pn reactions

ADY =
dσpp/dy − dσpn/dy

dσpp/dy + dσpn/dy
, (18)

which at rapidity y = 0 reads

ADY =
(λs(x)− 1)(4λ(x) − 1) + (λ(x)− 1)(4λs(x)− 1)

(λs(x) + 1)(4λ(x) + 1) + (λ(x) + 1)(4λs(x) + 1)
, (19)

where λs(x) = ū(x)/d̄(x) and λ(x) = u(x)/d(x). At x = .18 we have λs(.18) = .454 and

λ(.18) = 1.748 giving rise to ADY (.18) = −.138 in fair agreement with the experimental

result −.09± .02± .025 [27].

The behaviour of ADY (x) is plotted in Figure 8 together with the experimental point

measured by NA51 collaboration.
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5 Conclusions

We compared with data the quark-parton distributions given by the sum of Fermi–Dirac

functions and of a term not contributing to the QPMSR relevant at small x. We obtain

a fair description for the unpolarized and polarized structure functions of the nucleons as

well as for the F3(x) precisely measured in (anti)neutrino induced deep-inelastic reactions

and for q̄ total distribution. The conjectures of previous works on d distributions are

well confirmed by the values chosen for their thermodynamical potentials. As long as the

implications for QPMSR the values found for the first momenta of the various parton

species give l.h.s.’s consistent with experiment. For the fundamental issue of the Bjorken

sum rule, as advocated in previous works [1, 4] and [5], we get

∆u ' u− d + 2F − 1 , (20)

∆d ≥ F −D , (21)

to confirm the suspicion of a violation of Bjorken sum rule related to the defect in the

Gottfried sum rule.

A word of caution is welcome for our conclusions on the violation of Bj sum rule, since

we did not include the effect of QCD corrections in relating the quark parton distributions

to the structure functions. Also we assumed no polarization for q̄, being unable to get a

reliable evaluation of ∆q̄ with the present precision for the polarized structure functions

at small x. Indeed our description of gp1(x) and gn1 (x) is good in terms of ∆u(x) and

∆d(x), but our prediction is smaller than the central values of the three lowest x values

measured by SMC.
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Parameters Previous fit [5] Fit BS [6] Actual fit [8]
χ2/N = 2.47

A .58 2.66
+.09
−.08

α −.85
−.646 for u↑val
−.262 for u↓val

−.203± .013

β 2.34
+.05
−.06

AL .0895
+.0107
−.0084

αL −1.19± .02

βL 7.66
+1.82
−1.59

x̄ .132 .092 .235± .009 gas abund.

x̃(u↑) .524 .510 for u↑val 1.00± .07 1.15± .01

x̃(u↓) .143 .231 for u↓val .123± .012 .53± .01

x̃(d↑) −.068
+.021
−.024

.33± .03

x̃(d↓) .200
+.013
−.014

.62± .01

x̃(ū↑) −.216 −.886± .266 .015
+.034
−.009

x̃(ū↓) −.141 ′′ ′′

x̃(d̄↑) = x̃(d̄↓) ′′ −.460
+.047
−.064

.08
+.03
−.02

Table 1. Comparison of the values for the parameters of our best fit [8] with the corresponding

quantities, if any, found in previous analysis [5], [6].

Sum rule Experimental data Our fit [8] QPM

GLS 2.50± .018± .078 [18] 2.44
+.04
−.07

3

G .235± .026 [10] .20± .02 1/3

EJ


Ip

In

.136± .011± .011 [16]

.129± .004± .009 [17]

−.022± .011 [19]

.122± .007
−.030± .010

.188± .005

−.021± .005

Bj .152± .010 .209
Table 2. Comparison of our predictions for the sum rules with the experimental

values and with the quark parton model (QPM) predictions without QCD corrections.
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Figure 1: The prediction for F p
2 (x)−F n

2 (x) is plotted and compared with the experimental
data [10]
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Figure 2: The prediction for F n
2 (x)/F p

2 (x) is plotted and compared with the experimental
data [10].
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Figure 3: xgp1(x) is plotted and compared with the data [18], [19].
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Figure 4: xgn1 (x) is plotted and compared with the data [21].
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Figure 5: xF3(x) is plotted and the experimental values are taken from [20].
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Figure 6: xq̄(x) versus x is shown, the experimental data correspond to [22].
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Figure 7: The momentum distributions of gas component of q and q̄’s, and of the total
liquid part are here shown.
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Figure 8: The asymmetry ADY (x) is here plotted, the experimental result is taken from
[29].
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