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Abstract. Results of nonradial, nonadiabatic pulsation cal-
culations on hydrogen-rich white dwarf models are presented.
In contrast to earlier attempts, the modeling builds on hydro-
dynamically simulated convective surface layers supplemented
with standard interior models. Based on our stellar models and
despite of various simple attempts to couple convection and
pulsation we could not reproduce theoretically the presently
adopted location of the observed blue edge of the ZZ Ceti vari-
ables. When the convective e�ciency is high enough we found
a sensitive dependence of the stability properties of the g modes
on the pulsational treatment of shear within the convection
zone.
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1. Introduction

When white dwarf stars evolve across the Hertzsprung-Russell
(HR) diagram they encounter episodes of oscillatory instabil-
ities. In the major families of white dwarfs { DA, DB, and
DO { partial ionization of the respective dominant chemical
constituents in the envelopes are believed to destabilize numer-
ous gravity modes. The di�erent envelope structures and the
di�erent ionization potentials involved in the DA, DB, and DO
variabilities place the instability regions at di�erent locations
along the white-dwarf cooling tracks.

The frequently observed rich spectra of pulsation modes
of oscillating white dwarfs made them predestined targets for
asteroseismology. Indeed, unprecedented accuracy in the de-
termination of stellar parameters (mass, chemical strati�ca-
tion, rotation rate, or magnetic �eld strength) is being claimed
(Winget et al. 1994, Bergeron et al. 1993, for example). The
DAV (ZZ Ceti) stars have the smallest number of unstable os-
cillation modes and therewith the simplest powerspectra of all
variable white dwarfs. The seismic analyses rely on the ob-
served oscillation frequencies and their separations so that the
accompanying theoretical modeling needs to provide accurate
adiabatic eigenspectra only (see e.g. Bradley & Winget 1991,
Brassard et al. 1992). At the level of the presently achievable
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accuracy in seismic studies, nonadiabatic e�ects on the oscilla-
tion frequencies can be neglected. Nonadiabatic processes de-
termine, on the other hand, the exact locations and extents of
the instability regions.

The existence of nonradial oscillations in ZZ Ceti stars { the
targets of this contribution { is attributed to the �-mechanism
caused by partial hydrogen (H) ionization (Dolez and Vauclair
1981, Winget et al. 1982). The H-ionization region of these
stars is convectively unstable and a major part of the energy
can be transported by material motion. As the dominant pul-
sational driving was found to occur at the base of this con-
vection zone the particulars of treating the convection in the
stellar structure calculation and in the perturbation equations
are important. From the very beginning of linear nonadiabatic
oscillation analyses of ZZ Ceti models the undetermined role
played by convection in the destabilization of g modes lessened
the credibility of the results.

All investigators having worked on locating the DAV in-
stability region (e.g. Bradley & Winget 1994, Fontaine et al.
1994, and references therein to previous work) agreed on the
e�ciency of convection to play a crucial role for the �nal out-
come. Depending on the choice of the convective e�ciency, usu-
ally by adopting a particular dialect of the mixing-length theory
(MLT), the blue edge of the ZZ Ceti instability region can easily
shift by more than 1 000K in e�ective temperature. Hitherto,
the canonical approach was to adjust the convective e�ciency,
i.e. the depth of the convection zone, such that the location of
the theoretical blue edge agreed with the e�ective temperatures
of the hottest observed DAV stars.

The spectroscopic calibration of the physical parameters of
DAV stars is rather involved. The analyses of observed white
dwarf spectra still tolerate a considerable spread in log g and
in Te� . The results depend sensitively on highest-quality spec-
tra and also on the physics implemented in the calculations of
the model spectra. The star G117-B15A was considered to be
among the hottest ZZ Ceti variables for a long time. Recently,
G117-B15A was recalibrated by Koester et al. (1994) and its ef-
fective temperature was lowered from 13 000K (Weidemann &
Koester 1984) to about 12 250K. In another recent publication
(Bergeron et al. 1995), the same star was attributed an even
lower e�ective temperature of 11 620K (cf. Fig. 1). Based on
the distribution of pulsation amplitudes in di�erent wavelength
bands, Robinson et al. (1995) published also a recalibration of
G117-B15A. They found a correlation between log g and Te�

that allowed a range of di�erent e�ective temperatures, at dif-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25182783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

ferent surface gravities, to �t the observational data (see the
dash-dotted line in Fig. 1). A particular Te� { at 12 375K {
was eventually adopted with the help of a recent spectroscopic
determination of log g.

The hottest member { G226-29 { in the ZZ Ceti sam-
ple of the Bergeron et al. (1995) study has Te� = 12 460K,
log g = 8:29 and lies supposedly close to the blue edge of the
instability domain. From the distribution of the variables on
the Te� { log g plane it is conceivable that the location of the
blue edge is not vertical. From Fig. 1 we estimate the blue
edge to lie at about 12 000K for log g = 8:0. The magnitude
of disagreement in assigning e�ective temperatures and sur-
face gravities to observed ZZ Ceti variables is remarkable and
should be kept in mind when comparing theory and observation
of white dwarf oscillations. Nevertheless, the new data hint at
a cooler blue edge than was assumed hitherto.

Even if the temperature shift of the blue edge is considered
to be of secondary importance for the DAV phenomenon, the
role played by convection, in particular its e�ciency, is decisive
for g-mode instability and it remains to be understood. The the-
oretical studies of ZZ Ceti pulsations depend on the convection
in a two-fold way. First, the interior models need particular
choices of mixing-length parameters to allow unstable g modes
to occur at e�ective temperatures and surface gravities that are
compatible with observations. Second, the oscillation equations
themselves contain terms where the energetic contribution, i.e.
the time-dependence of the convective ux, needs to be spec-
i�ed. Stability or instability might be dominated by the form
of the interaction formalism. Previous studies usually assumed
a frozen-in ux approximation to describe this interaction. In-
terpretations of such calculations led to the concept of \con-
vective blocking" to describe the large positive contributions
to the work integral at the base of the hydrogen convection
zone (Cox et al. 1987, Pesnell 1987, Brickhill 1991). The phys-
ical signi�cance of the mechanism of convective blocking is not
fully understood or accepted yet (see also Brickhill 1991). The
use of the frozen-in ux approximation in modeling ZZ Ceti
stars is based more on feasibility rather than on physical ade-
quacy, hence it is an open problem if something like convective
blocking is really at work in these stars.

The following study intends to contribute towards an un-
derstanding of the inuence of the convection zone in the back-
ground models and the role it plays in the oscillation equations
for stability analyses of ZZ Ceti variables. We present results
from our attempt to circumvent the problem of ad hoc tuning
the convective e�ciency in a simpli�ed convection theory by
using suitably post-processed data from two-dimensional hy-
drodynamical simulations of the surface regions of white dwarfs
(Ludwig et al. 1994, Freytag et al. 1995). The processed hydro-
dynamic surface layers were fused consistently to interior mod-
els in hydrostatic and thermal equilibrium. Linear, nonradial,
nonadiabatic stability properties were investigated on these hy-
brid models. Methodical aspects of this approach are presented
in Sect. 2 and in the Appendix. Section 2 additionally reviews
properties of the the hydrodynamically simulated convection
zones. Results of the stability analyses and of our simple at-
tempts to couple convection with the oscillation equations are
described in Sect. 3. Section 4 contains a critical discussion.
Section 5 closes the paper with the conclusions and suggestions
for the origin of the encountered discrepancies.

Fig. 1. Distribution of ZZ Ceti variables in the Te� { log g diagram.
Dots represent the the latest calibrations according to Bergeron et
al. (1995). The relocation experienced by G117-B15A from the Wei-

demann & Koester (1984) calibration to the positions determined

according to Koester et al. (1994) (solid square with error bars),

Bergeron et al. (1995) (with the lowest Te�), and Robinson et al.

(1995) is indicated. The open pentagons indicate the positions of our

stellar models.

2. Modeling DA white dwarfs and their oscillations

This section, together with Appendix A that is devoted to tech-
nical details, describes the methodical tools used to calculate
equilibrium structures of the white dwarf models and the nu-
merical treatment of the nonradial oscillation problem.

2.1. The hydrodynamical envelope models

Hydrodynamical simulations have been performed to derive the
structure of the convective surface layers of our white dwarf
models. In these calculations the basic hydrodynamical equa-
tions are solved together with the equation of radiative trans-
fer for a homogeneous, compressible, viscous, and strati�ed
medium in two-dimensional (2D) Cartesian geometry. A re-
alistic equation of state and realistic opacities including the
Lyman-� satellite features (cf. Allard et al. 1994) are used.
The transfer equation is solved in LTE approximation account-
ing for the non-local and frequency dependent character of the
radiation �eld. In the present investigation usually 7 frequency
points are used in the calculation of the radiative energy trans-
port. In particular, the e�ects of the localized opacity enhance-
ments from the Lyman-� features around 1400�A and 1600�A
are represented adequately. This { in a hydrodynamical con-
text { rather detailed treatment of the frequency dependence of
the radiation �eld has turned out to be necessary for a success-
ful modeling of the photospheric temperature strati�cation. A
detailed description of the program code and results of white-
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dwarf simulations can be found in Ludwig et al. (1994) and
Freytag et al. (1995).

In the simulations, the temporal evolution of the convective
ow was followed over a su�ciently long time to ensure that a
dynamically and thermally relaxed state was reached. An one-
dimensional (1D) envelope structure was derived by averaging
the physical quantities temporally and spatially on surfaces of
constant geometrical depth. The time interval for this averag-
ing is su�ciently long that statistically stable mean values were
obtained. From the resulting data the mean gas pressure hP i(z)
and temperature hT i(z) pro�les were taken as basic input vari-
ables for the subsequent construction of the stellar model and
the stability analysis. Secondary input parameters (e.g. sound
speed) | especially for the stability analysis | are calculated
from hP i and hT i. It should be noted that we might not have
used the optimal procedure to transfer the properties impor-
tant for pulsations, i.e. quantities determining the propagation
of gravity waves, from a horizontally inhomogeneous strati�ca-
tion to an 1D representation. It is conceivable that averaging
certain quantities on surfaces of constant acoustical depth pro-
vides a closer �t to the inhomogeneous situation. Nevertheless,
we believe that our approach covers the main e�ects introduced
by the hydrodynamical models so that we have not investigated
this question any further.

Fig. 2. Mean temperature versus mean pressure for the hydrody-

namical envelope models with e�ective temperatures increasing from

11400K (bottom line) in steps of 400K (Models A, B, D, E, cf.

Tab. 1).

Figures 2, 3, and 4 show mean temperature, convective heat
(enthalpy) ux, and entropy as a function of the mean pressure
for our set of envelope models. Five surface models were con-
sidered; to demonstrate the systematics more clearly only four
models (A, B, D, and E, cf. Tab. 1) with equidistant spacing
in Te� are displayed. The sequence is not completely homo-
geneous; in the coolest model the radiative transfer is treated
using 1 frequency point (gray approximation) instead of 7 as in
the hotter ones. The computational boxes had di�erent geomet-
ric sizes in the di�erent models depending on the depth of the
convective layers. Model A extends deepest; the photosphere of
model B allows only for a less extended photosphere leading to
the arti�cial increase of the entropy near the upper boundary
that is visible in Fig. 4. Figure 3 shows how the fraction of the
convective heat ux increases with decreasing e�ective temper-

Fig. 3. Mean enthalpy ux versus mean pressure for hydrodynamical
envelope models (cf. Fig. 2). The maximum ux increases monoton-
ically from the hottest to the coolest model.

Fig. 4. Mean entropy versus mean pressure for hydrodynamical en-

velope models (cf. Fig. 2). The minimum entropy increases mono-

tonically from the coolest to the hottest model.

ature. Apart from the uncertainty of the quantitative choice for
the mixing-length parameter such behavior is also encountered
in models based on MLT. Standard MLT does not include the
e�ects of overshooting that leads to the regions with negative
heat ux in the deeper layers. A close inspection of model A
reveals a maximum heat ux that supersedes the nominal total
ux by a small amount. Again, unlike in MLT approaches, in
the hydrodynamical models the convective motions are accom-
panied by a signi�cant ux of kinetic energy which is directed
downward and balances the ux budget. Finally, by comparing
Fig. 3 with Fig. 4 we realize that { particularly in the hotter
models { subadiabatic regions where dhSi=dz > 0 do not match
exactly domains with positive convective ux Fh > 0. This so
called \entropy gradient reversal" phenomenon (cf. Skaley &
Stix 1991, Chan & Gigas 1992, Ludwig et al. 1994) is a typi-
cal feature arising from a non-local description of convection.
Clearly, this a�ects the propagation properties of gravity waves
in the convection zone.
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2.2. The interior models

The interior models, i.e. complete equilibrium solutions at-
tached to the bottom of hydrodynamic envelopes, of the white
dwarf models were computed with a shooting code. Some tech-
nical details of the method are presented in the Appendix. The
model stars were chemically strati�ed with an a priori �xed
parameterization of the thickness of the hydrogen, helium, and
carbon/oxygen layers. Also the abundance pro�les describing
the transition from the H to He and from the He to C/O zones
were functionally prescribed. The surface hydrogen-layer thick-
ness varied between 10�4 and 10�7M�. The adjacent pure he-
lium shell extended always to a depth of 0:98M�. The remaining
core consisted of a mixture of carbon and oxygen with C/O
= 1=4 in mass and a remaining heavy-element abundance of
9:6� 10�3. A representative case of the chemical strati�cation
is shown in Fig. 5. The model has a hydrogen surface layer
thickness of �MH = 1 � 10�4M�. The quantity qH stands for
the relative mass depth of the hydrogen layer: qH � �MH=M�.
The form of the parameterized transition layers compares satis-
factorily with self-consistently calculated ones in di�usive equi-
librium. The averaged hydrodynamical layers contain between
80 and 110 gridpoints. The interior models are constructed with
typically about 800 gridpoints.

Fig. 5. Representative example, model B4, of the relative mass frac-
tions of chemical abundances� in the stellar models. The depth in the

star is expressed as a function of the relative radius x. The labels at

the di�erent curves stand for hydrogen (X), helium(Y), carbon(C),
and oxygen (O). The transition depths and the transition structure
from the C/O core to the He shell is the same in all models; merely

the mass of the hydrogen envelope was varied.

Table 1 lists the global parameters for a subset of DA stellar
models that were obtained with our iterative shooting method;
they served as background models on which the stability anal-

Table1. Global parameters of the white dwarf models. For all
models the acceleration of gravity is log g = 8:0 at the surface.

ID Te�=K log qH M�=M� log L�=L� logR�=R�

A4 11 400 -4.0 0.6109 -2.594 -1.8881
A7 11 400 -7.0 0.5960 -2.604 -1.8935
B4 11 800 -4.0 0.6190 -2.533 -1.8878
B7 11 800 -7.0 0.5969 -2.644 -1.8932
C4 12 000 -4.0 0.6124 -2.504 -1.8876
C7 12 000 -7.0 0.5973 -2.515 -1.8930
D4 12 200 -4.0 0.6129 -2.475 -1.8875
E4 12 600 -4.0 0.6138 -2.420 -1.8871

yses were performed. In the following we refer to them as the
\HD models". Note that luminosity and mass of the relaxed
models are free parameters and must be iterated to obtain a
hydrostatic model in thermal equilibrium. The distribution of
the model stars on the Te� { log g plane and their relation to
recent observational data can be inferred from Fig. 1.

Mostly we calculated the convective ux directly from aver-
aged hydrodynamical simulation data. As the kinetic ux con-
tributed only little, the convective ux was always computed
from the enthalpy ux. We used the ratio of the mean enthalpy
ux (see Fig. 3) to the total ux to express the fractional en-
ergy transport by convection. The values obtained therefrom
can di�er from those deduced from 1 �r0=rrad (r0 denotes
the actual temperature gradient of the stellar envelope). A sig-
ni�cant di�erence was found only in the 11 400K model, how-
ever; the maximum relative convective ux resulting from the
enthalpy ux is 0.996 compared with 0.90 calculated with r0

and rrad.

2.3. The nonradial oscillation treatment

Nonadiabatic, nonradial oscillation modes were calculated with
the Riccati method in a version closely related to the one de-
scribed in Glatzel & Gautschy (1992). For the applications in
this paper we accounted for the advection terms in the Eulerian
perturbation quantities in chemically inhomogeneous regions of
the star to guarantee ��=� � 0, i.e. vanishing Lagrangian per-
turbation of the abundance of any atomic species � throughout
the stellar models. (In the following we will use � to denote
the Lagrangian perturbation and a dash for the Eulerian per-
turbation.) In all cases, we computed the complex eigenvalues
(�R; �I) for the full sixth-order system of equations, i.e. includ-
ing the perturbation of the gravitational potential. Eigenvalues
and characteristic frequencies are being expressed in units ofp
3GM�=R

3
� which amounts to about 0.6 sec�1 in our cases.

The DA white dwarfs are examples of stars with extreme
ratios of the thermal to the dynamical time-scale. Too large val-
ues of this ratio can give rise to numerical instabilities in the
inversion of the matrix arising in relaxation techniques. Lee &
Bradley (1993) suggested an hybrid method to deal with the
nonradial, nonadiabatic oscillation problem in a numerically
stable way. The numerical properties of the Riccati approach
and the associated shooting method do not depend on possi-
bly extreme time-scale ratios. We were always able to use the
same set of equations throughout the whole star without en-
countering numerical di�culties. The required accuracy of the
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eigenvalues enforced the distribution and the total number of
the gridpoints chosen by our self-adaptive initial-value integra-
tor. Typically, of the order of 3000 gridpoints were used for
an eigensolution. Very high-order overtones could contain up
to 10 000 gridpoints. The physical quantities of the background
stellar models are always interpolated with the monotonized
cubic method described in context of the calculation of the
Brunt-V�ais�al�a frequency.

The inner boundary conditions were formulated in the stel-
lar center where the requirement of regularity of the perturbed
physical quantities can be used to derive the necessary alge-
braic equations. The outer boundary was chosen at an optical
depth of � = 0:025. For consistency with other results in the
literature, we implemented the physical conditions suggested by
Osaki & Hansen (1973).

Since the calculation of the Brunt-V�ais�al�a frequency caused
some debates in recent years, we shortly mention our approach {
which di�ers from the ones presently referred to in the liter-
ature. We performed monotonized cubic interpolations of the
density strati�cation with respect to pressure and calculated
derivatives directly from the interpolating polynomial. As long
as the background-model data was su�ciently smooth (i.e.
without numerical noise) the interpolation method suggested
by Ste�en (1990) proofed to be very e�cient and robust. An
example of the high-quality derivatives that were obtained on
our stellar models can be seen in the Brunt-V�ais�al�a frequency
of Fig. 6 for model B4. We emphasize that the steep He { C/O
transition (at log(1 � q) = �2 in Fig.6) is numerically well
resolved. In a few cases, we had the opportunity to compare
our numerical approaches with those of P. Bradley (see further
down in the paper). The agreement of the Brunt-V�ais�al�a fre-
quency was very good except for small deviations in the compo-
sitional transition layers. The magnitudes of the disagreements
were insigni�cant for the g-mode cavities.

3. Results

The convective turn-over time in the super�cial convection zone
of the DAV stars is much smaller than the oscillation time-scale
(�osc=�conv >

� 1000). The thermal time-scale of deep convec-
tion zones can become comparable with the oscillation periods
sought and, additionally, most of the energy ux is then carried
by material motion. This might be the reason for our inadequate
understanding of the role the surface convection zone plays in
driving the DAV oscillations. In a �rst attempt, we studied the
stability properties of low-` modes with the canonical assump-
tion of \frozen-in" convective ux. In our formulation of the
oscillation equations this simpli�cation is easiest implemented
as F

0
C = 0. In the literature, the most frequently encountered

formulation is �r � FC = 0 or �(r � FC=�) = 0. Nevertheless,
the correspondence between the two implementations should be
close enough to serve as a �rst guideline.

Figure 7 shows representative results for low-degree, low-
order modes of model B7. Reasonably expressed trapping cy-
cles can be seen in the period separations, ��, displayed in
the middle panel. The period-separation minima concur mostly
with local maxima in the imaginary parts of the eigenfre-
quencies. Such a behavior agrees with the canonical picture
of trapped modes having smaller kinetic energy than non-
trapped modes. In the weakly nonadiabatic limit �I=�R �

Fig. 6. Brunt-V�ais�al�a and Lamb frequencies (for ` = 1, 2, 3) for

model B4. The functional behavior of both characteristic quantities

is representative for all the models studied.

�W (R�)=4�Ekin obtains. Hence, a reduced kinetic energy of
a mode translates into a more e�cient damping or driving, de-
pending on the sign determined by W (R�), the total work done
over a cycle by the particular oscillation mode; the meaning of
the symbols is adapted from Saio & Cox (1980). The depen-
dence of Ekin on period, supporting the above picture, is shown
in the top panel of Fig. 7.

The marginal instabilities of one of the radial overtones ap-
pearing in all studied spherical degrees (` = 1; 2, and 3) in
Fig. 7 are not connected with destabilizing agents in the surface
layers. The kinetic-energy density of each of the unstable modes
has signi�cant amplitude only in the C/O core and partially in
the He shell of the models. The driving occurs around the sharp
transition from the C/O core to the He shell. Figure 6 shows
the narrow local bumps of the Brunt-V�ais�al�a frequency at the
C/O { He (� log(1�q) = 2) and at the He { H (� log(1�q) = 4)
transition. For suitable frequencies such features can con�ne os-
cillation modes to sub-cavities within the total propagation re-
gion. We remind that our transition structures are analytically
prescribed in the stellar models so that the trapping properties
depend on our choice of the location and the steepness of the
transition pro�les. It is indeed the trapping of the (unstable)
modes in the centermost regions that is responsible for the ab-
sence of a signi�cant dependence of the driving rate on e�ective
temperature and hydrogen-layer mass in the model sequence.
The lowest panel in Fig. 12 shows the typical behavior of the
logarithmic derivative of the opacity with respect to pressure at
constant temperature �T that is similar in all HD models. The
deep interior, made up of He and of the CO core, is character-
ized by positive �T that destabilizes a mode under a favorable
behavior of the eigenfunction. From Fig. 7 we further learn that
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Fig. 7. The top panel displays the run of the kinetic energy of the

` = 3 modes as a function of their periods. The middle panel shows

the period spacing of the nonadiabatic periods for ` = 2 and 3 modes

of model B4. The lower panel shows the run of the damping rates of

some of the lower-order modes of degree one to three. The scaling of

its ordinate is intended to conveniently represent the huge dynamical

range of the imaginary parts of the eigenvalues.

the imaginary parts of the eigenfrequency of �xed radial-order
modes grow systematically when the spherical degree increases;
simultaneously the oscillation periods shorten.

We want to emphasize that the trapping properties encoun-
tered in our models with thick hydrogen layers di�er quali-
tatively from those described previously (e.g. Brassard et al.
1992). Generally, the modes reside in the stellar envelope with-
out being particularly sensitive to the compositional transition
structures. A few modes with appropriate eigenfrequencies dis-
tinguish themselves by their con�nement to the deep interior.
This leads to an enhanced kinetic energy (see top panel of
Fig. 7), a local minimum in the period spacing (middle panel),
and a reduced imaginary part of the eigenfrequency (bottom
panel).

Untrapped modes (of equal spherical degree) tend to in-
crease their damping rates towards higher e�ective tempera-
tures. The trapped modes show the opposite trend: trapped
modes in hotter models are less damped than trapped modes
in cool models. The global run of the damping versus period
is the same at all e�ective temperatures considered (see Fig. 8
a). Panel b in Fig. 8 demonstrates the marginal e�ect on the
excitation/damping rates of oscillation modes upon changing
the envelope hydrogen mass of the HD models. In none of the
sequences studied did we encounter a case where changing the
magnitude of the hydrogen envelope mass changed the stability
properties of the g modes.

Fig. 8. a Run of the imaginary parts of the eigenfrequencies for

di�erent e�ective temperatures at the same spherical degree and

the same hydrogen mass depth. b E�ect on the imaginary part of

the eigenfrequencies of varying the hydrogen mass-depth for ` = 2

modes in 11800K models. In both panels, frozen-in ux treatment

was adopted for convection.

We close this section by stressing again that with the ap-
proximation of frozen-in convective ux we found no evidence
for ZZ Ceti { like g-mode instabilities for any kind of param-
eter settings in our model sequence based on hydrodynamic
convective envelopes.

3.1. Tests on models with thick convection zones

To ensure the integrity of the stellar-oscillation computer code
we had access to three stellar models from a white dwarf evo-
lutionary sequence (at 12 440; 12 080, and 11 720K) calculated
and kindly made available by P. Bradley (1995, private com-
munication). All models had thick convection zones resulting
from a ML3 mixing-length prescription (Bradley & Winget
1994). We tried to recover unstable oscillation modes that were
claimed to be present in the cooler two models. The calculations
were restricted to the lowest three nonradial degrees. Apply-
ing the previously mentioned approximation for the convection
treatment: F0C = 0 yielded no unstable modes, but a few only
marginally stable ones, at 12 440K. In the lower-temperature
models, a rich spectrum of unstable modes was encountered
for spherical degrees ` = 1; 2, and 3; 28 to 35 modes were pul-
sationally unstable with periods between 200 and 2000 sec. A
sample of results is shown in Fig. 9; it contains the lowest-order
` = 3 modes for the 12 080 K (No.98 in Bradley's series) model.
The frozen-in results are shown as the points connected with the
solid line. The unstable modes extend to very high overtones,
only above about 1000 sec does enhanced dissipation within
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the convection zone of partial H-ionization (which is a region
with d�T=dr > 0) win over adjacent driving in particular at
the base of the convection zone. Neglecting convective energy
transport completely in the nonradial perturbation equations
resulted in no unstable modes at all. This emphasizes again
the well-known necessity of a physically realistic treatment of
the convective-ux contribution in the perturbation equations
when dealing with ZZ Ceti variables. The numerical experi-
ments on the model stars of Bradley proved unambiguously
that our numerics is able to reliably detect unstable oscillation
modes if they exist.

Fig. 9. Variation of the damping rates as a function of period for

` = 3 modes in the 12 080K model of Bradley. The full line connects

the results from the frozen-in ux approach; the dotted line is based

on the outcome from instantaneous adaptation and vanishing shear

within the convection zone.

3.2. Modi�ed convection coupling

The turn-over times of convective eddies in our models are
much shorter than the typical periods in which we are interested
based on observational evidence. Instantaneous adaptation of
convection to its oscillating environment appears to be a more
realistic approximation. Instead of demanding (r�F0C)r = 0, no
uctuation of the radial component of the Eulerian perturbation
of the convective ux, we let it adapt to the local perturbations.
The resulting perturbation equation is rather lengthy so that we
do not reproduce it but mention only the original equation that
was perturbed and the assumptions having entered. We write
for the convective ux

(FC)r =
n
16�SB
3

(rrad �r0)
o
T
4
V

��r
: (1)

The quantity �SB stands for the Stefan-Boltzmann constant
and V � �d log P=d log r, i.e. one of the homology invariants.
The remaining symbols have their usual meanings. For sim-
plicity we neglected the perturbation of the terms in braces
on the right-hand side. In particular, neglecting the perturba-
tion of rrad�r0 means that the size of the convection zone is
kept �xed in mass during the oscillation cycle. We refer to this
approximation as IA1. In the energy equation, we implemented
the Eulerian perturbation of the above equation to compute the
component (r�FC)r. Due to persisting ignorance, we assumed a
vanishing contribution from the tangential (to spherical shells)
components of the divergence: (r�F

0
C)? � 0. We estimate this

to be not too severe a limitation as only low spherical degrees
were considered.

Upon repeating the stability analyses with the assumption
of IA1 instantaneous adaptation of convection we did �nd no
pulsational instabilities in the HD model sequence. The damp-
ing rates even changed marginally only when changing the con-
vective adaptation picture. In the Bradley models with their
deep, e�cient convection zones, the mode spectrum (periods
and damping/excitation rates) did not react on the change from
frozen-in ux to instantaneous adaptation. In particular, the
unstable mode spectrum remained unchanged.

Fig. 10. Spatial run of the expansion coe�cients (@r �FC=@ lnP )T
and (@r�FC=@ lnT )P to express the the divergence of the perturbed
convective ux. The numerical values were computed from the HD

envelopes simulations.

For the 12 000K model we attempted a more realistic pre-
scription of instantaneous adaptation of the convective ux
(IA2). We approximated the perturbation of the divergence of
the convective ux perturbation which appears in the energy
equation by

r � F
0
C �

�
@r � FC

@ lnP

�
T

�
P
0

P
+
�
@r � FC

@ ln T

�
T

�
T
0

T
: (2)

The spatial form of the expansion coe�cients displayed in
Fig. 10 was derived from the HD envelopes utilizing the follow-
ing idea: due to the small thermal and dynamical time-scales the
convectively active layers stay close to states of hydrostatic and
thermal equilibrium during the pulsation cycle. These states
can be represented by a sequence of background models of dif-
ferent e�ective temperatures. A certain mass element experi-
ences changes of P and T according to its various depths in the
quasistatic strati�cations. The convective ux at these depths
is known from the background models. The changes of P and
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T are not independent but related by the constraint that the
surface layers pass through quasistatic con�gurations. Practi-
cally, the coe�cients shown in Fig. 10 are derived from the
HD envelopes at 12 200K, 12 000K, and 11 800K by numerical
di�erentiation of the divergence of the convective ux in the
P �T -plane; the variables P and T are treated as independent.
The correct relation between the changes of P and T is ful-
�lled automatically in the pulsational code as long as the basic
assumption of quasistatic changes remains valid.

The lowest one dozen modes of degree ` = 1; 2, and 3 of the
HD model at 12 000K were reanalyzed with the IA2 implemen-
tation. In none of the eigenvalues did we �nd any signi�cant or
systematic change compared with IA1 and even with the frozen-
in ux approximation. Most important, the IA2 approach did
not yield any unstable oscillation modes.

3.3. Suppressed shear

Brickhill (1990) showed that the action of turbulent viscosity is
able to e�ciently suppress any horizontal shear motion within
the convective layers, i.e. d�h=dr = 0 (�h: horizontal displace-
ment) throughout this region. This assumption was explicitly
programmed into the linearized equation of mass conservation.
The e�ect of viscous dissipation was neglected. In the pulsa-
tion code, the location of the depth down to which d�h=dr = 0
applied was varied for test purposes. We found no di�erences
in the results when switching between the innermost mass-shell
with positive FC, the deepest mass-shell in the HD layers with
nonvanishing FC, and the extrapolated depth where vrms = 10
cm sec�1 (see Freytag et al. 1995).

As mentioned at the end of Sect. 2.2., the values of the
convective ux derived from rad and r0 can di�er slightly
from the hydrodynamically obtained enthalpy ux. When the
convective ux was set equal to the enthalpy ux we found
unstable low-order g modes and spherical degrees ` = 1, 2,
and 3 with periods below 200 sec (see Fig. 11) in models A4
and A7. We note that the occurrence of instabilities did not
depend on the amount of hydrogen oating on the surface of
the HD models. The weakest instabilities were found for the
` = 1 modes. With increasing spherical degree the strength of
instability increased. The growth rates increased with radial
order and changed rapidly to strong damping above a max-
imum radial order. We restricted the calculations to the po-
tentially observable low-degree modes, the instabilities persist
most probably to higher degrees. We found that both, the cal-
culation of convective ux by enthalpy ux and vanishing shear
were necessary ingredients to the oscillation equations for un-
stable modes to occur.

Furthermore, we also tested the inuence of suppressed
shear in the Bradley models. Over the spatial domain of non-
zero convective ux, we assumed d�h=dr � 0. A representative
result is included in Fig. 9 as points connected with a dotted
line. The high-order modes were substantially stabilized so that
the upper period limit for unstable g modes dropped from 1000
sec to roughly 600 sec (for ` = 3 at 12 080K). Low-order modes
(of degree ` = 1 � 3), on the other hand, showed enhanced in-
stability.

Fig. 11. Stability diagram of the lowest-degree g modes for the

11400K model A4. When the convective ux was calculated from

the enthalpy ux resulting from the hydrodynamical simulations the

lowest-order modes of each of the potentially observable spherical

degrees ` = 1;2; and 3 turned unstable.

4. Discussion

From our nonadiabatic nonradial oscillation calculations per-
formed on the HD models we found a blue edge at an e�ective
temperature several hundred degrees below what current obser-
vational determinations might indicate. If we treat convection
with the frozen-in approximation only one unstable g mode is
found for the lowest three spherical degrees at log g = 8:0 in
the temperature range from 11 400K to 12 600K. This unstable
mode has, however, nothing to do with the expected ZZ Ceti
properties. The kinetic energy-density distribution reveals that
it is con�ned (possibly arti�cially due to the arbitrariness in
the construction of the transition layers) to the deep interior
of the white dwarf models. As the outermost layers have very
little weight, its imaginary part does not react noticeably on
changing the e�ective temperature of the model.

We realized that the complex eigenvalues of the HD models
listed in Tab. 1 did not change noticeably upon implementing
instantaneous adaptation of the convective ux in the oscillation
equations. The reason might be the shallowness of the convec-
tion zone so that it cannot, except for our lowest value of e�ec-
tive temperature, inuence signi�cantly the relative pulsational
phases and/or the amplitudes of the perturbation quantities. In
the formulation of instantaneous adaptation according to Eq.
(1) we modi�ed the radial components of the ux perturbation
only which dominates the energy exchange despite that the tan-
gential displacement is often several hundred times larger than
the radial one in the outermost layers of the DA models.
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Fig. 12. Comparisonof eigensolutionquantitiesbetween the Bradley
model at 12 080 K (thin dashed lines) and model C4 (solid lines)
for the arbitrarily chosen mode k = 13 and ` = 3. Starting at the
top, we show the radiative Lagrangian ux perturbation relative to

the star's equilibrium surface ux, the di�erential kinetic energy, the

di�erential work, and the run of the logarithmic opacity derivative

at constant temperature �T. The data in two panels in the middle

were arbitrarily normalized to their most prominent extrema.

Figure 12 shows a comparison of a selected g mode (` =
3; k = 13) for DA models around 12 000K. Bradley's model is
pulsationally unstable; properties of this model and mode are
shown with dotted lines. The gmode of the HD model C4 on the
other hand is pulsationally stable. For both models, the pertur-
bation of the radiative ux becomes roughly frozen-in around
log P = 8:5. The thermal time-scales are indeed about the same
for both models in these depths. The dynamical weight distri-
bution is surprisingly similar for both models as can be seen
in the run of the di�erential kinetic energy of the modes. Di-
vergences occur mainly around the H/He transitions. These
regions were modeled completely independent, after all. Hence,
the two modes show a di�ering trapping behavior in the cen-
termost regions. The g mode in the Bradley model has its main
driving peak at the inner edge of the convection zone. Actu-
ally, most of the driving in the main peak happens in a re-
gion with d�T=dr < 0. The g mode of the HD model is { up
to an insigni�cant driving contribution close to the surface {
completely damped. In its convection zone, the ux is already
frozen-in so that no � e�ect acts there anymore. The radiative
dissipation starts below the convection zone.

The models A4 and A7 were the only ones showing pul-
sational instabilities; these 11 400K models have domains of
very e�cient convective energy transport (see Fig. 13). And
only in connection with assumed zero shear across the convec-
tion region did these instabilities occur. The local minimum of
Frad=Fr coincides with the peak driving in the work integral.
Below the convective ux maximum, the convection zone con-
tinues for another three pressure scale heights (including the
overshoot region). Hence, in the models A4 and A7 the main

driving region can hardly be considered to concur with the base
of the convection zone. Nevertheless, we believe that increasing
convective e�ciency will shift the region of maximum driving
towards the bottom of the convection zone.

The comparison models from Bradley, being based on deep
e�cient convection zones (ML3), showed a large number of un-
stable oscillation modes not only in the frozen-in ux treatment
but also in the vanishing-shear approach. In the latter case the
number of unstable modes was reduced, but still, too many
unstable modes remained to be in satisfactory agreement with
observations.

When adopting instantaneous adaptation of the convective
ux and vanishing shear in the convection zone, the unstable
low-order g mode disappeared in the stellar models with ef-
fective temperatures above 11 800K. Seemingly, these modes {
trapped in the deep interior { could pick up additional small
but nevertheless su�cient dissipation in the envelope over-
compensating the driving in the C/O core.

Fig. 13. Reduction of the radiative ux in the convection zones of
some white-dwarf models. Solid lines are derived from HD models

with the appropriate temperatures labeled on the curves. The broken

line stands for the 12080 K model of Bradley with a ML3 convection
zone.

The hydrodynamically simulated convection zones of the
HD model series are much shallower than what was postulated
hitherto in pulsation theory to reproduce instability at e�ec-
tive temperatures derived from spectroscopic analyses of DAV
stars (Tassoul et al. 1990, Bradley & Winget 1994, Bergeron et
al. 1995). While in the current context the convective e�cien-
cies derived from the HD models appear rather low they are in
agreement with otherwise adopted ones. In the surface layers
the e�ciency from the HD models translates into a correspond-
ing mixing-length parameter of about 1.5 in the ML1 dialect
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of the MLT. Figure 13 illustrates the discrepancies in the con-
vective e�ciencies and the extent of the convection zone for the
di�erent models. The solid lines display the results from the hy-
drodynamic approach. The dashed line shows the outcome from
the ML3 treatment in Bradley's 12 081K model. Evidently, the
convection zones of all HD models, even the coolest ones, are
much shallower than the ML3 solution at 12 081K. A convective
e�ciency comparable to the one prevailing in the ML3 model
at 12 080K of Bradley is found only in about 600K cooler HD
models. In contrast to the ML3 approach (of course by the
very nature of the formulation) the hydrodynamical convection
zones show substantial overshoot regions with negative convec-
tive uxes.

The thermal time-scale of the envelope overlying the driv-
ing region is only a few seconds and is hence much shorter than
the periods of the unstable modes (between about 80 to 160
sec). Brickhill (1991) argued, however, that even substantial
di�erences between the thermal time-scale of the envelope and
the oscillation periods (up to about a factor 25) can still al-
low for signi�cant driving due to interaction with convection.
The 11 400K HD models could indeed be at the border where
such a constructive interaction starts to take e�ect. In fact, the
magnitude of the e�ciency of the convective ux appears to be
a determining factor to destabilize g modes. This observation
applies also to the Bradley models; there, the structure of the
convection zone is such that the driving indeed concurs with the
base of the convection zone, this location corresponds with the
maximum of the convective ux. Furthermore, the main radia-
tive damping in the pulsationally stable HD models is focused
on the regions below the convection zone (see Fig. 12). Such a
behavior agrees with the picture of a matching of the thermal
time-scale of the overlying envelope with the oscillation period
of the mode under consideration (Cox 1980).

When building background models we realized that thick
hydrogen layers, of the order of qH = 10�4 can lead to a
weak hydrogen burning shell close to the H/He transition.
At 11 800K, a H-burning shell achieved a maximum energy
generation rate between 6 and 40 erg g�1 sec�1 depending
of particular choices of �MH and �MHe. The nonvanishing
� terms (always for equilibrium burning) never noticeably af-
fected the nonadiabatic eigenvalues. In particular, the � terms
never changed the stability property of any mode.

5. Summary and concluding remarks

DA white-dwarf models were calculated with the physical prop-
erties of the outermost layers deduced from two-dimensional
hydrodynamic simulations. Based on these models we per-
formed nonradial, nonadiabatic stability analyses using �rst
canonical assumptions for the treatment of convection. We
failed to �nd any unstable low-order, low-degree oscillation
modes over the whole temperature range (which overlaps with
present Te� estimates for ZZ Ceti stars) covered by our mod-
els (cf. Table 1). The shallow and rather ine�cient convection
zones { as compared with the typically invoked very e�cient
convection { in the partial H-ionization region are identi�ed as
the reason for our negative result.

Looking at the time scales involved in the hydrodynamically
simulated convection zones clearly shows that the frozen-in ux
assumption is inappropriate. The thermal time scale in the lay-
ers above the driving/dissipation regions (a few seconds), as

well as the dynamical turn-over time of an eddy (of the order
of a tenth of a second), are much shorter than the oscillation pe-
riods of interest. Hence, instantaneous adaptation of convection
should approximate reality better.

Only when adopting instantaneous adaptation of convec-
tion, and in particular when requiring vanishing shear in the
convective layers were we able to �nd a few pulsationally un-
stable short-period period { between 80 and 160 sec { g modes
in the 11 400K models. Based on the results from the HD stel-
lar models we conclude that the blue edge of the ZZ Ceti stars
should lie between 11 400 and 11 800K. This is not in agreement
with the most recent physical calibrations of observed ZZ Ceti
stars. Bergeron et al. (1995) favor a blue edge for these vari-
ables around 12 000K for log g = 8:0. Despite recent methodical
improvements considerable uncertainty might nevertheless still
be present in the spectroscopic analyses.

We agree with Bradley & Winget (1994) and Bergeron et
al. (1995) in not �nding a dependence on the thickness of the
hydrogen layer of the g-mode instabilities. If the e�ciency of
convection is the dominant factor to destabilize some g modes,
then we also expect a dependence of the blue edge of the ZZ
Ceti instability region on log g. Furthermore, as noted in Berg-
eron et al. (1995), a correlation between Te� and the dominant
observed periods were to be expected on theoretical grounds.
For cooler stars, the convection zone extends deeper and so does
the region of maximum convective ux. The associated thermal
time-scale increases and so the interaction with longer periods
would be favored.

The HD model envelopes have inner edges of the convec-
tive zone extending to 10�15M� (at 12 600K) and 10�14M�

(11 400K) beneath the surface. These numbers are much in
contrast to typical ML3 results; at 11 720K, the convection
zone in Bradley's model extends to about 8�10�13M�. An im-
pressive visualization of this di�erence is provided in Fig. 13.
It is not only the shallowness of the convection zone that sup-
presses su�cient driving for low-order, low-degree g modes in
the HD models, but also the accompanying ine�ciency of the
convective energy transport is responsible for the dilemma. It
may appear at �rst glance that the hydrodynamical simulations
have shortcomings that lead to convective zones which are too
shallow to drive the pulsations. However, we checked the inu-
ence of technical parameters in these calculations, in particular
the grid resolution and the size of the computational box, we
found no evidence for insu�cient modeling. Further, experi-
ence gained by other authors in di�erent contexts shows that
2D simulations of convection produce more vigorous ows than
the 3D ones (e.g. Muthsam et al. 1995). This behavior is com-
prehensible since the greater degree of freedom in 3D reduces
the stability of the concentrated downdrafts which are the driv-
ing entities in the ow. Hence, we expect qualitatively that our
hydrodynamical simulations deliver an upper limit for the ex-
tent and e�ciency of the convective zones in the DAV stars. We
conclude that 3D simulations will not remove the discrepancy.

According to our calculations the trapping properties of the
gmodes do not primarily determine the stability characteristics
of those modes de�ning the blue edge. But we �nd qualitatively
di�erent trapping properties of the oscillation modes in our
models that point to a less pronounced mode selection.

The stability analyses of Bradley's models with deep ML3
convective zones gave rise to a large number of unstable gmodes
in any approximation of the convection perturbation. With his
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models we worry about �nding much too many unstable modes
to be compatible with observations.

The work integrals of the unstable modes in the coolest HD
models show that pulsational driving always occurs in regions
with d�T =dr > 0. This is not necessarily so in Bradley's mod-
els; we found unstable modes for which most of the destabiliz-
ing work is done in zones with d�T =dr < 0. At least for such
cases, a nonstandard driving agent, involving convection must
be identi�ed.

We found that turbulence has a marked inuence on the
structure of the eigenmodes and their excitation. Since we used
a rather simple treatment of the e�ects here, this point deserves
further investigation. Despite the not fully grasped role played
by convection in exciting the pulsations of ZZ Ceti stars we
feel that they belong to the best suited laboratories to study
the interplay between pulsation and convection. We �nish by
provoking that when we �nd unstable low-degree g modes in
DA white-dwarf models by ad hoc tuning of the e�ciency of
the H-convection zone then it is a fortunate conspiracy only and
not the result of a deeper understanding.

Acknowledgements.A.G. is grateful for �nancial support by the
Swiss National Science Foundation. B.F. was supported by the
Deutsche Forschungsgemeinschaft through grant Ho 596/43-1.
B. Paczy�nski and N.H. Baker are acknowledged for passing on
their wisdom to construct simple stellar models and to derive
e�cient approximations to constitutional relations. P. Bradley
kindly provided us with three of his evolutionary white-dwarf
models models that enabled us to check the integrity of the
pulsation code. H. Saio provided generous advice at di�erent
stages, we thank D. Koester for his helpful comments on white
dwarf spectroscopy.

6. Appendix: Shooting a white dwarf model

The interior structure of the white dwarf models was numeri-
cally calculated with a shooting method. A number of simplify-
ing assumptions were to be made. They are discussed, together
with a description of the treatment of the constitutive relations,
in the following.

The temporally and spatially averaged data from the hy-
drodynamic simulations of the super�cial convective layers of
white dwarfs constituted the outermost regions of our spheri-
cally symmetric models. The inner edge of the computational
box of the simulations provided the outer boundary conditions
for the interior solutions. A guess for radius and prescribed val-
ues of pressure and temperature at the base of the nonlinear
computational grid allowed to start an inward integration to
an ad hoc preselected �tpoint, Mf , that was chosen between
0.5 and 0.7M�. An outward integration started at the center of
the star with trial values for central pressure and temperature.
At the �tpoint the solution components for pressure, temper-
ature and radius had to join continuously. Continuity of these
variables was obtained with a Newton-Raphson iteration of val-
ues for the radius of the white dwarf at the outer edge of the
shooting region, of the central pressure, and of the central tem-
perature.

The chemical strati�cation of the stellar models are param-
eterized in a purely phenomenological way. The surface region

consists of pure hydrogen. The transition to a pure He shell is
simulated as:

X(q) =
�
tanh

��
q � 1 + qH

�H

�
+ 1:0

��
� ':

The transition thickness is determined by �H and was usually
set to be half of qH = �MH=M�, the relative mass depth of the
hydrogen blanket. Similarly, q is the relative mass coordinate
across the star. The factor ' �nally allows to construct asym-
metric pro�les by requiring X(q) = min(1; x(q)), i.e. we can
cut o� the asymptotic regime of the hyperbolic tangent towards
large values of q. Physically it means that hydrogen develops an
extensive di�usive tail into the helium layer but not vice versa.
The same reasoning is applied to obtain the transition from He
to the C/O cores of the white dwarf models. Despite this ansatz
lacks any physical justi�cation it satisfactorily describes the at-
tempted qualitative behavior of the abundance strati�cation in
the models.

Energy generation in the star was assumed to be completely
due to thermal cooling of the stellar matter, and it is approxi-
mated by

d(L=L�)

d(M=M�)
= 1:

Full evolution calculations (Tassoul et al. 1990) indicate that
such an approach is reasonable for DA variables. These stars
have cooled down already to such low luminosities that neu-
trino emission is not important anymore. For crystallization,
on the other hand, the interior of the DAV stars is still not
dense enough.

EOS: The basic principle of our very simple, but compu-
tationally e�cient, equation of state is that the total pressure
of the stellar matter is computed as the sum of a number of
analytically obtainable physical components. For given �, T ,
and chemical composition the total pressure can be calculated
explicitly. Since we use (P;T , X, Y, C, O, Z) as the thermo-
dynamic basis, however, the EOS must be solved iteratively.
(The quantity Z is de�ned in this case as 1� X � Y � C �

O.) Typically, less than 6 iteration steps reduced the relative
change of successive corrections in the pressure below 10�6 .

For a given chemical composition, �, and T the total pres-
sure is assumed to be composed as follows

P = Pion + PCoul + Pe + Prad:

The pressure component Pion denotes the ideal, nondegenerate
ion pressure

Pion =
k

�ionmu

�T:

The ionic molecular weight is denoted by �ion,mu is the atomic
mass unit and k stands for Boltzmann's constant. The non-
ideal e�ect of Coulomb interaction between ions is included in
the form given in Tassoul et al. (1990). Radiation pressure is
Prad = aT

4
=3, with a being the radiation constant.

The electron pressure Pe is made up of two components

1

P
2
e

=
1

P
2

e;nd

+
1

P
2

e;d

:

The pressure from nondegenerate electrons, Pe;nd, is com-
puted by solving the Saha equation for the ionization states of
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X, Y, C, and O. The resulting information allows the compu-
tation of �e and hence of

Pe;nd =
k

�emu

�T:

To avoid discontinuities in physical quantities due to di�erent
numerical treatments of the various regions in the � { P plane,
pressure ionization was included in the Saha equation so that
this contribution could be accounted for in the EOS throughout
the whole star. Pressure ionization was implemented by adding
an additional �ctitious potential to the \physical" ionization
potentials in the Saha equation. The approach is the same as in
Eggleton et al. (1973), the numerical values of the parameters
in the pressure-ionization term were adopted from Pro�tt &
Michaud (1991).

Again, degeneracy pressure of electrons was calculated as a
weighted sum

1

P
2

e;d

=
1

P
2

e;dnr

+
1

P
2

e;dr

:

The nonrelativistic case is approximated by

Pe;dnr = 9:91 � 1012
�

�

�e

�
5=3

;

and the relativistic case is

Pe;dr = 1:23� 1015
�

�

�e

�4=3

:

Our approach to the calculation of the EOS does not en-
sure thermodynamic consistency. Checks with versions of the
Eggleton { Faulkner { Flannery EOS (W. D�appen, private com-
munication) showed that the largest discrepancies occur in the
domain of partial electron degeneracy. The relative di�erences
never exceeded 5 %. We continue to use our formulation be-
cause of its computational e�ciency that is helpful on small
computers in particular.

Accounting for a nonvanishing Coulomb interaction in the
formulation of the EOS proved crucial to obtain low enough
periods { to be compatible with observations { of low-degree
oscillation modes in the DA white dwarf models. The magni-
tude of the density in the stellar models did not change much,
the density gradient and hence the Brunt-V�ais�al�a frequency re-
acted sensitively on the inclusion of ion interactions.

Opacities: In the pure hydrogen layers of the white dwarf
models we used OPAL opacity data. The hydrodynamic simula-
tions were performed with the opacity data used in the ATLAS6
stellar atmosphere program supplemented with contributions
from Ly�-features. Most of the simulations were actually per-
formed with frequency-dependent radiation transport. As far
as a comparison is possible, the Rosseland opacities derived
from the OPAL tables and those used in the HD simulations
agree very well. Within an OPAL table we employed bi-rational
spline interpolations.

In the very hot and high-density domains of the helium and
carbon/oxygen layers the opacities were calculated from the
following approximation formulae

1

�
=

1

�Ross
+

1

�cond
;

where the Rosseland mean �Ross is made up from a \Kramers-
opacity" term �K and an electron-scattering term �es

�Ross = �es + �K:

The latter two sources of absorption are approximated by

�es =
0:2 (1 + X)

[1 + 2:7 � 1011�=T 2]
�
1 + (T=4:5 � 108)0:86

� ;
including Thomson and Compton scattering, and

�K = 3:8 � 1022 (1 + X) (X + Y + 3 C + 4 O)�T�7=2:

The conductive opacity is na��vely estimated as

�cond = 2:6 � 10�7Z

�
T

�

�
2
�
1 +

�
�

2 � 106

�
2=3
�
:

where we set Z = X + 4 Y + 8 Z.

Analytic approximations to opacity sources in the low tem-
perature domain were not necessary in our applications since
detailed opacity tables were used in the pure hydrogen layers
of the models, they always extended to temperatures exceeding
105 K; the actual values depended on the assumed mass of the
super�cial hydrogen blanket.

In the compositional transition region from pure hydro-
gen to pure helium we interpolated linearly between the OPAL
opacity table and the analytic opacities.

Our simplistic treatment of the physics in the interior of the
white-dwarf models led to surprisingly accurate models. Com-
parison with data presented in Tassoul et al. (1990) revealed
that the central density deviated about 6% from a model with
the same central temperature and with the same mass. For the
same luminosity and equal mass, the central temperatures di-
verged by roughly 20 % whereas our models were hotter.
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