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ABSTRACT

We discuss the test of CP and CPT violation in τ decay without using the
polarized electron beam by comparing partial fractions of τ− and τ+ decay into
channels with strong final state interactions. For example, Γ(τ− → π−+π0+ν) 6=
Γ(τ+ → π++π0+ν) signifies violation of CP. The optimum energy to investigatge
CP violation in τ decay is discussed. We conclude that this energy is a few MeV
below ψ(2s) in order to avoid the charm contribution and over abundance of
hadrons at the ψ(2s) peak.
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1 Introduction

Understanding CP violation in the elementary particle system is a fascinating subject in
itself. It is also a key to understanding the preponderance of matter over antimatter in our
universe. Up to now the only evidence of CP violation on the elementary particle level is the
decay of the kL system and this is too meager to construct a credible standard theory for CP
violation for all particles. In this paper we discuss measurement of CP violation in τ decay.
This is an interesting subject because τ is the heaviest lepton and thus if a charged Higgs
boson is responsible for CP violation we would most likely see the effect here among all the
leptons. Also the Kobayashi-Maskawa theory [1] says that CP violation should not occur
in the leptonic sector because the gauge eigenstate and mass eigenstate are identical in the
lepton sector due to zero neutrino masses in the Standard Model. These basic assumptions
of Kobayashi-Maskawa must be tested. CP violation in τ has been investigated previously
mainly in the production of τ pair coming from the possible existence of the electric dipole
moment [2] of τ . However since the electric dipole moment of τ is induced by weak or
semiweak corrections to the electromagnetic vertex of τ its effect is expected to be less than
(mτ/mw)2α = 3× 10−6 and thus impossible to detect even with 108 τ pairs available in the
Tau-Charm Factory. Similarly the interference between CP violating neutral Higgs boson
exchange and the one photon exchange diagrams is also completely negligible [3, 4]. Thus
CP can be assumed to be conserved in the production the τ pair; we need to consider only
CP violation in the decay of τ .

Since the decay of τ is a weak interaction, if CP violation in τ is weak, then its effect
should be of order 1 whereas if it is milliweak its effect should be of order 10−3 and detectable
with 108 τ pairs available at the Tau-Charm Factory.

In my previous papers [3, 4] I have discussed how to use the polarized electron beam
to investigate CP violation in τ decay by constructing rotationally invariant quantities such
as −→w i · ~a, (

−→w i × ~a) · ~b, (−→w i × ~µ) · −→w µ where ~a and ~b are momenta of hadrons in the

semileptonic decay of τ ; ~µ and −→w µ are momentum and the polarizaiton of muon in the

decay τ− → µ− + ντ + νµ or its charge conjugate; −→w i is the initial beam polarization

−→w i =
w1 + w2

1 + w1w2

êz , (1)

where êz is the direction of the incident electron and w1 and w2 are polarization of the
electron and positron in the z direction.

In section 2 I point out that Γ(τ− → ντ + a + b) 6= Γ(τ+ → ντ + a + b) also signifies
CP violation. We give the physical reason for it. We also compare the merits of this kind of
measurement with those using polarized beams. In section 3 we discuss the optimum energy
to do τ physics at the Tau-Charm Factory.
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2 CP Violation in τ Decay using Branching Fractions

CPT conservation says that the total widths of τ− and τ+ must be equal. Also partial
widths into those channels without final state interactions, such as τ− → µ− + νµ + ντ ,
τ− → e−+νe+ντ , τ− → π−+ντ , and τ− → k−+ντ , must be the same as the corresponding
channels for τ+ decay [5]. However for decay channels that contain final state interactions,
such as τ− → π− + π0 + ντ , π− + π− + π+ + ντ , π− + π0 + π0 + ντ , π− + k0 + ντ , and
π0 + k− + ντ , the CP violation can show up as the inequality in partial widths for charge
conjugate decay modes. For example, Γ(τ− → π− + π0 + ν) 6= Γ(τ+ → π+ + π0 + ν)
signifies violation of CP, but Γ(τ− → µ− + 2ν) 6= Γ(τ+ → µ+ + 2ν) or Γ(τ− → all) 6=

Γ(τ+ → all) will indicate that CPT is violated. The polarization vector −→w i defined in Eq.
(1) can be used to construct many rotationally invariant products to investigate T, CP,
CVC, and charged Higgs boson exchange in leptonic [4] and semileptonic [3] decays of τ .
The polarization dependent quantities will yield information on structure of CP violations
whereas the polarization independent quantities such as the difference in partial widths
between τ− → ντ + π− + π0 and τ+ → ντ + π+ + π0 will merely indicate the existence and
magnitude of the CP violation. As pointed out in Ref. [3] this difference in partial widths
is due to the combined effects of CP violation and the inelastic final state interaction such
as 2π going into 4π and vice versa. In the absence of CP violation the probabilities of 2π
going into 4π and vice versa in the τ− decay are equal to those in the τ+ decay. However in
the presence of CP violation the amplitudes for the decay is proportional to exp(iδw + iδs)
for τ− and exp(−iδw + iδs) for τ+ and thus they become different.

3 Optimum Energy to do τ Physics

The energy of the machine should be set below charm threshold; i.e. Ecm = 1869.3 MeV for
each beam. Near the threshold of τ pair production, τ pair events can uniquely be identified
by e-hadron, e-µ, µ-hadron events. Above the charm threshold charm events produce the
unwelcome leptonic background [6]. The best energy to run is either at ψ(2s, 3, 685 MeV)
or slightly below it. The total cross section for e+e− → ψ(3.685)→ τ+τ− can be written as
[7]

σr(w) = 12π
Γ(ψ → 2e)Γ(ψ → 2τ )

(w2 −M2
R)2 + Γ2

tM
2
R

, (2)

where w = 2E, MR = 3.685 GeV, Γt = 243 keV, Γ(ψ → 2e) = 21.4 keV, and Γ(ψ → 2τ ) =

Γ(ψ → 2e)(β(3−β2)/2), with β =
√

1− ((2Mτ )2/w2) ≈ 0.26426, and β(2−β2)/2 ≈ 0.38717.
At the peak of the resonance we have

σr(MR) =
12π

M2
R

B2(ψ → 2e) 0.38717 = 32.40× 10−33cm2 . (3)
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The peak cross section of e+e− → τ+τ− at continuum which occurs at 2E = 4.174 GeV is
[3, 4]

σc(4.174) =
πα2

6
× 1.036

1

M2
τ

= 3.562 × 10−33cm2 . (4)

Thus
σr(3.685)

σc(4.174)
= 9.096 . (5)

This number must be reduced because the machine width is much wider than the resonance
width and the radiative corrections further broaden the effective machine width. This prob-
lem was first solved [7] by the author in 1974 immediately after the discovery of J/ψ. The
most comprehensive account was given in Ref. [8] which we follow here. Qualitatively if the
machine width is ∆ and the resonance width is Γt, then only the fraction Γt/∆ of the beam
is effective in producing the resonance peak if ∆ � Γt. The effect of radiative corrections
can be estimated by the change in the height of the Gaussian peak of the machine energy
by the radiative corrections because only the peak height matters when the resonance is
narrower than the beam width. The result is [8]

σexp(3.685) = σr(3.685)
[√

π

8

Γt
∆

] (√8∆

3.685

)T
Γ
(
T

2
+ 1

)+ σc(3.685) (6)

where σc(3.685) = 2.476× 10−33cm is the continuum cross section, ∆ is the Gaussian beam
width defined by

G(w,w′) =
1

√
2π∆

exp

[
−

(w − w′)2

2∆2

]
, (7)

and is related to the full width at a half maximum (FWHM) by

∆ =
(FWHM)

2.3848
. (8)

T is called the equivalent radiator thickness defined by

T =
2α

π

[
`n

M2
R

m2
e

− 1

]
= 0.14229 . (9)

Γ is the Gamma function and its value is

Γ
(

1 +
T

2

)
= 0.96365 . (10)

The first square bracket shows that only a fraction of the incoming beam, Γt/∆, is effective

in producing the resonance. The factor
√
π/8 comes form the fact that Γt is the FWHM

of the Breit-Wigner formula whereas FWHM of the Gaussian beam profile is given by Eq.
(8). The second square bracket represents the reduction of the Gaussian peak height due to
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the photon emission whose effective cutoff is ∆E =
√

8 ∆. The Gamma function, Eq. (10),
comes from the folding of the Gaussian function with the photon straggling function [8]. At
the Beijing Electron-Positron Collider ∆ = 1.4 MeV and thus from Eq. (6) we have

σexp(2.685,∆ = 1.4 MeV) = 0.0411σr(3.685) + σc(3.685) . (11)

there is a scheme [9] to make ∆ as small as 0.14 MeV using a monochromatizer; we have
then

σexp(3.685,∆ = 0.14 MeV) = 0.286σr(3.685) + σc(3.685) . (12)

Since the branching fraction to τ pair is 0.34% in σr(3.685) there are several hundred π’s for
each τ pair produced by σr(3.685).

The BES Collaboration [6] has successfully carried out τ experiments using ψ′ under
the conditions shown in Eq. (11), where the first term is about 0.48 of the last term. For
their experiment the hadron background did not cause any problem for four reasons: (1)
most of the hadron backgrounds are multiprong events whereas τ events are mostly two-
prong events. This fact can be used to eliminate the background. (2) They did not use the
monochromatizer. (3) Particle ID has about 10−3 efficiency. (4) Accuracy of 10−2 is good
enough for them, whereas CP experiment needs 10−3 accuracy.

An alternative to use Eq. (11) or (12) is to avoid ψ′ all together and run the machine
at a slightly lower energy, say at 3.680 GeV. From the consideration of background this is
probably the ideal energy to run the Tau-Charm Factory. AtW = 3.680 GeV the component
of polarization of τ± in the beam direction averaged over the production angle is slightly
improved:

wz =
∫ 1

−1
wz

dσ

d cos θ
d cos θ

/
σ =

w1 + w2

1 + w1w2

1 + 2a

2 + a2
≡

w1 + w2

1 + w1w2
F (a) ,

where a = 2Mτ/W . At w = 4.174 GeV we have F = 0.992, but at w = 3.680 GeV
we have F = 0.9996. The cross section is reduced from σc(4.174) = 3.562 × 10−33cm2 to
σc(3.680) = 2.44 × 10−33cm2. This energy is preferred in order to avoid both the charm
background and overabundance of hadrons in the ψ(2s) peak.
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