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ABSTRACT

We analize the structure of models with unbroken and spontaneously

broken U(1)a × U(1)b gauge symmetry. We show that the quantum correc-

tions to the 2N gauge charges, with N = number of fermions + number

of scalars, can be absorbed in the redefinition of three independent gauge

couplings (ga, gb, and gab). We establish the (one-loop) conditions on the

matter content for gab = 0 (a value usually assumed in the literature) and

we show that in the minimal extensions of the Standard Model with an extra

U(1) symmetry the choice gab = 0 is not stable under radiative corrections

induced by the standard Higgs fields. Moreover, gab = 0 to all orders seems

to require an exact symmetry. The spontaneous breaking of the gauge sym-

metry induces further mixing between the two gauge bosons and introduces

a fourth independent physical parameter. A consequence of our analysis is

that the usual tree-level description with only three physical parameters (i.e.,

two gauge couplings and one gauge boson mixing angle) is not in general a

justified zero order limit of the treatment including radiative corrections.
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1. Introduction.

The extensions of the Standard Model (SM) with an extra U(1) gauge sym-

metry have been extensively studied during the last years [1]. They appear as a

possible low-energy limit in many grand unified scenarios [2], and they are not

banished to very high energies by present data [3]. As a matter of fact, precision

experiments at LEP as well as direct searches at large hadron colliders (TEVA-

TRON) set (stringent) limits on new gauge interactions, but do not exclude their

discovery at future colliders (LHC or NLC) [4].

Usually these analyses assume definite models with few free parameters. In

this way, the fits (which often depend also on few independent observables) are

simplified. Beyond tree level, however, the number of free parameters is related

to the number of independent renormalized parameters. Hence, if a parameter is

not let to vary, one must make sure that the constrained model is stable under

quantum corrections. In the case of extra gauge interactions this is a delicate point

[5]. In this paper we study at the one-loop level models which include a sector

with U(1)a × U(1)b gauge symmetry. From our analysis it follows that a generic

extension of the SM with gauge group SU(3)C × SU(2)L × U(1)Y × U(1)Y ′ has

four new free parameters: the mass MZ′ of the extra vector boson Z ′; the mixing

angle φ between the Z (mass eigenstate) and Z ′0 (Y ′-current eigenstate) vector

bosons; the overall strength g2 of the new Y ′ current; and the mixing g12 [6] of the

Y ′ current with the standard hypercharge Y . In particular, we prove that g12 is a

free parameter in these models: it is physical (to be determined experimentally)

and necessary to absorb the infinities when calculating quantum corrections. g12

can be consistently ignored if an extra symmetry is present in the theory but this

is not the case in many popular models. We do not claim that the effects due

to a non-vanishing g12 are always sizeable and they could not be neglected in a

tree-level analysis. However, it is worth to emphasize that:

•When obtaining experimental bounds on Z ′ models, the nonstandard (tree-

level) contributions are often calculated assuming g12 = 0 and varying the extra
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Y ′ charge (for example, considering different combinations of the two nonstandard

U(1) subalgebras in E6). It seems more systematic, however, to stick to a par-

ticular model (which corresponds to a definite Y ′ charge), and to let all its free

parameters including g12 vary, rather than constraining the whole class of models

with a particular choice of one free parameter.

• The three gauge couplings g1, g2, and g12 cover the whole parameter space

of a model with a gauge symmetry subgroup U(1)Y × U(1)Y ′ . For example, the

U(1)Y × U(1)Y ′ ⊂ SU(2)R × U(1)B−L sector of left-right symmetric models (re-

sulting from SO(10)) is a particular case with the two new gauge couplings related:

g1 =
gRgB−L√

2
5g

2
R + 3

5g
2
B−L

, g2 =

√
2

5
g2
R +

3

5
g2
B−L, g12 =

g2
R − g

2
B−L√

5
3g

2
R + 5

2g
2
B−L

(1)

(this model is known as the χ model in the literature (see Ref. [1] for definitions)).

In general, since the three parameters get renormalized and run with the scale,

they bring information of other (larger) scales (which may point out to grand

unification, left-right symmetry at higher scales, etc). In particular, if g1, g2 and

g12 satisfy Eq. (1) at some scale, it indicates that there is left-right symmetry

restoration at that scale.

• At any rate, in the absence of extra symmetries, a fully consistent one-loop

analysis of precision data including a relatively light Z ′ requires considering g12

as a physical parameter.

As a first step to analyse Z ′ extensions of the SM at one loop, we study in

this paper the structure of models with U(1)a × U(1)b gauge symmetry [7]. In

Section 2 we discuss the tree-level Lagrangian. In Section 3 we fix the choice

of renormalized parameters and introduce our renormalization (on-shell) scheme.

The one-loop renormalization of the U(1)a ×U(1)b model is worked out in detail,

emphasizing the need of an exact extra symmetry to guarantee that g12 can be

neglected to all orders. (In the Abelian case discussed here we denote this gauge

coupling gab.) We assume throughout the paper that the theory is vectorlike,

although our examples are based on realistic extensions of the SM. Thus, it must
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not create any confusion when we refer to SO(10) or left-right models to specify

U(1)a × U(1)b matter contents (models). The results which we illustrate with

these examples apply in both cases, except for simple modifications (factors). In

Section 4 we present the renormalization of the model with spontaneously broken

symmetry. In this case three renormalized parameters in the Higgs potential are

replaced by the two heavy gauge boson masses and their mixing angle. Section 5

is devoted to conclusions.

2. Classical Lagrangian and physical parameters.

The classical Lagrangian for n fermions fi and m scalars φi with U(1)a×U(1)b

gauge symmetry reads

Lclass = −
1

4
FTµνF

µν +
n∑
i=1

f i(i 6 D −mi)fi +
m∑
i=1

(Dµφi)
†(Dµφi)− V (φi) , (2)

where the antisymmetric tensor

Fµν =

(
F aµν
F bµν

)
=

(
∂µA

a
ν − ∂νA

a
µ

∂µAbν − ∂νA
b
µ

)
(3)

and the covariant derivatives

Dµfi = ∂µfi + i(q̃ai q̃
b
i )

(
Aaµ
Abµ

)
fi ,

Dµφi = ∂µφi + i(Q̃ai Q̃
b
i )

(
Aaµ
Abµ

)
φi .

(4)

Aa,b are the two gauge boson fields, and q̃a,bi and Q̃a,bi the 2N (N = n + m)

fermion and scalar charges, respectively, whereas V (φi) is a polinomial of at most

fourth order preserving the U(1)a ×U(1)b gauge symmetry. L is the most general

Lagrangian renormalizable by power counting and invariant under the transfor-

mations

fi → exp{−i(q̃ai q̃
b
i )

(
θa

θb

)
} fi ;

φi → exp{−i(Q̃ai Q̃
b
i )

(
θa

θb

)
} φi ;(

Aaµ
Abµ

)
→

(
Aaµ
Abµ

)
+

(
∂µθ

a

∂µθb

)
,

(5)
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with θa,b the two gauge parameters.

The invariance of Fµν under gauge transformations also allows for a gauge

kinetic term of the form FTµνKF
µν , with K an arbitrary 2×2 symmetric matrix.

K can be absorbed, however, into a vector boson field redefinition (note that a

redefinition of Aµ also redefines the 2N charges of the matter fields in Eq. (4)).

Without loss of generality we can then assume K = − 1
4
I, still leaving the arbitrar-

ity of rotating the two gauge fields. Then only 2N − 1 charges are physical, since

the rotation left, which is related to the impossibility of distinguishing on physical

grounds between the two degenerate (massless) gauge bosons, can be used to fix

one of the 2N charges to zero. Hence the 2N charges are determined fixing one

charge conventionally and fitting 2N − 1 independent experiments. We assume

fermion fields with massesmi, whereas V (φi) includes scalar masses and couplings.

We also assume that the Yukawa couplings are forbidden by some symmetry, for

they are not important for our discussion.

In summary, L in Eq. (1) is a generic (classical) Lagrangian of at most dimen-

sion four with U(1)a×U(1)b gauge symmetry. This is not altered at the quantum

level: the theory is renormalizable [8] and gauge invariance does not allow for

any other term. Among the physical parameters of the model, however, quantum

corrections can be used to distinguish between those which are renormalized (and

in this sense are free) from those which are constants. For example, in QED with

just a U(1) gauge symmetry and N matter fields there is one free parameter, the

electric charge e usually identified with the charge of the proton, and N − 1 con-

stants, the ratios of the remaining charges to e. As we shall show, the gauge sector

in a model with U(1)a × U(1)b symmetry and N matter fields depends on three

free parameters and 2N − 4 constants: the charges (q̃ai q̃
b
i ) can be splitted into

(q̃ai q̃
b
i ) ≡ (qai q

b
i )

(
ga gab

0 gb

)
, (6)

where (qai q
b
i ) are constant charges (four of them fixed arbitrarily) and ga, gab,

and gb three parameters (gauge couplings) which will absorb all the quantum

corrections. (We use only one superscript, a, b, for diagonal terms ga, gb.) In
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general, beyond tree level, just two gauge couplings ga and gb (one for each U(1)

subgroup) are not enough to renormalize the theory.

Obviously for N = 1 there is only one free parameter (independent charge),

since in this case the gauge fields can be rotated to decouple completely one gauge

boson. For N > 1, three experiments involving two matter fields with independent

charges (let say q̃a1,2 q̃
b
1,2) can be used to fix ga, gab and gb (once fixed one q̃ charge

and the 4 charges (qa1,2 q
b
1,2) conventionally); the remaining charges would then be

fixed after determining (q̃ai q̃
b
i ), i = 3, ..., N from 2N−4 independent experiments:

(qai q
b
i ) = (q̃ai q̃

b
i )

(
1
ga
− gab

gagb

0 1
gb

)
, (i = 3, ..., N) . (7)

In spontaneously broken theories the former discussion applies but the gauge

boson mass eigenstate bases are fixed and there is no freedom to rotate them.

Hence, in the broken case there are 2N physical charges and 2N independent

experiments are needed to fix them. Then Eq. (6) remains general, g′ba 6= 0 (we

use a prime to denote the couplings to mass eigenstates),

(q̃′ai q̃′bi ) ≡ (qai q
b
i )

(
g′a g′ab

g′ba g′b

)
≡ (qai q

b
i )

(
ga gab

0 gb

)(
cosφ − sinφ
sinφ cosφ

)
. (8)

φ is the angle rotating from the gauge boson basis triangularizing the renormalized

gauge coupling matrix to the renormalized gauge boson mass eigenstate basis.

3. Renormalization of U(1)a × U(1)b: unbroken case.

In this Section we study the renormalization of a theory with unbroken gauge

symmetry U(1)a × U(1)b. We discuss the parametrization of the gauge couplings

(valid to all orders) and work out in detail their renormalization in the on-shell

scheme at one loop. We show that even the popular (minimal) extensions of the

standard model with one extra U(1) require two new gauge couplings in order

to cancel the divergent contribution of the Higgs fields. Moreover, even if the

models are enlarged adding extra matter in order to fulfil the one-loop conditions

for consistently neglecting the second gauge coupling gab, there is no guarantee for
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the cancellation of infinities at two loops. As a matter of fact, in the examples we

have looked at the cancellation of infinities to all orders requires an exact extra

symmetry: a more general gauge invariance or its discrete remnant.

The renormalized Lagrangian in terms of bare quantities has the same ex-

pression as the classical Lagrangian in Eq. (2)

L =−
1

4
F 0 T
µν F

0µν +
n∑
i=1

f
0

i (i 6 D −m
0
i )f

0
i

+
m∑
i=1

[(Dµφ
0
i )
†(Dµφ0

i )− µ
0 2
i φ0

i

†
φ0
i ]

− V (>2)(φ0
i )−

1

2
∂µA0 T

µ ξ0 −1∂νA0
ν ,

(9)

where µ0
i are the scalar masses and V (>2) contains the terms of dimension 3 and 4.

A covariant gauge fixing term has been added. In this gauge the ghosts decouple.

Both ultraviolet and infrared divergences are regularized using dimensional regu-

larization. Renormalized fields and couplings are related to these bare quantities

(we denote fermion and scalar charges by little q when referring to both)

A0
µ = Z

1
2

AAµ ; f0
i = Z

1
2

fi
fi ; φ0

i = Z
1
2

φi
φi ;

q̃0 T
i = q̃Ti Zq̃i ; m0

i = mi + δmi ; µ0 2
i = µ2

i + δµ2
i ;

(10)

and analogously for the couplings in V (>2) and for ξ0 −1. A
(0)
µ and q̃

(0)
i are 2

dimensional vectors and ξ(0), Z
1
2
A and Zq̃i are 2 × 2 matrices. The non-diagonal

terms generate counterterms which will be needed to cancel infinities. The gauge

symmetry translates into Ward identities for Green functions. In particular for

renormalized one-particle irreducible Green functions,

∂ µ
z 〈f̄i(x)fi(y)Arµ(z)〉irre = iq̃ui Z

uv
q̃i
Z

1
2 vr

A 〈f̄i(x)fi(y)〉irre(δ(z − y)− δ(z − x)) , (11)

and analogously for scalar fields. The finiteness of the other quantities in Eq. (11)

implies that the product Zq̃iZ
1
2

A is also finite. As a matter of fact

Zq̃iZ
1
2

A = 1 (12)
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in appropriate renormalization schemes such as minimal subtraction and on-shell

(see the Appendix). Then Zq̃i is independent of the matter field i and equal to

Z
−1

2

A ; and Eq. (11) for the gauge couplings reads [9]

(q̃0 a
i q̃0 b

i ) = (q̃ai q̃
b
i )

(
Z
− 1

2 aa

A Z
−1

2 ab

A

Z
− 1

2 ba

A Z
−1

2 bb

A

)
. (13)

This is the generalization of the constancy to all orders of the charge ratios in

QED to the case of U(1)a × U(1)b. Splitting

(q̃ai q̃
b
i ) ≡ (qai q

b
i )

(
ga gab

gba gb

)
, (14)

and similarly for the bare couplings, Eq. (13) implies

(q0 a
i q0 b

i ) = (qai q
b
i ) ;(

g0 a g0 ab

g0 ba g0 b

)
=

(
ga gab

gba gb

)(
Z
−1

2 aa

A Z
− 1

2 ab

A

Z
−1

2 ba

A Z
− 1

2 bb

A

)
.

(15)

Hence, it is possible also in this case to define charges which do not renormalize,

q
(0) a,b
i , but to absorb all quantum corrections we must introduce a 2× 2 matrix

of gauge couplings,

(
g(0) a g(0) ab

g(0) ba g(0) b

)
. To determine them, 4 charges defining a

2× 2 invertible matrix, e.g., qa,b1,2, must be fixed conventionally in Eq. (14). In the

unbroken case with U(1)×U(1) gauge symmetry, however, Eq. (15) is too general.

The freedom to define (rotate) the renormalized gauge fields in Eq. (10) allows to

assume gba = 0 in Eqs. (14) and (15), and thus the matrix g triangular. Besides,

the freedom to rotate the gauge bosons in Eq. (9) allows to assume Z
1
2 ba

A = 0

in Eq. (10), and thus the matrix Z
1
2

A (and its inverse Z
− 1

2

A in Eqs. (13) and (15))

triangular. Both minimal subtraction and on-shell schemes are compatible with

this choice. Under this rotation the gauge fixing matrix ξ0 −1 also transforms,

but it was arbitrary, although fixed. (The Ward identity for the gauge boson

propagator implies that the gauge fixing term does not renormalize, i. e., ξ0 −1 =

Z
−1

2 T

A ξ−1Z
− 1

2

A ). With the former choices the right-hand side of Eq. (15) gives a

triangular g0 matrix:(
g0 a g0 ab

0 g0 b

)
=

(
ga gab

0 gb

)(
Z
− 1

2 aa

A Z
− 1

2 ab

A

0 Z
− 1

2 bb

A

)
. (16)
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This is our main result: the renormalization of the gauge couplings in models

with two abelian gauge symmetries requires three couplings g(0) a, g(0) ab, g(0) b,

satisfying Eq. (16). We have used the freedom existing in defining the degenerate

(massless) gauge bosons.

Let us make explicit this analysis to one loop. Following the on-shell scheme

prescription in the Appendix we evaluate the renormalized vector boson proper

selfenergies. These can be written as the sum of transverse and longitudinal parts:

iΠrs
µν(q2) = i[Ars(q2)(gµν −

qµqν

q2
) + Brs(q2)

qµqν

q2
] . (17)

Using the Feynman rules in Ref. [10] with ξ = I, we find from the diagrams in

Fig. 1 (excluding the fourth diagram which only contributes in the broken case)(
Aaa Aab

Aba Abb

)
= −q2 1

16π2
{

n∑
i=1

[
4

3
CUV − 8

∫ 1

0

dx x(1 − x) lnDfi ]

(
(q̃ai )2 q̃ai q̃

b
i

q̃bi q̃
a
i (q̃bi )

2

)

+
m∑
i=1

[
1

3
CUV +

1

3
+

2

q2
(

∫ 1

0

dx Dφi lnDφi − µ
2
i lnµ2

i )]

(
(Q̃ai )2 Q̃ai Q̃

b
i

Q̃biQ̃
a
i (Q̃bi )

2

)
}

−q2

(
2(Z

1
2 aa

A − 1) Z
1
2 ba

A + Z
1
2 ab

A

Z
1
2 ab

A + Z
1
2 ba

A 2(Z
1
2 bb

A − 1)

)
,

(18)

with CUV = (1
ε
− γ + ln 4π), ε = (4 − d), Dfi = m2

i − q
2x(1 − x), and Dφi =

µ2
i − q

2x(1 − x). The last term in Eq. (18) stands for the one-loop counterterms.

They result from expanding ZA = Z
1
2 T

A Z
1
2

A :
∑
r=a,b

Z
1
2 ra

A Z
1
2 ra

A

∑
r=a,b

Z
1
2 ra

A Z
1
2 rb

A∑
r=a,b

Z
1
2 rb

A Z
1
2 ra

A

∑
r=a,b

Z
1
2 rb

A Z
1
2 rb

A

 =

(
1 0
0 1

)
+

(
2(Z

1
2 aa

A − 1) Z
1
2 ba

A + Z
1
2 ab

A

Z
1
2 ab

A + Z
1
2 ba

A 2(Z
1
2 bb

A − 1)

)
+ ... .

(19)

Eq. (19) makes apparent that Ars (which is symmetric) in (18) and the corre-

sponding on-shell conditions (gauge invariance assures Ars(0) = 0)

∂Ars

∂q2
|q2=0 = 0 , (20)
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are independent of the choice (rotation) of the bare gauge field basis. At one loop

this means that the three conditions in Eq. (20) fix Z
1
2 aa

A , Z
1
2 bb

A , and Z
1
2 ab

A +Z
1
2 ba

A .

Hence, we can assume in agreement with Eq. (16) that Z
1
2 ba

A = 0 and use Eq. (20)

to fix the remaining Z
1
2
A matrix elements, and in turn the matrix elements of the

inverse matrix Z
−1

2

A :

Z
− 1

2 aa

A = 1 +
1

32π2
{

n∑
i=1

4

3
[CUV − lnm2

i ](q̃
a
i )2 +

m∑
i=1

1

3
[CUV − lnµ2

i )](Q̃
a
i )2} ,

Z
− 1

2 ab

A =
1

16π2
{

n∑
i=1

4

3
[CUV − lnm2

i ]q̃
a
i q̃
b
i +

m∑
i=1

1

3
[CUV − lnµ2

i )]Q̃
a
i Q̃

b
i} ,

Z
− 1

2 bb

A = 1 +
1

32π2
{

n∑
i=1

4

3
[CUV − lnm2

i ](q̃
b
i )

2 +

m∑
i=1

1

3
[CUV − lnµ2

i )](Q̃
b
i )

2} .

(21)

Thus, in general Z
− 1

2 ab

A is infinite and then g0 ab too (see Eq. (16)).

The corresponding on-shell conditions on the fermion and the scalar selfener-

gies fix the field renormalization constants Z
1
2

fi
and Z

1
2

φi
and the mass countertems

δmi and δµi, whereas the scalar three- and four-point functions are renormalized

by the appropiate choice of renormalization constants.

It is interesting to know under which assumptions one can neglect gab, be-

cause it is convenient to have as few free parameters as possible when performing

fits to experimental data. At any rate many existing bounds on gauge extensions

of the standard model have been obtained fixing gab = 0. (gab is a physical param-

eter and its experimental value can be compatible with zero accidentally.) The

question is whether it renormalizes or not. Generically the answer depends on

the renormalization scheme. What we really want to know is if a scheme (and a

model) exists where Z
−1

2 ab

A = 0. In this case gab/gb is constant under renormal-

ization and the particular choice gab = 0 is stable and consistent (although not

necessary). At one loop the infinite part of Z
− 1

2 ab

A cancels if (assuming gab = 0)

4

3

n∑
i=1

qai q
b
i +

1

3

m∑
i=1

QaiQ
b
i = 0 (22)

(see Eq. (21)). In chiral theories 4
3 is replaced by 2

3 and i runs over the 2-component

spinors. Eq. (22) is fulfilled if the fermion and scalar fields define complete mul-

10



tiplets of a simple group containing one (or both) U(1) factor(s). For example,

this is the case if the matter contents of the U(1)a×U(1)b model defines complete

multiplets of SU(2)a ×U(1)b(⊃ U(1)a ×U(1)b) or SO(10)(⊃ U(1)a ×U(1)b). We

do not see, however, any necessity (based on anomaly cancellation, minimality,

or grand unification) to assume this, specially in the scalar sector. In particular,

consider the minimal model in Table 1 where SO(10) is broken at very large scales

(≈ 1015 GeV) to SU(3)C ×SU(2)L×U(1)a ×U(1)b, with U(1)a the hypercharge,

Y , and U(1)b the extra U(1) in SO(10), usually denoted U(1)χ [1]. If one as-

sumes a minimal fermion content of 3 chiral families in the 16 representation, all

of them survive the breaking of SO(10) and the fermion contribution to gY χ is

zero (
n∑
i=1

qYi q
χ
i = 0 for the fermions in Table 1). In the scalar sector, however,

one usually accommodates the Higgs doublets in the 10 representation of SO(10);

when this group is broken there is no reason to keep the leptoquarks in the 10

light, with masses identical to those of the Higgs fields (on the contrary, it is phe-

nomenologically preferred to give them large masses). The same argument applies

in supersymmetric extensions of the SM with an extra U(1). Then radiative correc-

tions induced by the light Higgses generate a nonzero gY χ gauge coupling even in

the minimal scenarios.
m∑
i=1

QYi Q
χ
i = 2 1

5

√
3
2

for the scalars in Table 1: one SU(2)L

doublet and one singlet, together with their complex conjugated representations.

One can insist in adding extra light matter (scalars) in order to satisfy Eq. (22)

but this would not guarantee that Z
−1

2 ab

A is finite at two loops. For instance, the

first diagram in Fig. 1 with a gauge boson crossing the fermion bubble vertically is

proportional to
∑
x=a,b

n∑
i=1

qai q
x
i q
b
i q
x
i (and similarly for other diagrams). In contrast

with the corresponding one-loop contribution this two-loop diagram is infinite for

the χ model ∑
x=Y,χ

n∑
i=1

qYi q
x
i q
χ
i q

x
i = 3(−

1

10

√
1

6
). (23)

And there is no reason for cancellations among diagrams. Hence one expects

(although small) nonzero contributions to gY χ after renormalizing from the unifi-

cation scale [9].
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Let us compare this model with the LR model [1] in the same Table: U(1)a

is the third component of SU(2)R, TR3 , and U(1)b is the baryon minus the lepton

(B − L) number, QB−L. This model is also contained in SO(10) and if we also

assume a minimal fermion contents of 3 chiral families in the 16 representation,
n∑
i=1

qRi q
B−L
i = 0 at one loop and

∑
x=R,B−L

n∑
i=1

qRi q
x
i q
B−L
i qxi = 0 at two loops. In

fact Z
−1

2 RB−L
A = 0 to all orders. This follows from the vanishing of ARB−L in

Eq. (18), what is guaranteed by an exact symmetry interchanging uc ↔ dc, ec ↔ νc

and changing the sign of the R gauge boson, AR → −AR but leaving unchanged

the B − L gauge boson, AB−L. The Higgs sector has to be enlarged to maintain

ARB−L = 0: at least one scalar must be added with the same quantum numbers

as ec in order to complete an SU(2)R doublet with Nc, and similarly for N
c
.

These two models illustrate the different cases:

• In general Z
− 1

2 ab

A is infinite and gab is not only a physical parameter but

a necessary one to absorb the infinities of the theory, as in the U(1)Y × U(1)χ

model.

• If as in the LR model U(1)R×U(1)B−L there is an exact symmetry requiring

Z
−1

2 ab

A = 0, gab can be consistently neglected. The exact symmetry in this model

is a discrete remnant of the SU(2)R symmetry embedded in SO(10).

• If a U(1) factor is part of a non-abelian gauge group then gauge invariance

guarantees the vanishing of Z
−1

2 ab

A and g(0) ab. In the LR model this is guaranteed

by SU(2)R × U(1)B−L. (This is similar to the SM case where Z
− 1

2 LY

A = 0 is

implied by SU(2)L × U(1)Y .)

• In the χ model one can gauge SU(5) (which contains the hypercharge),

completing matter and vector boson representations, to guarantee Z
− 1

2 Y χ

A and

g(0) Y χ zero. Then
∑

x∈SU(5)×U(1)χ

n∑
i=1

qYi q
x
i q
χ
i q

x
i = 0.

It is worth to emphasize that although Y =
√

3
5T

R
3 +

√
2
5QB−L, Qχ =√

2
5T

R
3 −

√
3
5QB−L, the (generalized) χ and LR models are equivalent only if

gab is included:

12



• gRB−L 6= 0 violates the (discrete) symmetry and Z
− 1

2 RB−L
A is infinite.

• If we write the LR model (gRB−L = 0) in the Y, χ basis, gY , gχ and gY χ

(as well as Z
− 1

2 Y,χ,Y χ

A ) are related (see Eq. (1)).

Z
− 1

2

A in the on-shell scheme (Eq. (21)) has also finite contributions. (In the

minimal substraction scheme there are no such contributions.) They also cancel if

there is an exact symmmetry distinguishing a and b and constraining the fermion

and scalar masses, as in the LR model. If the masses violate the symmetry, one

must expect that they will generate infinite Z
− 1

2 ab

A contributions at higher orders,

and a nonzero gab.

4. Renormalization of spontaneously broken U(1)a × U(1)b.

The results of the unbroken case apply to the spontaneously broken phase

[8]. It will be more convenient, however, to make a different choice of gauge fixing

term in order to simplify real calculations and of renormalization conditions to

improve the comparison with data in extended electroweak models.

In the broken phase the scalar fields in Eq. (9) with nonvanishing VEVs

v0
i , i = 1, ..., l, (that we assume to be real)

φ0
i =

1
√

2
(v0
i + h0

i + iχ0
i ) , (24)

are shifted. The term in the Lagrangian involving the covariant derivative of these

scalars gives rise to the vector boson mass matrix:

l∑
i=1

(Dµφ
0
i )
†(Dµφ0

i ) =
l∑
i=1

{
1

2
(∂µh

0
i∂
µh0

i + ∂µχ
0
i ∂
µχ0

i ) + χ0
i∂µh

0
i Q̃

0 T
i A0 µ+

(v0
i + h0

i )∂µχ
0
i Q̃

0 T
i A0 µ +

1

2
A0 T
µ Q̃0

i Q̃
0 T
i A0 µ(2v0

i h
0
i + h0

ih
0
i + χ0

iχ
0
i )}+

1

2
A0 T
µ M0 2A0 µ,

(25)

with Q̃0
i =

(
g0 a 0
g0 ab g0 b

)(
Q0 a
i

Q0 b
i

)
and M0 2 =

l∑
i=1

Q̃0
i v

0 2
i Q̃0 T

i . This can be

diagonalized rotating the gauge boson basis, M0 2 = RTφ0M0 2
d Rφ0 , where

M0 2
d =

(
M0 2
a 0
0 M0 2

b

)
, Rφ0 =

(
cosφ0 sinφ0

− sinφ0 cosφ0

)
, (26)

13



and φ0 is the angle defining the rotation from the basis where the gauge coupling

matrix takes a triangular form (Eq. (16)) to the mass eigenstate basis, A′0µ =

Rφ0A0
µ. (Prime refers to gauge boson mass eigenstates.) In this basis(

g′0 a g′0 ab

g′0 ba g′0 b

)
=

(
g0 a g0 ab

0 g0 b

)
RTφ0 . (27)

In order to simplify real computations we work in a Rξ gauge [11] where the

vector-scalar mixing in Eq. (25) cancels

L0
GF = −

1

2
F0 T ξ0 −1F0 , (28)

with ξ0 −1 a symmetric 2× 2 matrix of gauge parameters and

F0 = ∂µA
0 µ − ξ0

l∑
i=1

Q̃0
i v

0
i χ

0
i . (29)

We must also add to the Lagrangian the corresponding Faddeev-Popov term for

the ghosts
(
c0 a

c0 b

)
, which in this gauge do not decouple,

L0
ghost = −c0 T [∂α∂α + ξ0

l∑
i=1

Q̃0
i v

0
i (v0

i + h0
i )Q̃

0 T
i ]c0 . (30)

For electroweak precision tests it may be adequate to choose as free parame-

ters the gauge boson masses, what motivates to use the on-shell scheme (see the

Appendix). The set of independent parameters in the unbroken case, 2N−1 gauge

couplings, q̃0 r
i , the fermion masses and the scalar couplings (masses), is replaced

in the broken case by the 2 gauge boson masses, M0 2
r , 2N gauge couplings q̃′0 r

i ,

the fermion masses and the same but 3 scalar couplings (masses). This means

trading three scalar couplings (masses) by the three parameters fixing the (sym-

metric) gauge boson mass matrix, the two mass eigenvalues and the rotation angle

φ0 in Eq. (26). This angle is included in the gauge coupling definition (see Eqs. (8)

and (27))

(q̃′0 a
i q̃′0 b

i ) = (q̃0 a
i q̃0 b

i ) RTφ0 = (q0 a
i q0 b

i )

(
g0 a g0 ab

0 g0 b

)(
cosφ0 − sinφ0

sinφ0 cosφ0

)
. (31)
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In the symmetric case there are 2N − 1 independent charges because the gauge

boson basis is defined up to a rotation, which is fixed conventionally. In the broken

case the gauge boson basis (mass eigenstates) is fixed and the 2N charges (includ-

ing the rotation angle) will be determined fitting 2N independent experiments.

Two remarks are in order. In some models not all the parameters are indepen-

dent. Since the scalar charges Q̃0 r
i defining the mass matrix M0 2 in Eq. (25) are

free parameters, a general gauge boson mass matrix requires that at least three

different (non-equivalent) scalars get a VEV (l ≥ 3). (In order to break both

U(1)’s, l must be ≥ 2.) Thus in the minimal χ model in Table 1, with h and Nc

only, φ0 is a function of the gauge boson masses [12]. Other parameters in the

Higgs potential can be also replaced by some (of the remaining) VEVs (up to l−3).

Otherwise, the VEVs v0
i , which are determined minimizing the effective potential,

are not independent parameters. They are considered as so, however, when fixing

the corresponding counterterms to satisfy the vanishing tadpole conditions. All

the other counterterms can be found following the standard procedure [13].

Introducing as before (Eq. (10)) renormalized fields and couplings (we con-

centrate on the vector boson parameters and fields)

A′0µ = Z
1
2

A′A
′
µ ; q̃′0 Ti = q̃′Ti Zq̃′i ; M0 2

r = M2
r + δM2

r , (32)

the theory can be multiplicatively renormalized. The Ward identity analogous to

that in Eq. (11), but now involving also ghosts, implies that the product Zq̃′iZ
1
2

A′ is

finite. Moreover, the on-shell scheme can be defined requiring Zq̃′iZ
1
2

A′ = 1. Then,

Eq. (13) also applies for q̃′i,

q̃′0i = q̃′iZ
− 1

2

A′ , (33)

and splitting the 2N charges as in Eq. (31), we obtain

(q0 a
i q0 b

i ) = (qai q
b
i ) and

(
g0 a g0 ab

0 g0 b

)(
cosφ0 − sinφ0

sinφ0 cosφ0

)
=(

ga gab

0 gb

)(
cosφ − sinφ
sinφ cosφ

)(
Z
− 1

2 aa

A′ Z
−1

2 ab

A′

Z
− 1

2 ba

A′ Z
−1

2 bb

A′

)
,

(34)
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for the broken case, too. This equation gives the renormalization of the gauge

couplings and of the gauge mixing angle.

The one-loop expressions for the counterterms are obtained as before from

A′rs in Eq. (17). The vector boson proper selfenergies, iΠ′αβµν (q2), receive contri-

butions from the diagrams in Fig. 1. (See Ref. [10] for the corresponding Feynman

rules in the t’Hooft-Feynman gauge, ξ = I.) The divergent contribution to A′rs

coming from the first three diagrams is the same as in the unbroken case but

exchanging (q̃ai q̃
b
i ) and (Q̃ai Q̃

b
i ) in Eq. (18) by the corresponding prime charges

in Eq. (8). The fourth diagram contribution and the wave function and mass

counterterms can be written:

A′4+5 = −
1

4π2

l∑
i=1

∑
r=a,b

[CUV −

∫ 1

0

dx lnDr
i ]

(
(Q̃′ai )2 Q̃′ai Q̃

′b
i

Q̃′bi Q̃
′a
i (Q̃′bi )2

)
(Q̃′ri )2v2

i

−

(
2(Z

1
2 aa

A′ − 1)(q2 −M2
a )− δM2

a Z
1
2 ba

A′ (q2 −M2
b ) + Z

1
2 ab

A′ (q2 −M2
a )

Z
1
2 ab

A′ (q2 −M2
a ) + Z

1
2 ba

A′ (q2 −M2
b ) 2(Z

1
2 bb

A′ − 1)(q2 −M2
b )− δM2

b

)
,

(35)

where Dr
i = µ2

ix+ M2
r (1 − x)− q2x(1 − x). In the broken phase the six on-shell

conditions on A′rs,

A′aa(M2
a ) = A′ab(M2

a ) = 0 ,
∂A′aa

∂q2
|q2=M2

a
= 0 ;

A′bb(M2
b ) = A′ab(M2

b ) = 0 ,
∂A′bb

∂q2
|q2=M2

b
= 0 ;

(36)

fix the counterterms Z
1
2 rs

A′ , δM2
r . We find (we write as in the unbroken case the
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Z
−1

2

A′ renormalization constants)

Z
− 1

2 aa

A′ = 1 +
CUV

32π2
{
n∑
i=1

4

3
(q̃′ai )2 +

m∑
i=1

1

3
(Q̃′ai )2}+ finite terms ;

Z
− 1

2 ab

A′ =
CUV

16π2

1

M2
b −M

2
a

{M2
b [

n∑
i=1

4

3
q̃′ai q̃

′b
i +

m∑
i=1

1

3
Q̃′ai Q̃

′b
i ]

+ 4
l∑
i=1

∑
r=a,b

v2
i (Q̃′ri )2Q̃′ai Q̃

′b
i }+ finite terms ;

δM2
a =

CUV

16π2
{M2

a [

n∑
i=1

4

3
(q̃′ai )2 +

m∑
i=1

1

3
(Q̃′ai )2]

+ 4
l∑
i=1

∑
r=a,b

v2
i (Q̃′ri )2(Q̃′ai )2}+ finite terms .

(37)

The renormalization constants Z
−1

2 ba

A′ , Z
−1

2 bb

A′ and δM2
b can be obtained from

those in Eq (37) interchanging the indices a↔ b. Note that in the spontaneously

broken case there is no arbitrarity left in the gauge boson basis definition and

then no ambiguity in the determination of the four independent elements of the

Z
−1

2
A′ matrix. These four universal counterterms are absorbed in the 2× 2 gauge

coupling matrix g′ = gRφ. The mixing angle φ provides a fourth independente

coupling. All Green functions are then finite.

For later use we chose the on-shell renormalization scheme. All our results

(except for the finite one-loop contributions to Z
−1

2

A′ ) also apply in the minimal

subtraction scheme, which is simpler.

5. Summary and conclusions.

The extensions of the SM with an extra U(1) symmetry are a possibility

frecuently considered in the literature. The object of many of these analyses

has been to estimate the (small) effects caused by this new physics on electroweak

observables (ρ parameter, Z width, ...), and then to use precision data to constrain

the independent parameters of the models (namely, the mass of the extra neutral

boson Z ′ and its mixing with the standard gauge boson). Usually, the way to

proceed has been to combine the SM predictions at one loop with the nonstandard
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effects estimated at tree level. In this framework, the aim of our study is to

discuss the generic procedure to include (in the on-shell scheme) the full radiative

corrections in models with two abelian gauge symmetries U(1)a × U(1)b. This

is not only important for consistency but for practical (numerical) reasons if the

extra Z ′ is relatively light. We have proved that to absorb the infinites of the

theory one needs three universal gauge couplings (ga, gb, and gab). In the general

case these couplings are independent parameters to be fixed experimentally.

If grand unification at large scales is assumed (for example into SO(10)), then

the gauge symmetry implies gab = 0 at the unification scale. Once the unified

symmetry is broken, however, the order by order conditions on the matter fields

to guarantee gab = 0 may not be satisfied. This is the case of the usual minimal

models already at one loop, due to the Higgs (scalar) contributions. At two loops

the fermion contributions do not fulfil the matter conditions either. Then radiative

corrections generate a nonzero gab at low energies. In each particular model, this

parameter can be estimated via the renormalization-group equations. The LR

model is one exception because there is a discrete symmetry left, reminiscence of

the left-right gauge symmetry, maintaining unmixed the two U(1)’s. gRB−L 6= 0

violates (explicitly) this symmetry. Hence, we conclude that a complete analysis

of Z ′ effects on precision electroweak data must contain the third gauge coupling

gab. This is necessary not only to absorb the divergences of the theory when

calculating beyond the tree level, but also because the low-energy renormalized

value suggested by minimal unified scenarios (once the leading-log contributions

are taken into account) is different from zero.

If gab 6= 0 all models with U(1)× U(1) charges which are linear combination

of the U(1)a × U(1)b charges are equivalent [6].

In the broken case the mixing between the new and the standard gauge bosons,

φ, redefines the currents and thus the gauge couplings. gab and φ are two indepen-

dent parameters to be determined measuring the gauge boson currents (Eq. (8)).
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Appendix.

In this Appendix we establish the renormalization conditions in the complete

on-shell scheme [13].

Two-point functions:

Massive case. The vector-vector propagator can be separated into transverse and

longitudinal parts:

∆rs
µν ≡ −i[T

rs(q2)(gµν −
qµqν

q2
) + Lrs(q2)

qµqν

q2
] . (A1)

The on-shell conditions are fixed in such a way that when ε ≡ (q2 −M2
a )→ 0 the

transverse part has a pole in T aa and the other components are regular (we neglect

the finite width of the particles and consider only the real part of the propagators):

(T rs)|q2→M2
a

=

(
1
ε

O(1)
O(1) O(1)

)
. (A2)

The selfenergies are corrections to the inverse propagator. This can be written

∆−1 rs
µν ≡ i[T−1 rs(q2)(gµν −

qµqν

q2
) + L−1 rs(q2)

qµqν

q2
] , (A3)

and for q2 close to M2
a

(T−1 rs)|q2→M2
a

=

(
ε+O(ε2) O(ε)
O(ε) O(1)

)
. (A4)

The behaviour for q2 → M2
b is analogous. The on-shell conditions on the inverse

propagators read (T−1 is symmetric)

T−1 aa(M2
a ) = T−1 ab(M2

a ) = 0 ,
∂T−1 aa

∂q2
|q2=M2

a
= 1 ,

T−1 bb(M2
b ) = T−1 ab(M2

b ) = 0 ,
∂T−1 bb

∂q2
|q2=M2

b
= 1 .

(A5)
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Thus, the poles of the transverse gauge boson propagator coincide with the renor-

malized gauge boson masses and the propagator expressions at the poles are the

asymptotic ones. The corresponding conditions on the selfenergies are given in

the text (Eq. (35)).

Massless case. If M2
a = M2

b = 0, on-shell T rs means

(T rs)|q2→0 =

(
1
ε

O(1)
O(1) 1

ε

)
, (A6)

which implies

(T−1 rs)|q2→0 =

(
ε+O(ε2) O(ε2)
O(ε2) ε+O(ε2)

)
, (A7)

or
T−1 aa(0) = T−1 ab(0) = T−1 bb(0) = 0 ,

∂T−1 aa

∂q2
|q2=0 =

∂T−1 bb

∂q2
|q2=0 = 1 ,

∂T−1 ab

∂q2
|q2=0 = 0 .

(A8)

The conditions for the selfenergies are given in the text (Eq. (20)). The first

three equations in Eq. (A8) and the corresponding conditions for the selfenergies

are guaranteed by gauge invariance. The complete set of conditions is invariant

under (renormalized) vector boson field rotations due to the gauge boson mass

degeneracy. As a result the gauge field counterterms are fixed up to a rotation,

which must be fixed conventionally (see the text).

Note that the on-shell conditions are imposed only on T−1 rs(q2). Since the

theory is renormalizable, however, the counterterms for L−1 rs(q2) (already fixed

by the above conditions on T−1 rs(q2)) will cancel the longitudinal divergences and

make finite the full renormalized inverse propagator. Another comment concerns

the mixing between vector fields with Nambu-Goldstone scalarsχi in models where

the symmetry is spontaneously broken. Since the external vector fields satisfy the

physical polarization condition ∂µV µr = 0, the vector-scalar part of the propagator

does not contribute to the S-matrix elements and does not affect the on-shell

conditions.
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Three-point functions:

Unbroken case. The on-shell conditions on the three-point functions −i(Γa µi Γb µi )

(writing as a two component row vector the vertices of the two vector bosons) are

(Γa µi Γb µi )| 6p1= 6p2=mi
qµ=0

= γµ(q̃ai q̃
b
i ) . (A9)

The charge renormalization constants Zq̃i are fixed by the Ward identity in

Eq. (11) (in momentum space)

qµΓr µi (p, q) = q̃ui Z
uv
q̃i
Z

1
2 vr

A (S−1
i (p+ q)− S−1

i (p)). (A10)

Differentiating with respect to qν , setting qµ = 0 and the external particles on-

shell, and using (A9) and the on-shell conditions on the inverse fermion propagators

∂S−1
i (k)

∂ 6 k
| 6k=mi = 1, (A11)

we obtain the equality among renormalization constants

Zq̃i = Z
−1

2

A . (A12)

Spontaneously broken case. (A9) or the same condition with q2 = M2
a,b lead to

nonuniversal couplings, with corrections depending on the mass ratios m2
i /M

2
a,b.

However the corresponding Ward identities still guarantee Zq̃′
i
Z

1
2

A′ finite. Thus

we can and do impose the renormalization condition Zq̃′i = Z
−1

2
A′ order by or-

der. Although it seems somewhat artificial, this condition ensures that the radia-

tive corrections are absorbed into the four universal couplings g′. Note that the

three-point vertices for on-shell fields will have finite corrections depending on the

fermion masses,

Γr µi | 6p1= 6p2=mi

q2=M2
r

= γµqsi g
′sr + finite higher order terms . (A13)
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Table Captions.

Table I: Charges for the fermions in the 16 representation of SO(10) (upper-half):

third component of SU(2)L, TL3 , normalized hypercharge, Y , and extra χ charge,

Qχ. The third component of SU(2)R, TR3 =
√

3
5Y +

√
2
5Qχ and the baryon minus

the lepton number QB−L =
√

2
5Y −

√
3
5Qχ The bottom-half corresponds to the

minimal Higgs contents in order to break both U(1)’s. Both h,N and h′, N̄ are

needed in the supersymmetric case. h and h′ complete a (2,2) representation of

SU(2)L × SU(2)R. Nc and its complex conjugated N
c

are incomplete SU(2)R

representations.

Figure Captions.

Figure 1: Diagrams contributing at one loop to the vector boson selfenergies.

The fourth diagram only contributes in the broken case.
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matter TL3 Y/ 1
2

√
3
5 Qχ/

1
2
√

10
TR3 QB−L/

1
2

√
3
2

u 1
2

1
3 −1 0 1

3

d − 1
2

1
3 −1 0 1

3

uc 0 − 4
3 −1 − 1

2 − 1
3

dc 0 2
3

3 1
2

− 1
3

ν 1
2 −1 3 0 −1

e − 1
2 −1 3 0 −1

ec 0 2 −1 1
2

1

νc 0 0 −5 − 1
2 1

h+ 1
2

1 2 1
2

0

h0 − 1
2 1 2 1

2 0

Nc 0 0 −5 − 1
2 1

h′0 1
2 −1 −2 − 1

2 0

h′− − 1
2 −1 −2 − 1

2 0

N
c

0 0 5 1
2

−1

Table I
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