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Abstract

We extend a previous analysis concerning cosmological fluids with generalized
equations of state in order to study inflationary scenarios. In the framework of
the slow-roll approximation we find the expressions for the perturbation param-
eters ε, η and the density perturbation spectra in terms of the adiabatic index
γ(a) as a function of the universe scale factor. This connection allows to find
straightforwardly γ(a) corresponding, for example, to the simplest chaotic model
and to the Harrison-Zeldovich potential and shows its capability to be applied
to more complicate situations. Finally, we use this description to develop a new
approach to the early universe dynamics, based on a 1/N expansion, where N
is the e-fold number. To this aim, we introduce a set of suitable dimension-
less variables and show that at the zero-th order in 1/N , an improved slow-roll
approximation is obtained.
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1 Introduction

The idea of deriving the inflaton potential by imposing particular theoretical or phe-
nomenological requirements has been widely discussed in the recent literature. In [1],
the potential V (φ) is deduced by explicitly assuming the time evolution of the uni-
verse scale factor a = a(t), and substituting it into the Friedmann-Robertson-Walker
equations. The resulting potential is given in a parametric form, using the time as the
parameter. In [2] the hamiltonian approach was followed to postulate that the scalar
field hamiltonian is some function of log(a), a being the average scale factor in Bianchi
models I and V. Finally in [3] it is shown that, for any arbitrary equation of state, V (φ)
can be related to the solution of a Riccati equation. More recently other methods have
been proposed. In particular in [4] it is shown how a family of inflaton potentials can
be reconstructed from the scalar density fluctuation spectrum. This approach is im-
proved in [5] where it is shown how the potential can be uniquely determined from the
knowledge of the tensor gravitational wave spectrum. These spectra may be obtained
from the detection of fluctuations in the temperature distribution in the Cosmic Mi-
crowave Background Radiation (CMBR). These results, which are not general as they
are obtained in the slow-roll approximation, are corrected up to second-order in slow
roll parameters [6].

In this letter the scalar field potential reconstruction procedure contained in [7], is
applied to inflationary scenarios. In particular, the properties of some relevant mod-
els are related to a suitable class of equations of state for the cosmological fluid. In
section 2 the potential reconstruction procedure proposed in [7] is briefly reviewed.
This formalism allows to relate in a very simple way the adiabatic index for the cos-
mological fluid considered to the slow-roll parameters ε and η [5]. In section 3, we
obtain the expression of fluctuation amplitudes and spectra in terms of the adiabatic
index (γ(a)), and for some relevant inflationary potentials, i.e. the most simple chaotic
theory V (φ) = µ2φ2, and the Harrison Zeldovich model we determine γ(a). Thus, in
section 4, by using the approach outlined in section 2 we develop the 1/N expansion for
some relevant quantities concerning the early universe dynamics, where N is the e-fold
number of the inflationary stage. Remarkably, at the zero-th order in this parameter
we get an improved slow-roll approximation which contains as a particular case the
usual slow-roll regime. Finally in section 5 we give our conclusions.
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2 Potential reconstruction from the equation of state

In a homogeneous and isotropic universe, whose metric can be cast in the standard
form

ds2 = dt2 − a2(t)

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

}
, (1)

the corresponding Friedmann-Robertson-Walker equations are

ȧ2

a2
+
k

a2
=

8πG

3
ρ , (2)

and

2
ä

a
+
ȧ2

a2
+
k

a2
= −8πG p , (3)

where k can be chosen to be +1, −1, or 0 for spaces of constant positive, negative, or
zero spatial curvature respectively1.
For a perfect fluid corresponding to a minimally coupled self-interacting scalar field the
energy density ρ and the pressure p read

ρ =
1

2
φ̇2 + V (φ) , (4)

p =
1

2
φ̇2 − V (φ) , (5)

where V (φ) is the potential of the self-interacting scalar field. By using (4) and (5) the
Klein-Gordon equation

φ̈+ 3
ȧ

a
φ̇+

δV (φ)

δφ
= 0 , (6)

can be derived from the conservation law

ρ̇ = −3
ȧ

a
(ρ+ p) . (7)

Hence from (7), dividing by ȧ, we can obtain the equation of state p = p(ρ) for the
fluid. In general due to the arbitrariness of the potential, we expect this equation to
be non linear

p =

(
−

1

3

a

ρ

dρ

da
− 1

)
ρ ≡ (γ(ρ)− 1)ρ . (8)

1in units h̄ = c = 1, G = 1/m2
Pl.
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We note that, by virtue of (7), to give γ(ρ) is equivalent to assign γ(a), by which we
can describe the most general family of inflationary potentials. This procedure, in fact,
allows us to find a parametric form for the scalar potential in terms of the equation of
state in a very simple and intuitive way, where the expansion factor a is the parameter.

From the definition of γ contained in (8), we obtain

ρ(a) = ρ0 exp

{
−3

∫ a

ai

γ(a′)

a′
da′
}

, (9)

where ai and ρ0 = ρ(ai) are the initial values for the scale factor and the energy density
respectively. Eqs. (7) and (8) together with (9) give,

1

2
φ̇2 − V (φ) = (γ(a)− 1)

(
1

2
φ̇2 + V (φ)

)
. (10)

Thus, the expressions for the kinetic energy and for the potential follow

1

2
φ̇2 =

γ(a)

2
ρ(a) , (11)

V (a) =
2− γ(a)

2
ρ(a) =

2− γ(a)

2
ρ0 exp

{
−3

∫ a

ai

γ(a′)

a′
da′
}

. (12)

In Eq. (11), the factor γ(a)/2 can be seen as the weight of the kinetic term with respect
to the total energy density. By virtue of (11) γ(a) is bound to be positive, and it is
exactly equal to zero for pure exponential inflation.

To obtain the evolution of φ with respect to a, let us consider the square root of
(11)

φ̇ = ±
√
γ(a)ρ(a) . (13)

By comparing (13) with

φ̇ =
dφ

da
ȧ = a

dφ

da

√
8πG

3
ρ(a) (14)

(we are assuming a spatially flat expanding universe), we get

φ(a) = φ(ai)±

√
3

8πG

∫ a

ai

√
γ(a′)

a′
da′ . (15)
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Note that both (12) and (15) are completely general, and determineV (φ) once we assign
ρ0, and the function γ(a). Thus the above description provides a natural classification
scheme for single-fluid inflationary models, given in terms of the γ(a) function. Note
moreover that by construction (12) and (15) formally solve (6), and that the inflationary
phase is characterized by ä > 0 [8], [9], and therefore, whenever γ(a) < 2/3.

The last step in reconstructing the potential is the determination of the parameter
ρ0. We can see that this problem is related to the efficiency (how fast the inflation
occurs) of the inflationary process devised here. The function γ(a) contains the infor-
mation of the amount of growth of the universe during inflation, and also allows to
obtain explicitly the inflationary time interval ∆t in terms of ρ0

∆t =

√
3

8πGρ0

∫ af

ai

da

a
exp

[
3

2

∫ a

ai

γ(a′)

a′
da′
]

. (16)

From γ(a), immediately follows the value of the e-fold numberN = log(af/ai). Finally,
we notice that this reconstruction procedure can also be reversed in order to obtain
the properties of the cosmological fluid (equation of state) once that the inflationary
potential, or the dynamics of the scalar fields are known. We will show in the following
one example of this inverse treatment.

To end this section it is worth pointing out the connection existing between the slow-
roll approximation and this description given in terms of γ(a). As it is well-known,
the slow-roll regime can be conveniently characterized in terms of two parameters ε
and η, defined in [5], by the conditions ε, |η| << 1. These two quantities are simply
connected to deviation from the flat Harrison-Zeldovich scalar perturbation spectrum,
and according to the standard approach, this connection allows to reconstruct pertur-
batively the inflaton potential. By definition the expressions of ε and η in terms of
γ(a) result to be

ε =
3

2

(
p

ρ
+ 1

)
=

3

2
γ(a) , (17)

η =
3

2

(
∂p

∂ρ
+ 1

)
=

3

2
γ(a)−

1

2

d log(γ(a))

d log(a/ai)
. (18)

Interestingly, from (17) and (18) ε represents the adiabatic index, whereas η is linearly
related to the squared value of the generalized sound speed.
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3 Density perturbations and relevant examples of

equations of state.

A typical feature of inflationary models is to provide a general scheme for the production
of primordial fluctuations. This aspect is of particular importance, since the experi-
mental information on the CMBR temperature fluctuations, and large scale galactic
structure can constraint, to some extent, the form of the inflationary potential. In
this section we will stress how, starting from the adiabatic index γ(a), perturbation
spectra are easily reconstructed. As in [5] we introduce the perturbation amplitudes
AS and AG corresponding, respectively, to quantum fluctuation of the inflaton field
(scalar perturbations) and metric (tensorial perturbations)

AS =

√
2

π
G H2(φ)

∣∣∣∣∣δH(φ)

δφ

∣∣∣∣∣
−1

, (19)

AG =

√
G

2π2
H(φ) , (20)

where H(φ) =
√

8πGρ/3 is the Hubble parameter.

In particular, from (17) the ratio AG/AS is related to γ(a) in a simple way

AG

AS

=
√
ε =

√
3

2
γ(a) , (21)

and therefore it is small in the slow-roll regime. In the same limit the scale dependence
of the spectra can be expressed in terms of γ(a)

1− nS ≡
d log [A2

S(λ)]

d log(λ/λ0)
= 4ε(a)− 2η(a) = 3γ(a) +

d log(γ(a))

d log(a/ai)
, (22)

nG ≡
d log [A2

G(λ)]

d log(λ/λ0)
= 2ε(a) = 3γ(a) , (23)

where the parameters ε(a), η(a) have to be evaluated at the value for a when the scale
λ goes outside the Hubble radius during the inflationary era. To this end we recall
that the physical scale λ(φ), decoupled when the value of the scalar field was φ, grew
between the time of horizon crossing and today by a factor [5]

λ(φ) = H−1(φ)
a0

a(φ)
, (24)
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where H(φ) and a(φ) represent, respectively, the value of the Hubble radius and of the
scale factor at decoupling, and a0 is the present value of the scale factor. Since

a(φ) = af exp[−N(φ)] , (25)

with N(φ) the number of e-fold between the value φ and the the end of inflation, from
(24) and (25) we get

λ(φ) =
exp[N(φ)]

H(φ)

a0

af
. (26)

The function N(φ) can be obtained using the definition of the Hubble parameter and
the equation of motion. Differentiating in fact H2 with respect to φ

δH2

δφ
= 2ḢHφ̇−1 =

8πG

3

(
φ̈+

δV (φ)

δφ

)
, (27)

which, by virtue of (6), gives
δH

δφ
= −4πGφ̇ . (28)

Therefore, if tf is the value of time at the end of the inflationary phase, using (28)

N(φ) =
∫ tf

t(φ)
H(t′)dt′ =

∫ φf

φ

H(φ′)

φ̇′
dφ′ = −4πG

∫ φf

φ
H(φ′)

(
δH(φ′)

δφ′

)−1

dφ′ , (29)

If we now differentiate (26) with respect to a we find, using (15) and (29)

dlog(λ/λ0)

d log(a/ai)
=

4πGH (
δH

δφ

)−1

−H−1 δH

δφ

 dφ

d log(a/ai)

=

4πGH (
δH

δφ

)−1

−H−1 δH

δφ

√3γ(a)

8πG
sign

(
dφ

da

)
, (30)

which, from the definition of AS and AG in (19) and (20), can also be cast in the form

d log(λ/λ0)

d log(a/ai)
= sign

(
δH(φ)

δφ

)
sign

(
dφ

da

) [
AS

AG

−
AG

AS

]√
3γ(a)

2
. (31)

Finally, from (21) we get the simple result

d log(λ/λ0)

d log(a/ai)
= −sign

(
dH(a)

da

)(
3

2
γ(a)− 1

)
=

3

2
γ(a)− 1 , (32)
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since combining (2) and (3), for γ(a) > 0

Ḣ = −4πGγρ < 0 , (33)

and during the expansion ȧ > 0, implying that dH/da < 0.
Equation (32) allows us to express directly the perturbation spectra as functions of a:
using (22) and (23)

d log [A2
S(a)]

d log(a/ai)
=

[
3γ(a) +

d log(γ(a))

d log(a/ai)

] (
3

2
γ(a)− 1

)
, (34)

d log [A2
G(a)]

d log(a/ai)
= 3γ(a)

(
3

2
γ(a)− 1

)
. (35)

To end this section with two relevant examples, we will deduce the expressions for the
adiabatic index γ(a), for the most simple ”chaotic” potential, V (φ) = µ2φ2, and for
the potential leading to the flat Harrison-Zeldovich spectrum for scalar perturbations.

In the slow-roll limit the case V (φ) = µ2φ2 may be easily solved, considering the
evolution of the scalar field once it has reached limit velocity condition, and neglecting
the kinetic energy contribution to the Hubble parameter. From (2) and (6) one obtains

φ(t) = φ0 −
µ

√
6πG

t , (36)

a(t) = a0 exp

{√
8πGµ
√

3

[
φ0t−

µ

2
√

6πG
t2
]}

. (37)

The end-point of the inflationary phase is determined by the condition ä(t) = 0, giving
the final value of the inflaton field φf and the value of N

φf = (4πG)−1/2 , (38)

N = 2πGφ2
0 −

1

2
. (39)

Using the previous relations we obtain the adiabatic index

γ(a) =
2

3

[
2N + 1− 2 log

(
a

ai

)]−1

, (40)

which shows that the inflaton field starts its evolution with condition which differs from
perfect slow-roll for term 1/N (γ(ai) ≈ 1/3N), increases its velocity and finally exit
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from the inflationary phase γ(af) = 2/3).
Starting from (40) we can now easily obtain the perturbation amplitudes. We first
notice that in the present approximation η = 0, so 1− nS = 2 nG. From this by using
(32)-(35) we obtain at the lower order the well-known expressions [5]

AS(λ) = A0
S

[
1 +

2

2N + 1
log

(
λ

λ0

)]
, (41)

AG(λ) = A0
G

[
1 +

2

2N + 1
log

(
λ

λ0

)]1/2

, (42)

where, from relations (19) and (21), since λ0 is defined as the scale which decouples at
φ0

A0
S =

4G3/2µφ2
0√

3
, (43)

A0
G =

A0
S√

2N + 1
. (44)

To reconstruct the Harrison-Zeldovich potential we remind that in order to have a scale
independent fluctuation amplitude, it is necessary that 2ε(a) = η(a), or equivalently
that the r.h.s. of (22) identically vanishes. Hence, from this condition we straightfor-
wardly get the differential equation for γ(a)

dγ(a)

d log(a/ai)
= −3 γ2(a) , (45)

whose solution is

γ(a) =
2

3

[
2

3γ0
+ 2 log

(
a

ai

)]−1

, (46)

with γ0 the initial value of γ(a). In particular if γ0 = 0 the adiabatic index remains
constant and it is easily seen from (50) that the potential reduces to a constant, and the
amplitude of scalar perturbations tends to infinity. Notice that γ(a) remains always
under the inflationary threshold of 2/3, leading, in absence of other fields to eternal
inflation.

Evaluating the expression of V (a) and φ(a) we find for γ0 6= 0:

V (φ) =
ρ0

3(1− γ̂0)

{
3
φ̄2

φ2
−
φ̄4

φ4

}
, (47)
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with φ̄ = (4πG)−1/2. Eq. (47), obtained by suitably choosing φ(0), recovers the well-
known form of the only potential leading to the Harrison-Zeldovich spectrum for scalar
perturbations [5].

4 1/e-fold number expansion

As well-known an inflationary phase in the universe evolution is able to solve a number
of important problems occurring in the standard cosmology provided that the final e-
fold number, N = log(af/ai), is large enough. A reasonable estimate for this quantity
would be N ≈ 100. The value ofN is completely fixed once the equations of motion and
the initial conditions are assigned. By using the approach described in the previous
sections, we will adopt here a different point of view, namely we will formally look
at N as a quantity in terms of which the potential and the field dynamics can be
parameterized. Since, as already mentioned, its value is very large it is quite natural to
expand in 1/N all physical quantities, building in this way a perturbative approach to
inflaton dynamics. Notice that N is a global quantity, being related to the total growth
of the scale factor during the inflationary phase, and the 1/N expansion is completely
independent on whether slow-roll conditions are satisfied or not: this is quite different
from the usual perturbative approach in terms of the slow-roll parameters ε and η [5],
which allows for an accurate description only in the slow-roll regime.

In order to simplify our analysis let us introduce the dimensionless quantities y and
γ̂(y) defined by

y ≡
1

N
log

(
a

ai

)
, (48)

and

γ̂(y) ≡ 1−
3

2
γ(a(y)) . (49)

By definition, the y variable during the inflationary epoch is bound to be 0 ≤ y ≤
1, and the starting and ending points of inflation correspond to y = 0 and y = 1
respectively. Actually, in this interval 0 ≤ γ̂(y) ≤ 1. The definition of the variable
y is quite natural by observing that it would simply correspond to Ht for a pure
exponential expansion. Eqs. (12) and (15), when expressed in terms of y, suggest to
introduce two dimensionless quantities, obtained by properly rescaling potential and
field configuration

V̂ (y) ≡

[
V (y)

ρ0

]1/N

=
[
1

3
(2 + γ̂(y))

]1/N

exp
{
−2

∫ y

0
[1− γ̂(y′)] dy′

}
, (50)
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and

φ̂(y) ≡
√

4πG

[
φ(y)− φ(0)

N

]
= ±

∫ y

0

√
1− γ̂(y′) dy′ . (51)

We first note that V̂ (y) results to be an analytical function of 1/N provided that γ̂(y)
is analytical as well: in particular, expanding (50) in 1/N up to the first order

V̂ (y) ' exp
{
−2

∫ y

0
[1− γ̂(y′)] dy′

}[
1 +

1

N
log

(
2 + γ̂(y)

3

)]
, (52)

V̂ (y) gets at zero-th order a very simple functional dependence on γ̂(y). In terms of
the quantities (49), (50) and (51) we can also rewrite the equation of motion (6) in the
following form

1

N
φ̂′′(y) + [2 + γ̂(y)]φ̂′(y) +

1

2
[2 + γ̂(y)]

1

V̂ (y)

δV̂ (y)

δφ̂
= 0 , (53)

where prime denotes differentiation with respect to y. In the large N limit it reduces
simply to

φ̂′(y) +
1

2

1

V̂ (y)

δV̂ (y)

δφ̂
= 0 , (54)

which corresponds to the zero-th term of the 1/N expansion for the φ̂-field equation
of motion; in particular note that, consistently with the expansion, (51) and (52) at
the lowest order in 1/N , exactly solve (54). The first order differential equation (54)
provides an improved slow-roll approximation for the scalar field dynamics. It is in fact
the analogous of the slow-roll limit for the classical equation of motion for φ, but it does
also contain a contribution coming from the second-time derivative of the field. Had
we neglected the second time derivative term, as in the usual slow-roll approximation,
we would have rather obtained

φ̂′(y) +
2 + γ̂(y)

6

1

V̂ (y)

δV̂ (y)

δφ̂
= 0 , (55)

which reduces to (54) only in the case of a perfectly flat potential (γ̂(y) = 1). Con-
sequently, we point out that slow-roll approximation implies large N , but, viceversa,
there are efficient inflationary models, for which 1/N expansion is still reliable, which
do not satisfy slow-roll conditions. This conclusion can be qualitatively got from the
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expression of the e-fold number N : we first remind that, using (28), ε and η can also
be written in the form2

ε =
1

4πG

(
1

H

δH

δφ

)2

(56)

η =
1

4πG

1

H

δ2H

δφ2
(57)

so from (29)

N = −4πG
∫ φf

φ0

dφ√
ε(φ)

(58)

If ε is small one expects the integral of (
√
ε)−1, as a function of φ, to be large, though

this is only a sufficient condition: it is in fact conceivable to still have N >> 1 even if
ε is close to 1 somewhere in the interval [min{φ0, φf},max{φ0, φf}].
The relationship between the slow-roll and the 1/N expansions can be however formal-
ized by introducing a new parameter

ν =
φ̂′′

N(2 + γ̂(y))φ̂′
(59)

The condition ν << 1 corresponds to the possibility of neglecting the 1/N term in
the dimensionless equation of motion (53), which therefore reduces to (54): we will
hereafter refer to the latter as the 1/N approximation and to the expansion of the
dynamical quantities in terms of the two parameters 1/N and ν as the 1/N expansion.
Using (51), (17) and (18) one easily gets

ν =
ε− η

3− ε
(60)

Remarkably ν contains all power terms in ε. This relation shows that if ε and η are
small, namely if the slow-roll approximation holds, then also ν is small and the 1/N
approximation is legitimate; viceversa, if ν is small, this only implies that the difference
ε−η is small, while both ε and η can be quite large: in this case the 1/N approximation
is still valid, while the slow-roll one breaks down. Summarizing, slow-roll⇒ 1/N , but
1/N 6⇒ slow-roll, so, as we wanted to show, the 1/N expansion seems to be more widely
applicable to inflationary dynamics since it grasps its main feature (large e-fold).

2This is actually the form in which they were introduced in reference [5].

12



It is interesting at this point to look for the potential satisfying the condition ν = 0,
i.e. for which the 1/N approximation already gives an exact solution: from (17) and
(18) it follows that γ is a constant, γ(a) = γ0 = 2ε0/3 > 0, so, using (50) and (51), it
is easy to obtain the expression of V (φ)

V (φ) = ρ0

(
1−

ε0

3

)
exp

[
−
√

4πGε0 |φ− φ0|
]

(61)

Let us now finally consider the slow-roll regime in further details. It is well-known that
the consistency of this approximation for the scalar field dynamics requires [10]∣∣∣∣∣ 1

V (φ)

δV (φ)

δφ

∣∣∣∣∣ <<
√

48πG , (62)∣∣∣∣∣ 1

V (φ)

δ2V (φ)

δφ2

∣∣∣∣∣ << 24πG . (63)

Also in this case the rescaled quantities (49), (50) and (51) allow to rewrite (62) and
(63) in a more suitable form ∣∣∣∣∣ 1

V̂ (φ̂)

δV̂ (φ̂)

δφ̂

∣∣∣∣∣ << 2
√

3 , (64)

and ∣∣∣∣∣∣ 1

V̂ 2(φ̂)

(
δV̂ (φ̂)

δφ̂

)2

+
1

N

1

V̂ 2(φ̂)

V̂ (φ̂)
δ2V̂ (φ̂)

δφ̂2
−

(
δV̂ (φ̂)

δφ̂

)2
∣∣∣∣∣∣ << 6 . (65)

Remarkably, the transformation introduced in (48)-(51), besides allowing us to perform
the 1/N expansion of the physical quantities, has the nice property to leave (62) for-
mally unchanged. Furthermore, we notice that at the zero-th order in 1/N expansion,
(64) and (65) are essentially equivalent and are both satisfied provided that∣∣∣∣∣ 1

V̂ (φ̂)

δV̂ (φ̂)

δφ̂

∣∣∣∣∣ << √6 . (66)

5 Conclusions

Following the reconstruction procedure of the inflaton potential based on the knowl-
edge of the adiabatic index for the cosmological fluid as a function of the universe scale
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factor a [7], we have studied the slow-roll regime and in particular the connection ex-
isting between γ(a) and the perturbation parameters ε and η [5]. In this framework we
have also computed the scalar and tensorial perturbation spectra as a function of γ(a),
and as an example we have analyzed two simple cases, namely the most elementary
chaotic model and the Harrison Zeldovich potential; for both this cases the adiabatic
index γ(a) is found to be a simple rational function of log(a/ai). Interestingly, the
simple connection occurring between the adiabatic index and the slow-roll parameters
ε and η provides once that scalar and tensorial perturbation amplitudes are known, to
completely characterize the cosmological fluid. Finally, by applying the reconstruction
procedure we have developed a formalism in which it is natural to perform a 1/N ex-
pansion (N is the e-fold number) of the most relevant physical quantities characterizing
the inflationary dynamics. This expansion seems to be more general than the one given
in terms of the slow-roll parameters, being applicable also in cases when even though
the e-fold number is large, slow-roll conditions are not satisfied. In particular this
approach is based on the idea of using two new parameters, 1/N and ν, in describing
inflationary dynamics, instead of the slow-roll ones ε and η. At zero-th order in this
expansion an improved slow-roll approximation is straightforwardly obtained.
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