${ }_{乙}\left|\frac{z \rho}{n \varrho}\right|-{ }_{{ }^{2}}\left|\frac{z \varrho}{m \varrho}\right|=r$. $\epsilon=(1-|\mu|) /(1+|\mu|)$ and $2 \varphi=\pi+\arg (\mu)$, respectively.
2. Known source sizes
The Jacobian is also easily found The axial ratio ϵ of the ellipse and the direction angle states that a small ellipse in the deflector $(z=x+i y)$ plane given by μ
is mapped locally by w onto a circle in the source $(w=u+i v)$ plane

$$
\begin{aligned}
& \text { equation can be used to identify multiply imaged arclets. The Beltram } \\
& \text { Equation }
\end{aligned}
$$ Kayser 1995). Here, we show how the solutions of the Beltrami differentia Schneider \& Seitz (this volume, compare also the references in Schramm \& tion as an appropriate framework for the analysis of arclets in cluster lens

ing. Corresponding real formalisms have been developed by Kaiser and In Schramm \& Kayser (1995) we introduced the complex Beltrami Equa1. The Beltrami equation
imaged arclets are therefore easily identified without further modelling.

 Computer Center - D 21071 Hamburg
and T. SCHRAMM
Technical University of Hamburg-Harburg
T. SCHRAMM

Trivially, the mass density σ is uniquely determined if the Jacobian and the Beltrami parameter can be measured at the location of an arclet. Since $\partial w / \partial z=1-\sigma$ we can solve the Beltrami Equation and the Jacobian for the mass density:

$$
\begin{equation*}
(1-\sigma)^{2}=\frac{J}{1-|\mu|^{2}} \tag{3}
\end{equation*}
$$

3. Characteristic equations

Normally we are not so lucky to have the Jacobian but we assume to be able to measure the μ-field with some accuracy. However, the formulation as differential equation yields some insights. For the measurable Beltrami parameter we find for (one-plane) lens mappings

$$
\begin{equation*}
\mu=\mu_{r}+\mathrm{i} \mu_{i}=\frac{\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}+2 \mathrm{i} \frac{\partial v}{\partial x}}{\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}} \tag{4}
\end{equation*}
$$

which results in two decoupled linear, homogeneous partial differential equations

$$
\begin{equation*}
\mu_{i} \frac{\partial u}{\partial x}-\left(1+\mu_{r}\right) \frac{\partial u}{\partial y}=0 \quad,\left(1-\mu_{r}\right) \frac{\partial v}{\partial x}-\mu_{i} \frac{\partial v}{\partial y}=0 \tag{5}
\end{equation*}
$$

The characteristics of these equations are given by:

$$
\begin{align*}
& x^{\prime}(t)=\mu_{i}, \quad y^{\prime}(t)=-\left(1+\mu_{r}\right) \Longrightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1+\mu_{r}}{\mu_{i}} \tag{6}\\
& x^{\prime}(t)=\left(1-\mu_{r}\right), \quad y^{\prime}(t)=-\mu_{i} \Longrightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{\mu_{i}}{1-\mu_{r}} \tag{7}
\end{align*}
$$

where the solutions of these equations are the curves $u, v=$ const. The lens equation is therefore uniquely determined if the values are known at curves (not identical to characteristics). Even without this knowledge characteristics are of interest: each two (possibly) multiply-intersecting characteristics of u and v map onto a cross-hair in the source plane so that multiply imaged arclets can be identified (see example below).

REFERENCES

Kaiser, N. 1995, Proc. IAU173, Melbourne, Kluwer Academic Publishers Schneider, P. \& Seitz, S. 1995, Proc. IAU173, Melbourne, Kluwer Academic Publishers
Schramm, T. \& Kayser, R. 1995, A\&A, 299, 1

Figure 1. The ellipse- (μ)-field due to a lens composed of two different singular isothermal spheres. Additionally three curves $\mathrm{J}=1,0,-1$ are plotted.

Figure 2. Right: Overlay of the direction fields of the differential equations for the curves $u=$ const and $v=$ const. Additionally two curves $u=c_{1}, v=c_{2}$ are plotted, which are mapped by w onto a cross-hair which intersects at $u+\mathrm{i} v=c_{1}+\mathrm{i} c_{2}$ in the w-plane.

