
Preprint Dipartimento di Fisica dell'Universit�a di Catania,

rif. 95/03

Building scars for integrable systems

M. Baldo1, F. Raciti2

1INFN, Sezione di Catania, 57 Corso Italia , I-95129 Catania, Italy
2 Dipartimento di Fisica and INFN, 57 Corso Italia, I-95129 Catania, Italy

Abstract

It is shown, by means of a simple speci�c example, that for integrable systems it

is possible to build up approximate eigenfunctions, called asymptotic eigenfunctions,

which are concentrated as much as one wants to a classical trajectory and have a

lifetime as long as one wants. These states are directly related to the presence of

shell structures in the quantal spectrum of the system. It is argued that the result

can be extended to classically chaotic system, at least in the asymptotic regime.
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1. Introduction

The problem of quantising classically chaotic systems has attracted much attention in the

last few years, especially in view of the subtle connection between classical and quantum

mechanics in the semi-classical limit, generally referred as the �h ! 0 limit. Besides the

well studied spectral properties of quantal systems, whose classical counterpart is chaotic,

one of the most interesting and intriguing phenomenon is the appearance of the so called

\scars", i.e. eigenfunctions which display a strong concentration of probability along a

classical closed trajectory. This phenomenon is not yet well understood, and it has been

observed in billiards as well as in smooth hamiltonian systems. It has been argued that

the scars phenomenon can be directly related to the presence of a peak structure in the

spectral density [1];[2], which seems to favour a particular stability of a wave-packet moving

along a classically unstable trajectory. This problem has been considered in ref.[3] where it

has been suggested that scars structures could be revealed through an energy averaging,

in the framework of the Gutzwiller[4] formulation of the semi-classical limit. In order

to shade some light on this problem, we consider the problem of establishing to what

extent, for an integrable system, it is possible to construct an (approximate) eigenfuction

which is close as much as possible to a classical trajectory. In the short wavelength limit,

Erhenferst theorem assures that the motion of a wave packet can be as close as one wants

to a classical trajectory, but, of course, an eigenfunction has to be time independent.

Therefore, the motion of the wave packet in the semi-classical limit can only eventually

suggest the particular superposition of wave packets which is (almost) time independent

and still concentrated around the trajectory. However, to estimate the rate of spreading

of a wave packet in the presence of a potential or a barrier is not an easy task, and can be

performed only numerically, even for an integrable system. In the case of an integrable
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system, one can try to build up directly a superposition of exact eigenstates in order to

construct a wave packet which is concentrated along some classical trajectory and at the

same time survives as long as one can. The essential point of the problem is to recognize

that the lifetime of such a wave packet must be much longer than the characteristic time

of the classical motion, namely the period of the trajectory, otherwise the wave packet

cannot be considered an approximate eigenstate to any respect. This condition is not

ful�lled in the treatment of ref.[3] for chaotic systems. We will show that in the case of

integrable systems this condition can be ful�lled to any degree of precision, by building

up a suitable superposition of eigenstates which are approximately degenerate, namely

they belong to the same \shell" of the spectrum. It is hoped that this result could be

of some help of solving the scars problem also in the case of chaotic systems, where the

appearance of a peak in the density of state can be viewed as a sort of an \accidental"

(approximate) shell. Actually, the wave functions belonging to this class, being strongly

localized, are sensitive only to the local shape of the billiard. Therefore, their connection

with classical orbits is not a�ected if the billiard shape is distorted along the contour

where the wave function is essentially zero. This can include the chaotic cases, at least

for asymptotically large quantum numbers.

2. Method

Let us consider a very simple integrable system with two degrees of freedom, the circular

billiard. The system is trivially solvable, the eigenfunctions are cylindrical Bessel functions

Jl(�nlr=R) exp(il�), and the �nl 's are the zeroes of the Bessel fuctions (BF). Here R is

the billiard radius, r the radial coordinate and � the angular coordinate. The quantum

numbers n; l correspond to the quantisation of the radial and angular motion of the particle
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respectively. This can be seen in the semi-classical limit, namely for large values of the

quantum numbers, for which the asymptotic form of the BF[5] gives the semi-classical

(Bhor-Sommerfeld) quantisation condition

q
k2
nlR

2
� l2 � l�0 = (2n+ 1)�=2 + �=4 (1)

and it is readly veri�ed that right hand side is just the action integral along the classi-

cal radial motion. For future considerations, it is convinient to keep in mind that the

(constant) angular distance 2�0 between two successive hits of the particle at the billiard

wall is given by cos(�0) = l=(knlR). Shell structures are associated with closed orbits 6.

In fact, the condition of knl being stationary for variations �n and �l of the quantum

numbers, from eq. (1), reads

�0

�
= l0=(�n0l0) =

�n

�l
=

p

q
(2)

being p and q > p two integer numbers with no common prime factor. This implies that

the corresponding classical trajectory closes afterm = pq hits at the wall, and the quantum

numbers n and l are linearly related. Eq. (2) imposes also a condition for the quantum

numbers l0 and n0, which asymptotically can be satis�ed with arbitrary precision. The

states which have quantum numbers l = l0 + �l and n = n0 + �n satisfying the linear

condition of eq. (2) are approximately degenerate, and therefore form an energy shell,

which, in turn, implies the appearance of a sharp peak in the density of states. We want to

show now, by elementary considerations, that for large enough quantum numbers n0 and

l0 one can construct linear superpositions of the eigenstates belonging to the same shell,

which satisfy at the same time the two conditions, a) they are concentrated with arbitrary

precision along a classical (closed) trajectory b) they have a lifetime arbitrarly longer than

the classical characteristic time T = M=�nl�h, being M the mass of the particle. Because
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of the simple symmetry of the system, each eigenfunction has a rotationally invariant

probability density. A wave packet with a narrow angular spread �� = 1=�l can be

written

	l0(r; �) =
X
nl

exp

 
(l � l0)

2

2�2
l

!
exp(il�)Jl(knlr) (3)

In order to minimize the energy spread, we restrict the summation to the eigenstates

belonging to the same shell. Asymptotically, for large quantum numbers, the summation

can be performed by expanding the phase of the BF around the chosen value l0 of the

angular momentum and taking into account the condition of stationary value of knl and

the corresponding linear relation between the quantum numbers n and l. The result reads

	l0(r; �) � exp

 
(�� �(r))2

2��2

!
(4)

where cos(�(r)) = l0=(kn0 l0r) , and kn0 l0 = �n0l0=R is the eigenmomentum. The wave

packet of eq. (3) is clearly concentrated around the classical trajectory, which is a poly-

gon or a star with m sites, with a spatial spread �s � R�� � R=�l. The energy

spread �E can be estimated in terms of the second derivative k00 of knl at n0l0 along

the direction de�ned by eq. (2), �E=E = (k00=knl)�
2
l . After some algebra, one gets

�E=E = g(�l=�n0l0)
2, where g is a costant factor of order unity, and it can be checked

that the higher order terms are vanishing small for asymptotic quantum numbers. The

ratio between the quantal lifetime �q = �h=�E and the classical characteristic time T turns

out

�q

T
�

�
�s

R

�2

l0 (5)

This ratio, for a �xed value of the localization �s, can be made arbitrarly large by increas-

ing the values of the quantum numbers. Had we chosen a di�erent linear combination, on

the contrary this ratio would have been of order unity. In other words, the uncertainity
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�E, with the contraint of eq. (2), is asymptotically of the same order of the mean level

spacing n(E) = 2�MR2=�h2. An example, corresponding to p = 1 and q = 3 is depicted

Table 1

l0 n0 �

111 30 241.87

114 29 242.00

117 28 242.09

120 27 242.14

123 26 242.13

126 25 242.07

129 24 241.96

in Fig. 1. The wave function is calculated with the expression of eq. (4) and with the full

expansion of eq. (3) in part a and b respectively. Table 1 reports the quantum numbers

and energies used in the calculation. One can notice that a high degree of localization

can be obtained with only few terms and not too large quantum numbers. In the example

�q=T � 15. Higher degree of localization and longer lifetime can be obtained following

the above described procedure.
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3. Discussion and conclusions

The wave function depicted in Fig. 1 has a striking similarity with some scars reported

in ref. [7] for a chaotic billiard. The authors show that this type of scars \live" in thin

invariant tori embedded in a chaotic region. In the procedure of the present paper the

integrable billiard can be deformed in regions of the contour where the wave function

is vanishing small, and the billiard could become of the chaotic type leaving the scars

essentially untouched. This could be a mechanism of generating scars in a chaotic system.

Of course, the procedure does not exhaust all the possibilities, and indeed in ref. [7] many

examples are shown where the scars \live" in the classically chaotic region (in the Wigner

tranform sense). Another possibility of generalizing the procedure to chaotic billiard is

the case of \local integrability", described in details in ref. [8]. In this case the presence

of an adiabatic barrier allows to expand the hamiltonian, around a closed trajectory, in

the longitudinal and transverse actions, which are approximate constants of the motion

in the vicinity of the trajectory. In this case the present procedure can be repeated step

by step, substituting the angular momentum with the transverse action and the angular

coordinate with the transverse coordinate.

In conclusion we have presented a procedure to build up scars for integrable systems.

Generalizing the method to chaotic systems appears possible, at least when thin invariant

tori exist or local integrability is present. The extension of the method to more generic

cases is under study and the results will be reported elsewhere.
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Figure captions

� 1.a Contour plot of the probability density associated to the wave function (3).

Fixing an angular spread �' = 0:25, and considering the contribution of only 6

values of l centered around l0 = 120 (cfr. table 1), we have obtained a ratio
�q

T
= 15

� 1.b Contour plot of the probability density associated to the wave function (4) which

is obtained from (3) expanding the phase of the BF around l0 taking into account

the condition of stationary value of knl and replacing the summation in (3) by an

integral over l.
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