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Abstract

It is generally accepted that a first ever direct detection of gravity waves
would herald a new era in astronomy and in fundamental physics. Ever since
the early sixties, increasingly larger human and material resources are being
invested in the detection effort. Unfortunately, the gravity wave effects one
has had to exploit so far are extraordinarily small and are usually very many
orders of magnitude smaller than the noise involved. The detectors that
are presently at the most advanced stage of development hope to register
extremely rare, instantaneous longitudinal shifts that are expected to be
orders of magnitude smaller than one Fermi. However, it was recently shown
that gravity waves can manifest themselves through much larger effects than
previously envisaged. One of these new effects is the periodic, apparent shift
in a star’s angular position due to a foreground gravity wave source. The
comparative largeness of this effect stems from its being proportional not to
the inverse of the gravity wave source’s distance to the Earth, but to the
inverse of its distance to the star’s line of sight. In certain optimal but not
unrealistic cases, the amplitude of this effect can reach the critical bar of one
micro-arcsecond, thus raising the prospect that the long awaited first direct
detection of gravity waves could be achieved by a high precision astrometry
space mission such as GAIA.
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Perhaps the earliest understood physical effect of gravity waves is their
modulating of proper distances [1, 2, 3, 4]. The first bar detectors [5], as well
as recent detection projects such as LIGO [6] and VIRGO [7], are based on
that effect.

The experimental challenge facing such detection efforts is daunting.
The expected distance modulations have about the same magnitude as the
gravity-wave’s amplitude, which is typically smaller than 10−22 in the vicinity
of the Earth. Thus, these experiments involve detecting shifts much smaller
than one Fermi in distances of the order of a kilometer.

Not long ago, it was proposed to explore an approach to gravity-wave
detection that is based on accelerations of null, rather than timelike geodesics
[8].

The simplest illustration of this idea is the shifting of apparent stellar
positions due to an intervening gravitational pulse [9]. Suppose a supernova
flash hits the Earth, coming from the northern celestial hemisphere. This
is an indication that a gravitational pulse has also just whipped passed the
Earth, and is now interposed between us and all the southern celestial hemi-
sphere. It was calculated that the angular positions of southern stars would
then experience apparent shifts of the order of the pulse amplitude h:

|δα| ≈
1

2
h sinα , (1)

where α is the angle of incidence of the light rays with respect to the gravita-
tional wave front. In the case of “pulses with memory” [11, 10, 12, 13] such
shifts can be quasi-permanent.

Quantitatively, this version of the effect does nothing to improve the
prospects of gravity-wave detection. The angular shifts resulting from eq.(1)
should be smaller than 10−17arcsec, while the precision that seems achiev-
able today in this context through interferometric astrometry and very-long-
baseline interferometry is about 10−6arcsec.

However, this effect presents a feature that distinguishes it qualitatively
from most others: In eq.(1), h is not the amplitude of the waves when they
meet the Earth. Instead, h is the amplitude of the waves when they meet
the stellar photons, which only much later reach the Earth. This amounts
to a prospect of remote probing of gravity waves.

Since h < h(Earth) in the case above, this feature can only worsen the
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observational situation in this particular illustration. However, this same
feature can dramatically improve the detectability of the effect, if the con-
figuration defined by the gravity-wave source, the Earth and the light source
is, in a sense, inverted (Fakir 1994a,b.) In the new configurations, as we
shall see below, probing the waves at a distance could mean probing them in
regions of space where h is not smaller, but much larger than h(Earth).

In the previous illustration, the Earth was placed between the gravity-
wave source and the light source. Consider, now, a situation where it is the
gravity-wave source that is placed between the Earth and the light source.
Then the photons, during their journey towards the Earth, would have en-
countered gravity-wave crests with heights ranging from h(light source) to h(b)
to h(Earth), where b is the distance of closest approach between the photons
and the gravity-wave source, the “impact parameter.”

The hope, of course, is that the photon will “remember” the highest
amplitude of gravity waves it sees on its way to the Earth. If so, the analogue
of eq.(1) for the new configuration would exhibit h(b) on the right-hand side,
rather than the much smaller h(Earth) or h(light source). The whole scheme
would then amount to remote probing of strong gravity-wave sites.

A priori, there are several reasons to fear that this scheme would not work.
The physics of the photons’ encounter with gravity waves is more involved in
this latter case of spherical wave fronts than in the former plane-wave case.

For example, one could question whether the deflections acquired by a
photon during the “ingoing” phase (approaching the gravity-wave source)
are not cancelled by deflections during the outgoing phase. Fortunately, the
calculation shows that this is not the case.

One could also wonder if there would be deflections at all during the out-
going phase: The gravity-wave crests travel at the same speed as the photon
itself. Now, the photon is only sensitive to variations in h, and it would see
no such variations if it travels along with the gravity waves. Nevertheless,
in most actual situations, photons and gravity-wave fronts travel at an an-
gle. Hence, in the outgoing phase also, photons may see changes in h and
experience deflections.

Let the gravity-wave mode of interest be described by

h =
H

r
exp{iΩ(r − t+ tph)} , (2)
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where tph determines the wave’s phase. H is a constant that encodes the
intrinsic strength of the source. Working in a spherical transverse-traceless
gauge, projecting the problem onto a plane containing the Earth and the
light and gravity-wave sources, and considering the optimal alignment case
where bΩ is of order 1, one finds [14]

|δφ|optimal ≈
3

4
πΩH =

3

2
π2|h(r = Λ)| , (3)

where Λ is one gravitational wavelength. The angle φ is close to 0, π/2 and
π at the light source, the gravity-wave source and the Earth, respectively.

Let us generalize this result to arbitrary values of the impact parameter
b. We can infer from eq.(16) of the above reference that

δφ ≈
H

b
eiΩtph

∫ π

0
dφ exp

{
iΩb

1 + cosφ

sinφ

}

×

[
sinφ−

3

2
sin3 φ+ iΩb

(
sin2 φ

2
− 1− cosφ

)]
(4)

(This was obtained by comparing the two ends of the trajectory: φ ≈ 0 and
φ ≈ π. One can show that δφ = b[u1(φ ≈ 0) + u1(φ ≈ π)] , where u1 is the
fluctuation of 1/r.)

Eq.(4) can be rewritten as

δφ ≈
H

b
eiΩtph

∫ ∞
0

4xeibΩx

(1 + x2)2

×

[
1−

6x2

(1 + x2)2
−

ibx3

1 + x2

]
dx (5)

which integrates nicely to the analytical formula

δφ ≈
1

2
HΩeiΩtph

[
(bΩ + 1)ebΩE1(bΩ)
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+(bΩ− 1)e−bΩE1(−bΩ)
]

(6)

E1(z) is the exponential integral function

E1(z) =
∫ ∞

1

e−zt

t
dt , Re(z) > 0 , (7)

extended analytically to the entire complexe plane except z = 0. It is
straightforward to verify that eq.(5) integrates to eq.(3) in the limit bΩ << 1.

Thus, the gravity-wave-induced deflection is equal to the wave amplitude
at only one gravitational wavelength from the source, times a factor that
decreases slightly faster than 1/bΩ.

Besides the future prospects of achieving angular resolutions of the or-
der of 10−7arcsec for radio sources by space-based interferometry, there has
been considerable progress, recently, towards reaching a very high angular
precision for optical sources as well (see [21, 22] and several papers in these
proceedings.) Also, the increase in angular resolution power has been ac-
companied by a considerable improvement in photometric sensitivities, po-
tentially revealing a number of new stellar systems that could be relevant to
this study.

There are several actual astronomical configurations to which this ap-
proach can be applied. The candidates fall into two classes. In the first, the
gravity-wave source and the light source are aligned with the Earth by pure
chance. They are two unrelated, far apart celestial objects. Because of the
large number of binary stars in the Galaxy, also because of their relatively
large gravity-wave amplitude and wavelength, a lucky alignment of a binary
star with some more distant light source would be the typical candidate in
this class. Neutron stars are too scarce, are too weak gravity wave emitters,
and the most interesting have too short wavelengths to qualify for astrometric
detection.

Numerically, candidates in this first category could produce optimal shifts
of about 10−6arcsec, which falls within the precision attainable by a space-
based astrometric project such as GAIA. Such shifts could be produced, for
instance, by a very fast binary source with H ∼ 5cm and an orbital period of
about an hour (i.e. the gravity-wave period is 2π/Ω ∼ 30 minutes.) For more
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details about how GAIA could serve as a gravity wave detector using this
effect, see [16]. It is argued there that it could be possible to detect gravity
waves through the effect described above within an astrometric mission like
GAIA, by scanning the sky systematically for all possible galactic gravity
wave sources, including the (in principle) very numerous invisible neutron-
star binaries.

Alternatively, and perhaps as a first detection attempt that would be in
keeping with the present outline of the GAIA project, one could first select
a not too distant gravity wave source, typically a fast binary system that is
within 100 to 1000 parsecs from the Earth. One then has to find a background
star that lies within a few arcseconds of the binary. The proper motion of the
binary increases the likelihood of such alignments over a few years period.
There is a number of promising sources in the galaxy to be investigated
for such alignments with background stars, including cataclysmic variables
and massive X-ray binaries [17]. Because the gravitational signal would be 1)
periodic and 2) known to a very high accuracy, it is possible to use techniques
such as data folding and other versions of filter matching to reduce the noise
to the expected level of the gravitational signal.

A second class of a priori candidates is formed by cases where the gravity-
wave source and the light source are locked into tight gravitationally bound
systems. Common examples of this in the galaxy are stars (as light sources)
and binaries (as gravity-wave sources) locked into multiple-star systems or
even globular clusters. Of particular observational importance is the case of
a binary formed by a neutron star (as the gravity-wave source) and some
companion star (as the light source.)

Comparison of typical gravitational wavelengths and typical separations
shows that the alignment requirement, for this category, is satisfied naturally.
Unfortunately, because of the proximity between light source and deflector,
the observationally relevant apparent angular shift of the stellar image is
much smaller than the deflection angle. Eventually, however, it was shown
that another effect could be exploited in the detection of gravity waves from
some of the most interesting members of this class of candidates, namely
those which comprise a pulsar [14].

Take, for instance, a system like the well studied binary pulsar PSR
B1913+16 [18]. It turns out that this system and alike could be very promis-
ing sites for direct gravity-wave detection. (This is, of course, besides the
indirect evidence for the existence of gravity waves already provided by the
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observed secular slow-down of this binary pulsar.)
Consider first, as the gravity-wave source, the dark neutron star that

revolves around the actual 17Hz pulsar. Once every 7h45′, the two stars
come to within only one light-second (about half a solar radius) of each-other.
This is, at most, of the same order of magnitude as the darker companion’s
gravitational wavelength.

In principle, there are two more sources of gravity waves that could be
affecting the apparent position of that same light source. One is the pulsar
itself. Being a neutron star that rotates 17 times per second, it should be
emitting gravity waves at a frequency of 34Hz. However, 1) the angle between
the electromagnetic and the gravitational directions of propagation is very
small in this case, 2) here there is no incoming, only an outgoing phase. As
mentioned above, the combination of these two facts means that the light
from the pulsar is unlikely to be deflected by the pulsar’s own gravity waves.

The other additional source of waves is the binary system as a whole.
(These are the waves for which there is already indirect observational evi-
dence.) Here also, the shortness of the incoming phase and the smallness
of the angle between the electromagnetic and the gravitational directions of
propagation are a concern. More importantly, there are more considerations
that have to be taken into account, before one can make predictions in this
case. The photons, here, originate from the gravity-wave source itself, and
traverse the near-zone (r < Λ) before reaching the radiation zone, where
our calculations are valid. Such cases necessitate a separate study, where, in
particular, dynamical Neutonian contributions to the deflection would have
to be included.

Numerically, the deflections produced in this case may well reach the
10−6arcsec [14]. This could be the case if, for instance, the companion is
a 10Hz neutron star (i.e. the gravitational frequency is Ω/2π = 20sec−1),
radiating perhaps through the Chandrasekhar-Friedman-Schutz mechanism
[19, 20], with a strength H = 10−6m. However, as we mentioned earlier,
these deflections do not translate into significant apparent angular shifts
in this case. Nevertheless, the consideration of pulsars as sources of the
deflected light lead to another gravity-wave detection prospect, which we
now summarize for completeness.

Following the above study, the next logical step is to try to exploit the
exceptional properties of pulsars, especially the high stability of their period.
This was achieved through the exploitation of an effect that has little to do
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with light deflection, namely the gravity-wave-induced modulation of time
delays, in the very same astronomical configurations discussed above [15].

The possibility of gravity-wave detection through the modulation of pul-
sar frequencies by plane waves has already been extensively explored [23,
24, 25, 26]. The experimental effort in this field has made it possible to de-
tect fractional frequency modulations as faint as 10−15 Thus, stringent upper
limits could be imposed on the cosmological and the galactic gravity-wave
backgrounds. Recently, we also learned that, in the wake of this effort, the
contribution of individual binary stars was also considered in one instance
[27]. Unfortunately, this initial investigation was not followed up by the
consideration of more promising candidates, such as systems consisting of
gravitationally bound light and gravity-wave sources.

In complete analogy with our discussion of the gravity-wave-induced light
deflection effect, the hope here is that, 1) it can be shown rigorously that the
crossing of a zone of spherical gravity waves does result in a net frequency
modulation; 2) the strongest gravity-wave amplitudes encountered along the
trajectory do contribute to the net modulation.

The same worries we had initially for the working of the light-deflection
effect (see above), can be expressed here. Once again, the calculation shows
these worries not to be founded [15]. It was shown that spherical gravity
waves can induce time-delay fluctuations δ(∆t) that vary at a rate

d

dtph
δ(∆t) ≈

1

2
ΩHeiΩtph

×
∫ φfinal

φinitial

dφ sin φ exp

{
ibΩ

1 + cosφ

sinφ

}
(8)

(∆t is the total time it takes a photon to travel from the light source to the
Earth, via the gravity-wave source.)

Here also, the problem has a compact analytical solution. A change of
variables can put eq.(8) in the form∣∣∣∣∣ ddtph δ(∆t)

∣∣∣∣∣ ≈ 2ΩH

∣∣∣∣∣
∫ ∞

0

x

(1 + x2)2
eibΩxdx

∣∣∣∣∣ (9)

This integrates to
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∣∣∣∣∣ ddtph δ(∆t)
∣∣∣∣∣ ≈ HΩ

∣∣∣∣∣bΩ2
(
ebΩE1(bΩ)

−e−bΩE1(−bΩ)
)
− 1

∣∣∣ (10)

Hence, numerically, this second effect behaves just like the first one (eq.(6)),
at least in orders of magnitude: For optimal alignments, it is as high as the
waves’ amplitude only one gravitational wavelength away from the source.
For larger impact parameters, the effect decreases roughly like 1/bΩ.

To use the same numerical illustration as for the previous effect, a bi-
nary star with H ∼ 5cm and a gravity-wave period (half the orbital period)
T ∼ 2π/Ω ∼ 30 minutes, would produce fractional frequency modulations of
about 5× 10−13. A neutron star with H ∼ 10−6m and T = 2π/Ω ∼ 0.05sec,
would yield frequency modulations as strong as 10−12.

Retrospectively, this latter approach to gravity-wave detection has ex-
ploited a perhaps curious observational fact. For several cases of gravity-wave
sources that are members of gravitationally bound stellar systems, the stellar
separations can be as small as only one gravitational wavelength or so. Thus,
in a dense globular cluster, the average stellar separation is of the same order
of magnitude as the gravitational wavelength of a typical binary star. For a
binary system, one member of which is a neutron star, the orbital size can be
comparable to that neutron-star’s gravitational wavelength. Hence, there ex-
ists many astronomical sites where light sources are constantly moving close
to, or even within gravity-wave near-zones.

To summarize, what happens in this detection scheme in the most com-
mon case (which is the one relevant to high precision astrometry) is that
the photons from the background star travel huge distances virtually unper-
turbed, then cross regions of strong gravity waves where their direction of
propagation is shifted, then travel on towards the Earth where they even-
tually deliver the record of their encounter with strong gravity waves. This
amounts to a possibility of probing regions of strong gravity waves at a dis-
tance, thus avoiding the extraordinary smallness that plagues most other
gravity wave effects.
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