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Abstract

The scaling form of the critical equation of state is computed forO(N)-symmetric models.
We employ a method based on an exact flow equation for a coarse grained free energy. A
suitable truncation is solved numerically.
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A precise computation of the critical equation of state near a second order phase transition

is an old problem. From a general renormalisation group analysis [1] one can prove the Widom

scaling form [2] H = φδf̃((T − Tc)/φ
1/β) for the relation between the magnetic field H , the

magnetisation φ and the difference from the critical temperature T − Tc. In several models the

critical exponents β and δ have been computed with high accuracy [3] but the scaling function f̃

is more difficult to access. Previous attempts include an expansion in 4− ε dimensions in second

order in ε (third order for the Ising model) [3]. A particular difficulty for a direct computation

in three dimensions arises from the existence of massless Goldstone modes in the phase with

spontaneous symmetry breaking for models with continuous symmetry (e.g. Heisenberg models

with O(N ) symmetry for N > 1). They introduce severe infrared problems within perturbative

or loop expansions.

Recently a non-perturbative method has been proposed which can systematically deal with

infrared problems. It is based on the average action Γk [4] which is a coarse grained free energy

with an infrared cutoff. More precisely Γk includes the effects of all fluctuations with momenta

q2 > k2 but not those with q2 < k2. In the limit k → 0 the average action becomes the standard

effective action (the generating functional of the 1PI Green functions), while for k →∞ it equals

the classical or microscopic action. It is formulated in continuous space and all symmetries of

the model are preserved. There is a simple functional integral representation [4] of Γk also for

k > 0 such that its couplings can, in principle, also be estimated by alternative methods.

The exact non-perturbative flow equation [5] for the scale dependence of Γk takes the simple

form of a renormalisation group improved one-loop equation [4]

k
∂

∂k
Γk[φ] =

1

2
Tr

[(
Γ

(2)
k [φ] +Rk

)−1
k
∂

∂k
Rk

]
. (1)

The trace involves a momentum integration and summation over internal indices. Most impor-

tantly, the relevant infrared properties appear directly in the form of the exact inverse average

propagator Γ
(2)
k , which is the matrix of second functional derivatives with respect to the fields.

There is always only one momentum integration - multi-loops are not needed - which is, for a

suitable cutoff function Rk(q
2) (with Rk(0) ∼ k2, Rk(q

2 → ∞) ∼ e−q
2/k2

), both infrared and

ultraviolet finite.

The flow equation (1) is a functional differential equation and an approximate solution

requires a truncation. Our truncation is the lowest order in a systematic derivative expansion

of Γk [4, 6, 7]

Γk =

∫
ddx

{
Uk(ρ) +

1

2
Zk∂

µφa∂µφ
a

}
. (2)

Here φa denotes the N -component real scalar field and ρ = 1
2φ

aφa. We keep for the potential

term the most general O(N )-symmetric form Uk(ρ) since U0(ρ) encodes the equation of state.

The wavefunction renormalisation is approximated by one k-dependent parameter Zk. Next

order in the derivative expansion would be the generalization to a ρ-dependent wavefunction

renormalisation Zk(ρ) plus a function Yk(ρ) accounting for a possible different index structure

of the kinetic term for N ≥ 2 [4, 6]. Going further would require the consideration of terms

with four derivatives and so on. Concerning the equation of state for the present model, the

omission of higher derivative terms in the average action typically generates an uncertainty of
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the order of the anomalous dimension η. The main reason is that for η = 0 the kinetic term

in the k-dependent inverse propagator must be exactly proportional to q2 both for q2 → 0 and

q2 → ∞. For the three-dimensional scalar theory η is known to be small and the derivative

expansion is, therefore, expected to give a reliable approximation. This holds for arbitrary

constant “background” field φa. Similar, although less stringent, arguments indicate a weak

ρ-dependence of the kinetic term. For the scaling solution for N = 1 this weak ρ-dependence

has been established explicitly [7].

In this letter we compute the effective potential (Helmholtz free energy) limk→0 Uk(ρ) ≡ U(ρ)

for the O(N )-model directly in three dimensions from a solution of eqs. (1), (2). We extract the

Widom scaling form of the equation of state and give semi-analytical expressions for N = 1 and

N = 3. Its asymptotic behavior yields the universal critical exponents and amplitude ratios. An

alternative parametrisation of the equation of state in terms of renormalised quantities is used

in order to compute universal couplings.

For a study of the behavior in the vicinity of the phase transition it is convenient to work

with dimensionless renormalised fields

ρ̃ = Zkk
−1ρ, uk(ρ̃) = k−3Uk(ρ(ρ̃)). (3)

With the truncation of eq. (2) the exact evolution equation for u′k ≡ ∂uk/∂ρ̃ [4, 6] reduces to

the partial differential equation

∂u′k
∂t

=
(
−2 + η

)
u′k +

(
1 + η

)
ρ̃u′′k

−
(N − 1)

4π2
u′′kl

3
1

(
u′k; η

)
−

1

4π2

(
3u′′k + 2ρ̃u′′′k

)
l31

(
u′k + 2ρ̃u′′k; η

)
, (4)

where t = ln (k/Λ), with Λ the ultraviolet cutoff of the theory. The anomalous dimension η is

given in our truncation by [4, 6]

η = −
∂

∂t
lnZk =

2

3π2
κλ2m3

2,2(2λκ). (5)

with κ the location of the minimum of the potential, u′k(κ) = 0, and λ the quartic coupling,

u′′k(κ) = λ. The “threshold” functions l31 and m3
2,2 result from the momentum integration on

the r.h.s. of eq. (1) and account for the decoupling of modes with effective mass larger than k.

They equal constants of order one for vanishing arguments and decay fast for arguments much

larger than one. For the choice of the cutoff function Rk employed here their explicit form can

be found in refs. [6, 8].

To obtain the equation of state one has to solve the partial differential equation (4) for

k → 0. Algorithms adapted to the numerical solution of eq. (4) have been developed previously

[8] and we refer to this work for details. The integration starts at some short distance scale

k−1 = Λ−1 (t = 0) where the average potential is equal to the microscopic or classical potential

(no integration of fluctuations has been performed). We start with a quartic classical potential

parametrized as u′Λ(ρ̃) = λΛ(ρ̃−κΛ). In the phase with spontaneous symmetry breaking the order

parameter ρ0 = limk→0 Z
−1
k kκ takes a non-vanishing value. In the symmetric phase the order

parameter vanishes, i.e. ρ0 = 0 for k = 0. The two phases are separated by a scaling solution for
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which u′k(ρ̃) becomes independent of k. For any given λΛ there is a critical value κcr for which

the evolution leads to the scaling solution. A measure of the distance from the phase transition

is the difference δκΛ = κΛ−κcr . If κΛ is interpreted as a function of temperature, the deviation

δκΛ is proportional to the deviation from the critical temperature, i.e. δκΛ = A(T )(Tc−T ) with

A(Tc) > 0.

The external field H is related to the derivative of the effective potential U ′ = ∂U/∂ρ by

Ha = U ′φa. The critical equation of state relating the temperature, the external field and the

order parameter can then be written in the scaling form (φ =
√

2ρ)

U ′

φδ−1
= f(x), x =

−δκΛ

φ1/β
(6)

with critical exponents δ and β. For φ → ∞ our numerical solution for U ′ obeys U ′ ∼ φδ−1

to high accuracy. The inferred value of δ is displayed in the table, and we have checked the

scaling relation δ = (5−η)/(1+η). The value of the critical exponent η is obtained from eq. (5)

for the scaling solution [6]. We have also verified explicitly that f depends only on the scaling

variable x for the value of β given in the table. In figs. 1 and 2 we plot log(f) and log(df/dx)

as a function of log|x| for N = 1 and N = 3. Fig. 1 corresponds to the symmetric phase (x > 0)

and fig. 2 to the phase with spontaneous symmetry breaking (x < 0).

One can easily extract the asymptotic behavior from the logarithmic plots. The curves

become constant both for x → 0+ and x → 0− with the same value, consistently with the

regularity of f(x) at x = 0. For the universal function one obtains

lim
x→0

f(x) = D (7)

and H = Dφδ on the critical isotherm. For x → ∞ one observes that log(f) becomes a linear

function of log(x) with constant slope γ. In this limit the universal function takes the form

lim
x→∞

f(x) = (C+)−1xγ, (8)

or limφ→0 U
′ = (C+)−1|δκΛ|γφδ−1−γ/β = m̄2, and we have verified the scaling relation γ/β =

δ − 1 . One observes that the zero-field magnetic susceptibility, or equivalently the inverse

unrenormalised squared mass m̄−2 = χ, is non-analytic for δκΛ → 0 in the symmetric phase:

χ = C+|δκΛ|−γ. In this phase the correlation length ξ = (Z0χ)1/2, which is equal to the inverse

of the renormalised mass mR, behaves as ξ = ξ+|δκΛ|−ν with ν = γ/(2− η).

In the phase with spontaneous symmetry breaking (x < 0) the plot of log(f) fig. 2 shows a

singularity for x = −B−1/β , i.e.

f(x = −B−1/β) = 0. (9)

The order parameter for H = 0 therefore behaves as φ = B(δκΛ)β. Below the critical tempera-

ture the longitudinal and transversal magnetic susceptibilities χL and χT are different for N > 1

(f ′ = df/dx)

χ−1
L =

∂2U

∂φ2
= φδ−1

(
δf(x)−

x

β
f ′(x)

)
, χ−1

T =
1

φ

∂U

∂φ
= φδ−1f(x). (10)
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This is related to the existence of massless Goldstone modes in the (N−1) transverse directions

which imply that the transversal susceptibility diverges for vanishing external field. Fluctuations

of these massless modes also induce a divergence of the zero-field longitudinal susceptibility. This

can be seen from the singularity of the plot of log(f ′) for N = 3 in fig. 2. The first derivative

of the universal function with respect to x vanishes as H → 0, i.e. f ′(x = −B−1/β) = 0

for N ≥ 2. For N = 1 there is a non-vanishing constant value for f ′(x = −B−1/β) with a

finite zero-field susceptibility χ = C−(δκΛ)−γ where (C−)−1 = Bδ−1−1/βf ′(−B−1/β)/β. For a

non-vanishing physical infrared cutoff k the longitudinal susceptibility remains finite also for

N ≥ 2: χL ∼ (kρ0)−1/2. In the ordered phase the correlation length for N = 1 behaves as

ξ = ξ−(δκΛ)−ν and, also for N > 1, the renormalised minimum ρ0R = Z0ρ0 of the potential U

scales as ρ0R = E(δκΛ)ν.

The amplitudes of singularities near the phase transition D, C±, ξ±, B and E are shown in

the table. They are not universal since different short distance physics will result in different

wavefunction renormalisations Zϕ and Zϕ2. All models in the same universality class can,

however, be related by a multiplicative rescaling of φ and δκΛ (or Tc − T ) resulting in x→ cxx

and f → cff . Ratios of amplitudes which are invariant under this rescaling are universal. We

display the universal combinations C+/C−, ξ+/ξ−, Rχ = C+DBδ−1, R̃ξ = (ξ+)β/νD1/(δ+1)B

and ξ+E in the table.

The asymptotic behavior observed for the universal function can be used to obtain a semi-

analytical expression for f(x). We find the following fit to reproduce the numerical values for

both f and df/dx within 1% deviation (apart from the immediate vicinity of the zero of f for

N = 3, cf. eq. (17)):

ffit(x) = D
(
1 +B1/βx

)a(
1 + Θx

)∆(
1 + cx

)γ−a−∆
, (11)

with c = (C+DBa/βΘ∆)−1/(γ−a−∆). The parameter a is determined by the order of the pole of

f−1 at x = −B−1/β , i.e. a = 1 (a = 2) for N = 1 (N > 1). The fitting parameters are chosen as

Θ = 0.569 (1.312) and ∆ = 0.180 (−0.595) for N = 1 (3).

There is an alternative parametrisation of the equation of state in terms of renormalised

quantities. In the symmetric phase (δκΛ < 0) we consider the dimensionless quantity

F (s) =
U ′R
m2
R

= C+x−γf(x), s =
ρR
mR

=
1

2
(ξ+)3(C+)−1x−2β (12)

with ρR = Z0ρ and U
(n)
R = Z−n0 U (n). The derivatives of F at s = 0 yield the universal couplings

dF

ds
(0) =

U ′′R(0)

mR
≡

λR
mR

,
d2F

ds2
(0) = U ′′′R (0) ≡ νR (13)

and similarly for higher derivatives. They determine the behavior of f for x� 1/2

f(x) = (C+)−1xγ +
1

2

λR
mR

(ξ+)3(C+)−2xγ−2β +
1

8
νR(ξ+)6(C+)−3xγ−4β + . . . (14)

In the ordered phase (δκΛ > 0) we consider the ratio

G(s̃) =
U ′R
ρ2

0R

=
1

2
B2E−3(−x)−γf(x), s̃ =

ρR
ρ0R

= B−2(−x)−2β. (15)
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The values for the universal couplings

dG

ds̃
(1) =

U ′′R(ρ0R)

ρ0R
≡

λ̂R
ρ0R

,
d2G

ds̃2
(1) = U ′′′R (ρ0R) ≡ ν̂R (16)

as well as λR/mR and νR are given in the table. One observes that for N > 1 the renormalised

quartic coupling λ̂R vanishes in the ordered phase. This results from the presence of massless

fluctuations. For x near −B−1/β the scaling function is approximated by

f(x) = E3B−6(−x)γ
(
(−x)−2β −B2

)(
2B2 λ̂R

ρ0R
+ ν̂R

(
(−x)−2β −B2

))
+ . . . (17)

In summary, our numerical solution of eq. (4) gives a very detailed picture of the critical

equation of state. The numerical uncertainties are estimated by comparison of results obtained

through two independent integration algorithms [8]. They are small, typically less than 0.3%

for critical exponents and 1 − 3% for amplitudes. The scaling relations between the critical

exponents are fulfilled within a deviation of 2 × 10−4. The dominant quantitative error stems

from the truncation of the exact flow equation and is related to the size of the anomalous

dimension η ' 4%. This is consistent with the fact that the critical exponents and amplitudes

calculated here typically deviate by a few percent from the more precise values obtained by

other methods [3]. If the equation of state is needed with a higher accuracy one has to extend

the truncation beyond the level of the present work.
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Tables

N β γ δ ν η λR/mR νR λ̂R/ρ0R ν̂R

1 0.336 1.258 4.75 0.643 0.044 9.69 108 61.6 107

3 0.388 1.465 4.78 0.747 0.038 7.45 57.4 0 ' 250

C+ D B ξ+ E C+/C− ξ+/ξ− Rχ R̃ξ ξ+E

1 0.0742 15.88 1.087 0.257 0.652 4.29 1.86 1.61 0.865 0.168

3 0.0743 8.02 1.180 0.263 0.746 - - 1.11 0.845 0.196

Table 1: Parameters for the equation of state.

Figures

Fig. 1 : Logarithmic plot of f and df/dx for x > 0.

Fig. 2 : Logarithmic plot of f and df/dx for x < 0.
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