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By fine-tuning generic Cauchy data, critical phenomena have recently been discovered in the
black hole/no black hole “phase transition” of various gravitating systems. For the spherisymmetric
real scalar field system, we find the “critical” spacetime separating the two phases by demanding
discrete scale-invariance, analyticity, and an additional reflection-type symmetry. The resulting
nonlinear hyperbolic boundary value problem, with the rescaling factor ∆ as the eigenvalue, is
solved numerically by relaxation. We find ∆ = 3.4439± 0.0004.
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Recently, Choptuik [1] has studied the gravitational collapse of a real scalar field (massless or massive, minimally
or conformally coupled) in spherical symmetry, using an adaptive mesh refinement numerical technique which allows
him to study details on very small spacetime scales. To describe his results concisely, we invoke coordinates {p, p̄} on
the phase space of the spherisymmetric gravitating scalar field, where p is any smooth coordinate such that p = 0 is
the hypersurface which divides black-hole from no-black-hole spacetimes, while p̄ denotes the remaining coordinates.
Choptuik’s results strongly indicate the following conjectures:

(1) For any choice of coordinate system {p, p̄}, the mass of sufficiently small black holes is given by M = f(p̄) pγ ,
where γ is a universal exponent.

(2) There is a “critical solution” {p = 0, p̄ = p̄∗(t)}, which acts as an intermediate attractor in a thin sheet
surrounding the p = 0 hypersurface on both sides.

(3) This solution shows a discrete homotheticity, or scale invariance, to be defined more precisely below.
More recent research indicates that properties (1) and (2) hold for other self-gravitating systems [2–5], including

vacuum gravity, with always the same value of γ ∼ 0.37. Property (3) appears to be more model-dependent, with
discrete homotheticity found also for axisymmetric vacuum gravity [2], and continuous homotheticity for a spherisym-
metric perfect fluid [3], a spherisymmetric complex scalar field [4], and an axion-dilaton combination [5]. Universality,
scale invariance and critical exponents indicate an exciting new connection between renormalisation group theory and
classical general relativity.

In this Letter, we impose property (3), and an additional Z2 symmetry, in our ansatz, together with analyticity,
and solve the resulting nonlinear hyperbolic eigenproblem, instead of evolving and fine-tuning Cauchy data. In the
language of renormalisation group theory, we find a fixed point of gravitational collapse under a rescaling of space
and time by solving the renormalisation group equations. In a future paper we intend to calculate γ by perturbing
around the fixed point, along the lines of [6–8].

The Einstein equations we consider here are

Gab = 8πG

(
φ,aφ,b −

1

2
gabφ,cφ

,c

)
, (1)

in spherical symmetry. The matter equation φ ;c
,c = 0 follows as a Bianchi identity. Following Choptuik, we define

the metric as

ds2 = −α(r, t)2 dt2 + a(r, t)2 dr2 + r2 (dθ2 + sin2 θ dϕ2), (2)

where the remaining gauge freedom is fixed by the condition α(r = 0, t) ≡ 1, and auxiliary matter fields as

X(r, t) =
√

2πG
r

a
φ,r, Y (r, t) =

√
2πG

r

α
φ,t. (3)

The symmetry of the attractor observed by Choptuik can be expressed in coordinate language as Z(r, t) =
Z(re∆, te∆), where Z stands for any one of α, a, X and Y , and ∆ ∼ 3.44 is a constant. Here the zero of t has
been readjusted so that (r = 0, t = 0) is the beginning of the singularity and apparent horizon in collapse spacetimes,
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or the point of maximum curvature in noncollapse spacetimes. We introduce auxiliary (nonmetric) coordinates where
the symmetry appears as a simple periodicity of the Z:

τ ≡ ln(−t), ξ ≡ ln(−r/t), Z(ξ, τ) = Z(ξ, τ + ∆). (4)

Geometrically, the symmetry can be described as a discrete homotheticity: when we Lie-drag gab along the vector
field ∂/∂τ by the distance ∆, we obtain gabe

2∆, while Tab is mapped to Tab. The vector field along which we Lie-drag
is not unique, however, because we only ever consider the effect of Lie-dragging the finite distance ∆. We parameterize
this arbitrariness by introducing a free periodic function ξ0(τ) into the coordinate system such that the vector involved
in the symmetry is still ∂/∂τ . At the same time, for clarity of presentation, we absorb ∆ into the coordinate τ . We
therefore define the coordinates in which we are going to work as

ϕ ≡ 2πτ/∆, ζ ≡ ξ − ξ0(τ), Z(ζ, ϕ+ 2π) = Z(ζ, ϕ). (5)

Evans and Coleman [3] found the critical spacetime of spherical fluid collapse by imposing continuous homotheticity.
In our coordinates, α, a, and the fluid variables corresponding to X and Y are then functions of ζ alone, the Einstein
and matter equations are reduced to a system of nonlinear ODEs, and the solution is uniquely specified by regularity
conditions [3,9]. Here we use a similar approach in order to find Choptuik’s critical spacetime of scalar field collapse.

We solve the field equations for the ζ-derivatives of the fields Z as functions of these fields and their ϕ-derivatives.
It is convenient to use the new field g ≡ eξ0(ϕ)a/α instead of α, and X± ≡ X ± Y instead of X and Y . The resulting
equations are

a,ζ =
1

2
a
[
(1− a2) + a2

(
X2

+ +X2
−

)]
, (6)

g,ζ = g(1 − a2), (7)

X+,ζ =
B+

1 +D
, (8)

X−,ζ =
B−

1−D
, (9)

where we have introduced the abbreviations

z≡

(
1 +

2π

∆

dξ0

dϕ

)−1

, D ≡ z−1eζg, (10)

B±≡
1

2
(1− a2)X± − a

2X2
∓X± −X∓ ± z

2π

∆
DX±,ϕ. (11)

There is also one equation containing only the Z and Z,ϕ,

z
2π

∆

a,ϕ

a
=

1

2

[
(1− a2) + a2

(
X2

+ +X2
−

)
+ a2D−1

(
X2

+ −X
2
−

)]
. (12)

It acts as a constraint, which is conserved by the four “evolution equations” above.
For small enough ζ these equations define a constrained Cauchy problem, with ζ playing the role of time, on

the cylinder obtained by identifying ϕ with period 2π. At ζ = −∞, corresponding to r = 0, we set the boundary
conditions a = 1 (regularity of the metric) and α = 1 (coordinate condition). Expanding the field equations in powers
of eζ , we find that data obeying these conditions are determined by ξ0(ϕ) and one more free function Y0(ϕ), which is
defined by the expansion

Y (ϕ, ζ) ≡ Y0(ϕ)eξ0(ϕ) eζ +O
(
e3ζ
)
. (13)

As ζ increases, the Cauchy problem eventually becomes degenerate, when D = 1. In analogy to the “sonic point”
of the ODEs describing continuously homothetic spacetimes [3,9], we call this line the “sonic line”. The equation of
radial null geodesics is

dζ

dϕ
= −

∆

2πz

(
−1±D−1

)
. (14)

The sonic line is therefore the set of points where a null geodesic touches a surface of constant ζ. (In general, it would
be a matter characteristic, but for our choice of matter these are identical with the null geodesics.) The solution can
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be uniquely continued across the sonic line when we impose analyticity. As a technical simplification, we make use of
the coordinate freedom in ξ0 by moving the sonic line to ζ = 0. Then we can enforce analyticity simply by expanding
in powers of ζ. We find that regular data near ζ = 0 can be expressed in terms of ξ0(ϕ) and one more free function
X+0(ϕ), which is defined as

X+0(ϕ) ≡ X(ζ = 0, ϕ) + Y (ζ = 0, ϕ). (15)

We have now formulated a hyperbolic boundary value problem on a rectangle with two sides identified (a finite
cylinder) in 1+1 dimensions. We have three independent fields, for exampleX+, X− and g. On the other hand there
are three free functions in the boundary data, minus one degree of freedom corresponding to translations in ϕ, plus
∆ as the eigenvalue of the problem. By this count we expect solutions to be locally unique, with a discrete spectrum.

We cut the number of degrees of freedom in half by imposing the additional symmetry Z(ϕ + π) = ±Z(ϕ), with
the + sign holding for a, g and ξ0, and the − sign for X+ and X−. There may be solutions which do not have this
additional symmetry, but Choptuik’s must have it, as he observed that the massive and nonminimally coupled scalar
fields have the same attractor as the massless one considered here. The necessary and sufficient condition for this is
that φ remains bounded, because the terms proportional to φ2 in its stress tensor (mass, nonminimal coupling) are
then dominated by the gradient squared term as φ varies on ever smaller spacetime scales. For φ to remain bounded
its derivatives X and Y must have vanishing zero frequency Fourier components in ϕ, which in turn requires that all
their even frequencies vanish, or else these could be combined to give a zero frequency contribution in the evolution
equations. It follows in turn that a, g and ξ0 must not have odd frequency components.

As we are dealing with smooth periodic functions, it is useful to decompose all fields into their Fourier components
with respect to ϕ. Integration and differentiation are done in Fourier components. Algebraic operations are done in
ϕ space, which makes our algorithm pseudo-spectral. Due to the nonlinearity of the problem, dealiasing turns out to
be essential for stability. We dealiase convolution sums by using a number of collocation points in ϕ equal to twice
the number of Fourier components.

Because the number of variables is large and the problem is nonlinear in an essential way (there are no regular
solutions to the linearized, no gravity, problem), any algorithm is likely to have only a small region of convergence
around any solution. We have therefore started with an initial guess sufficiently close to Choptuik’s critical spacetime,
in order to establish that this solution exists having the echoing symmetry as an an exact symmetry, and that it is
locally unique, and to calculate it with higher precision than has been possible by fine-tuning Cauchy data. A global
search for all solutions that may exist is desirable, but not possible with the present algorithm.

Our manual input into the algorithm is limited to the following guess for Y0 and ∆: Y0 = −2.3 sinϕ−0.6 sin 3ϕ, and
∆ = 3.44. (Here and in the following we fix the translation invariance by defining Y0 to have no cosϕ component.)
In a first step, we begin with the very rough guess ξ0 = 0, and shoot from ζ = −∞ towards increasing ζ. When
D(ϕ, ζ) first gets close to 1 in two points ϕ, and X−,ζ is therefore about to become singular in those points, we stop
the evolution and calculate a new value of ξ0 that is designed to “flatten” D(ϕ), i.e. to make it roughly D(ϕ) ∼ 1
for all ϕ at that ζ. Then we shoot again, thus iteratively improving ξ0. After convergence, we read off X+ at the
endpoint of our one-sided shooting, which by now is close to ζ = 0, and thus have an initial guess for X+0 as well.

As an intermediate step, we calculate an initial guess for the values of all fields on a grid in ζ by shooting from
both ζ = −∞ and ζ = 0 to a fitting point, typically ζ = −1. This involves a Taylor expansion around the regular
singular point 0 as well as around −∞. Using this expansion and shooting from ζ = 0 transfers the bulk of the error
in our improving solution away from the point ζ = 0 to the fitting point ζ = −1, making it easier for the following
step to handle.

In the last step, we go over to a standard relaxation algorithm [10]. For the purpose of relaxation the independent
variables at each grid point in ζ are the odd Fourier components of X+ and X− and the even components of g and
ξ0. a is not considered as independent, but reconstructed at each step from the other fields by solving equation (12).
Solution of this ODE is by iteration of the corresponding integral equation. (The constant component of a has to be
calculated separately.) Between generic grid points in ζ we enforce the discretized ζ-derivatives

Zn+1 − Zn = hF

(
Zn+1 + Zn

2

)
. (16)

(The ζ-derivative of ξ0 is zero by definition). At the boundary ζ = −∞ we enforce relations between g, X, and Y
derived from expanding the field equations, and at ζ = 0 we enforce D = 1 and B− = 0. The relaxation part of the
algorithm is much simpler than the shooting parts, but the latter appear to have a larger region of convergence, thus
serving as a stepping stone.

The boundary data of the solution have been tabulated in Table 1. In particular, the echoing period is ∆ =
(3.4439 ± 0.0004). The error bars have been obtained combining the results of three different convergence tests.
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(1) We compare the results obtained for different numbers M of grid points in ζ. As expected the convergence is
quadratic, over a wide range of M , but only up to some maximal value. (2) The convergence of the tabulated numbers
with increasing number N of Fourier components used in the calculation is rapid (“spectral convergence”) forN ≥ 32.
(3) ζ = −∞ is represented by a finite value of ζ, using a Taylor expansion to one beyond leading order in exp ζ. As
expected, this convergence is quadratic in exp ζ, over some range of ζ. As long as the difference between runs of
different precision has the expected functional form, we can use it to estimate the numerical error. The tabulated
data are from a run with M = 201 equally spaced points in the interval −5 ≤ ζ ≤ 0 and N = 64 components (half
of which vanish) per function, compared with −6 ≤ ζ ≤ 0, M = 401 and N = 128 respectively. The three sources of
numerical error are comparable for this choice.

We have compared the fields a, α, X and Y with Choptuik’s data, after interpolating to the largest rectangular grid
in τ and ξ contained in both data sets, with −3.2 < ξ < 1.3. We have evaluated the root mean square of the absolute
difference point by point of the fields a, X and Y (which are bounded and of order one in the solution) and the
relative difference in α (which is unbounded above, but bounded below by 1). After adjusting a non-universal offset in
τ between the data sets, this difference is 410−2 for α, and somewhat smaller for the other fields. By comparison, the
estimated root mean square pointwise error in our data is 1.6 10−3 in α, and 1.0 10−4 or less for the other fields. We
have therefore improved the precision with which the Choptuik spacetime is known by one to two orders of magnitude,
while ∆ is now known to one part in 104. Future improvements are possible.

Data files of the solution are available at http://www.laeff.esa.es/∼gundlach/.
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TABLE I. Decomposition of the boundary data in sines and cosines. Their period is ∆ = (3.4439± 0.0004).

Component ξ0 Component Y0 X+0

constant (1.5813± 0.0007) cosϕ 0 a (−4.3831± 0.0006) 10−1

cos 2ϕ (6.658± 0.006) 10−2 sinϕ (−2.364± 0.006) (−3.2287± 0.0008) 10−1

sin 2ϕ (−1.577± 0.002) 10−1 cos 3ϕ (−1.46± 0.05) 10−1 (6.74± 0.05) 10−3

cos 4ϕ (−2.014± 0.004) 10−2 sin 3ϕ (−9.52± 0.08) 10−1 (1.017± 0.001) 10−1

sin 4ϕ (−3.3± 0.2) 10−4 cos 5ϕ (−1.12± 0.05) 10−1 (2.431± 0.003) 10−2

cos 6ϕ (1.979± 0.005) 10−3 sin 5ϕ (−4.06± 0.06) 10−1 (−1.807± 0.008) 10−2

sin 6ϕ (2.249± 0.008) 10−3 cos 7ϕ (−7.0± 0.4) 10−2 (−9.85± 0.02) 10−3

cos 8ϕ (1.37± 0.01) 10−4 sin 7ϕ (−1.73± 0.04) 10−1 (−2.14± 0.02) 10−3

sin 8ϕ (−8.186± 0.004) 10−4 cos 9ϕ (−3.9± 0.3) 10−2 (1.76± 0.01) 10−3

cos 10ϕ (−1.886± 0.002) 10−4 sin 9ϕ (−7.3± 0.2) 10−2 (3.116± 0.005) 10−3

sin 10ϕ (3.6± 0.1) 10−5 cos 11ϕ (−2.1± 0.2) 10−2 (3.97± 0.02) 10−4

cos 12ϕ (3.08± 0.03) 10−5 sin 11ϕ (−3.0± 0.1) 10−2 (−1.195± 0.005) 10−3

sin 12ϕ (1.73± 0.02) 10−5 cos 13ϕ (−1.1± 0.1) 10−2 (−4.05± 0.01) 10−4

cos 14ϕ (−4.05± 0.09) 10−6 sin 13ϕ (−1.24± 0.06) 10−2 (1.93± 0.02) 10−4

sin 14ϕ (−1.371± 0.002) 10−5 cos 15ϕ (−5.2± 0.9) 10−3 (1.53± 0.01) 10−4

cos 16ϕ (−3.05± 0.03) 10−6 sin 15ϕ (−5.0± 0.2) 10−3 (5.94± 0.06) 10−5

aby definition, to fix translation degree of freedom
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