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2and Université d’Aix-Marseille II

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25182638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In his beautiful book [1], A. Connes applies non-commutative geometry to the standard model

of particles. The last theorem of this book states that the ordinary Lagrangian of the standard

model with three generations of leptons and quarks and one doublet of Higgs scalars has a

natural algebraic interpretation. Its principal ingredients are two algebras and a generalized

Dirac operator. From these, Connes constructs two differential algebras, two gauge potentials,

their curvatures and the Euclidean Yang-Mills actions as scalar products of the curvatures with

themselves. When applied to the commutative case — the commutative algebra of smooth

functions on a four dimensional spacetime and the genuine Dirac operator — this Yang-Mills

action and the covariantized Dirac action reproduce spinor electrodynamics. However, when

applied to the tensor product of the commutative spacetime algebra with two non-commutative

internal algebras these two Lagrangians reproduce exactly the Lagrangian of the standard model

including the entire Higgs sector, i.e. the Klein-Gordon Lagrangian for the Higgs scalars,

their Higgs potential and their Yukawa terms. In particular, the 18 free parameters of the

standard model (which can be taken to be the three gauge couplings, g1, g2, g3, the masses

of the W , of the Higgs, of three leptons and of six quarks, and four mixing parameters in the

Cabbibo-Kobayashi-Maskawa matrix) remain free and are the only free physical parameters in

the non-commutative approach.

In its original version, this non-commutative approach due to A. Connes and J. Lott [2],[3]

had two major shortcomings: the need of two algebras with related bimodules and two extra

U(1) factors in the gauge group that had to be eliminated by two additional algebraic (unimod-

ularity) conditions. Recently, Connes [4] has improved this framework by introducing a real

structure of a spectral triplet (A,H,D), where A is a real algebra represented on the Hilbert

space H and D a Dirac operator on H. The real structure is given by an anti-unitary operator

J on H which, in commutative geometry, is the charge conjugation. Now, the internal space of

the standard model is described by one algebra A = H ⊕ C ⊕M3(C ), H is the algebra of quater-

nions, the Hilbert space is spanned by all leptons and quarks and the Dirac operator is given

by the fermionic mass matrix. The hypothesis of the quoted theorem now becomes extremely

simple. The gauge group G is the group of unitaries of A, G = SU(2)×U(1)×U(3).The gauge

potential is a 1-form in the differential algebra of the triple (A,H,D) and its Yang-Mills ac-

tion together with the Majorana action suitably covariantized yields the action of the standard

model with a doublet of Higgs scalars. There are again the 18 free parameters.

In the standard model, the space of parameters is a direct product of 18 intervals. In the

non-commutative approach, the space of parameters which, according to Connes’ theorem, has

a non-empty interior, reveals an interesting shape. In particular, sin2 θw is bounded from above,

the mass of the W lies essentially between the lightest and the heaviest fermion mass and the

Higgs mass is bounded from below and above. Since all values of the interval are possible, we

call this framing a fuzzy mass relation.
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Throughout this paper, we assume that all fermion masses are different and that the

Cabbibo-Kobayashi-Maskawa matrix is non-degenerate, i.e. has no proper invariant subspace.

Theorem.

i.

sin2 θw <
2

3

1 +
1

9

(
g2

g3

)2
−1

. (1)

ii. If the heaviest lepton τ satisfies m2
τ < (m2

t +m2
b +m2

c +m2
s +m2

u+m2
d)/3, then,

with e the lightest lepton, we have

m2
e < m2

W < (m2
t +m2

b +m2
c +m2

s +m2
u +m2

d)/3. (2)

iii.

m2
Hmin < m2

H < m2
Hmax (3)

where m2
Hmin and m2

Hmax depend on all fermion masses but mµ. The bounds

are given by equations (13) and (15) and plotted in the figure.

m2
Hmax−m

2
Hmin factorizes (m2

τ−m
2
e) and (m2

t+m
2
b+m

2
c+m

2
s+m

2
u+m2

d−3m2
W ).

In particular, neglecting all fermion masses but mτ and mt, we have

mHmax −mHmin =

[
k
(
mτ

mt

)2

+O

((
mτ

mt

)4
)]

mt

where k is given in equations (16-17) and is of order one for experimental

values of mW and mt.

2 The geometric version of the standard model

The basis of non-commutative geometry is a (real) spectral triple (A,H,D).

A is a real, associative algebra with unit 1 and involution ∗. The spacetimeM is described by

the infinite dimensional commutative algebra of smooth functions f : M −→ C with involution

f∗ = f̄ , the complex conjugate. The internal space is described by a finite dimensional algebra

whose group of unitaries G := {g ∈ A | gg∗ = g∗g = 1} will contain the gauge group. In the

case of the standard model, this choice is

A = H ⊕ C ⊕M3(C ) with G = SU(2)× U(1) × U(3).

We denote by H the algebra of quaternions, viewed as 2× 2 matrices,(
x −ȳ
y x̄

)
∈ H, x, y ∈ C .
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H is a Hilbert space carrying a faithful representation ρ of the algebra A. We also assume

that H is equipped with a chirality χ and a charge conjugation J . The chirality is a unitary

operator of square one that commutes with the representation. Therefore χ decomposes the

representation space into a left-handed piece (1−χ)/2H and a right-handed piece (1+χ)/2H.

The charge conjugation is an anti-unitary operator of square plus or minus one, depending on

spacetime dimension and signature. Also depending on spacetime dimension and signature, J

commutes or anticommutes with χ. We further assume that

• ρ(a) commutes with Jρ(ã)J−1, for all a, ã in A. (4)

The charge conjugation as well decomposes the representation space into two pieces, particles

and anti-particles,

H = HL ⊕HR ⊕H
c
L ⊕H

c
R.

For a four dimensional spacetime, the Hilbert space consists of all square integrable (Dirac)

spinors, a function f acting on a spinor ψ by multiplication, (ρ(f)ψ)(x) := f(x)ψ(x). The

chirality χ = γ5 decomposes a Dirac spinor into left- and right-handed (Weyl) spinors and the

charge conjugation acts on ψ as ψc := iγ2ψ̄ where γ2 is the second Dirac matrix and the bar

denotes complex conjugation. The internal space counts as zero dimensional [1]. Its Hilbert

space is finite dimensional and contains all fermions. For the standard model, we have

HL =
(
C

2 ⊗ C
N ⊗ C

3
)
⊕

(
C

2 ⊗ C
N ⊗ C

)
,

HR =
(
(C ⊕ C ) ⊗ C

N ⊗ C
3
)
⊕

(
C ⊗ C

N ⊗ C

)
.

In each summand, the first factor denotes weak isospin doublets or singlets, the second N

generations, N = 3, and the third denotes colour triplets or singlets.

Let us choose the following basis of H = C
90 :(

u
d

)
L

,
(
c
s

)
L

,
(
t
b

)
L

,
(
νe
e

)
L

,
(
νµ
µ

)
L

,
(
ντ
τ

)
L

;

uR,
dR,

cR,
sR,

tR,
bR,

eR, µR, τR;

(
u
d

)c
L

,
(
c
s

)c
L

,
(
t
b

)c
L

,
(
νe
e

)c
L

,
(
νµ
µ

)c
L

,
(
ντ
τ

)c
L

;

ucR,

dcR,

ccR,

scR,

tcR,

bcR,
ecR, µcR, τ cR.

Let (a, b, c) ∈ H ⊕ C ⊕M3(C ) be an element in the algebra A. ρ acts on the above Hilbert space

by

ρ(a, b, c) :=
(
ρw(a, b) 0

0 ρ̄s(b, c)

)
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with

ρw(a, b) :=


a⊗ 1N ⊗ 13 0 0 0

0 a⊗ 1N 0 0
0 0 B ⊗ 1N ⊗ 13 0
0 0 0 b̄1N

 , B :=
(
b 0
0 b̄

)
,

ρs(b, c) :=


12 ⊗ 1N ⊗ c 0 0 0

0 b̄12 ⊗ 1N 0 0
0 0 12 ⊗ 1N ⊗ c 0
0 0 0 b̄1N

 .

The chosen representation ρ will take into account weak interactions ρw(a, b), a ∈ H, b ∈ C , and

strong interactions ρs(b, c), c ∈M3(C ), c for colour. This choice discriminates between leptons

(colour singlets) and quarks (colour triplets). The role of b ∈ C appearing in both weak inter-

actions ρw(a, b) and strong interactions ρs(b, c) is crucial to make ρ(a, b, c) a representation of

A and is crucial for weak hypercharge computations. There is an apparent asymmetry between

particles and anti-particles, the former are subject to weak, the latter to strong interactions.

However, since particles and anti-particles are permuted by J via the fundamental property

(4), the theory is invariant under charge conjugation.

The chirality operator and charge conjugation are

χ =


−124 0 0 0

0 +121 0 0
0 0 −124 0
0 0 0 +121

 , J =
(

0 145

145 0

)
C,

C being the complex conjugation.

The last item in the spectral triple is the (generalized) Dirac operator D, a selfadjoint

operator with the following properties:

• Dχ = −χD,

• DJ = +JD,

• [D, ρ(a)] is bounded for all a in A,

• [D, ρ(a)] commutes with Jρ(ã)J−1, for all a, ã in A.

For spacetime, D is the genuine Dirac operator. For the internal space, D is made up with the

fermionic mass matrix M,

D =


0 M 0 0
M∗ 0 0 0
0 0 0 M
0 0 M∗ 0

 .
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Let us recall the mass matrix of the standard model:

M =


(
Mu ⊗ 13 0

0 Md ⊗ 13

)
0

0
(

0
Me

)
 ,

with

Mu :=

mu 0 0
0 mc 0
0 0 mt

 , Md := CKM

md 0 0
0 ms 0
0 0 mb

 , Me :=

me 0 0
0 mµ 0
0 0 mτ

 .
All indicated fermion masses are supposed positive and different. The Cabbibo-Kobayashi-

Maskawa matrix CKM is supposed non-degenerate in the sense that there is no simultaneous

mass and weak interaction eigenstate.

Note that the strong interactions are vector-like: for all b ∈ C and c ∈M3(C ), ρ3(b, c) commutes

with the corresponding restrictions of χ and D.

A last ingredient of the general theory is another operator z on the Hilbert space. z is

used to construct a gauge invariant scalar product (ω, κ) := tr (ω∗κz) for two forms ω, κ of

equal degree in the differential algebra of the internal spectral triple (A,H,D). Since the gauge

couplings in usual Yang-Mills theories parameterize gauge invariant scalar products on the

Lie algebra, z deserves the name ‘non-commutative coupling constant’. Here is the list of its

properties:

• z is positive,

• [z, ρ(a)] = [z, Jρ(a)J−1] = 0, a ∈ A,

• [z, χ] = 0,

• [z,D] = 0.

For spacetime, z is simply a positive number times the identity. For the internal space of the

standard model, the most general z involves 2(1+N) = 8 strictly positive numbers x, y1, y2, y3,

x̃, ỹ1, ỹ2, ỹ3,

z =
(
zw 0
0 z̄s

)
,

zw :=


x/3 12 ⊗ 1N ⊗ 13 0 0 0

0 12 ⊗ y 0 0
0 0 x/3 12 ⊗ 1N ⊗ 13 0
0 0 0 y

 ,

zs :=


x̃/3 12 ⊗ 1N ⊗ 13 0 0 0

0 12 ⊗ ỹ 0 0
0 0 x̃/3 12 ⊗ 1N ⊗ 13 0
0 0 0 ỹ

 ,
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y :=

 y1 0 0
0 y2 0
0 0 y3

 , ỹ :=

 ỹ1 0 0
0 ỹ2 0
0 0 ỹ3

 .
The interpretation of these numbers is straightforward. The three yj poise the weak interactions

with the three lepton generations. The yj enter independently because the Higgs scalar couples

differently to the three leptons and in non-commutative geometry the Higgs is part of the gauge

interactions. The three ỹj poise the ‘strong’ interactions with the three lepton generations.

They do not drop out because of the b in ρ3. However, as we shall see in equations (7-10), they

will only enter as sum: strong interactions are unbroken and do not generate a Higgs. x and

x̃ poise weak and strong interactions with quarks. There is only one number per interaction

because of the Cabbibo-Kobayashi-Maskawa mixing that we suppose non-degenerate.

In the standard model, the scalars turn out to sit in one isospin doublet - colour singlet ϕ

and their potential is computed [5],

V (ϕ) =
K

16L2
|ϕ|4 −

K

2L
|ϕ|2.

The coefficients depend on the coupling constants in zw only — because strong interactions do

not contribute to the spontaneous symmetry breaking— and on squares of the fermion masses,

the Cabbibo-Kobayashi-Maskawa matrix drops out:

K :=
3

2
tr
[
(M∗uMu)2

]
x+

3

2
tr
[
(M∗dMd)

2
]
x+ tr [M∗uMuM

∗
dMd] x+

3

2
tr [M∗eMeM

∗
eMe y]

−
1

2
L2

[
1

Nx+ tr y
+

1

Nx+ tr y/2

]
, (5)

L := tr [M∗uMu]x+ tr [M∗dMd] x+ tr [M∗eMe y] . (6)

At the same time, the Yang-Mills Lagrangians for isospin and colour come out respectively as

1

2
tr [ρ (F2µν , 0, 0)∗ ρ (F2

µν , 0, 0) z] =:
2

g2
2

1

4
tr
[
F ∗2µνF2

µν
]
, F2µν ∈ {a ∈ H, a

∗ = −a} ,

1

2
tr [ρ (0, 0, F3µν)

∗ ρ (0, 0, F3
µν) z] =:

2

g2
3

1

4
tr
[
F ∗3µνF3

µν
]
, F3µν ∈ {c ∈M3(C ), c∗ = −c} ,

with gauge couplings therefore given by

g−2
2 = Nx+ tr y , (7)

g−2
3 =

4

3
Nx̃.

Consequently, we have the following mass relations:

m2
W =

L

Nx+ tr y
, (8)
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m2
H =

2K

L
. (9)

So far we have identified the SU(2) of weak isospin and the SU(3) of colour together with their

gauge couplings. It remains to look at the U(1) of hypercharge. The Lie algebra of the gauge

group is g = {a ∈ A | a∗ = −a} = su(2) ⊕ u(1) ⊕ su(3) ⊕ u(1). Fortunately, the hypercharge

generator Y is a linear combination of the two U(1) generators (0, i, 0), (0, 0, i13):

Y =
1

i
ρ
(

0,
i

2
,
i

6
13

)
.

To compute its gauge coupling, we have to recall that U(1) gauge couplings are conventionally

normalized differently than SU(n) gauge couplings,

1

2
tr [Y ∗Y z] =:

1

g2
1

1

4
.

Therefore,

g−2
1 = Nx+

2

9
Nx̃+

1

2
tr y +

3

2
tr ỹ. (10)

A final remark of this section concerns the second, unwanted U(1) which is generated by a

linear combination orthogonal to Y . By imposing an algebraic condition, the Lie algebra g is

reduced to the desired subalgebra su(2)⊕ u(1)Y ⊕ su(3). The condition

tr
[
Jρ(12, 0, 0)J−1 ρ(a, b, c)

]
= 0, (a, b, c) ∈ g, (11)

namely 4N( tr c+ b̄) = 0 selects precisely weak isospin, hypercharge and colour. This condition

looks like a unimodularity condition because Jρ(12, 0, 0)J−1 is a selfadjoint element in the com-

mutant of ρ(A). Despite this arbitrary choice of the element in the commutant, the condition

(11) is equivalent to

tr
[(
ρ(a, b, c) + Jρ(a, b, c)J−1

)
P
]

= tr [ρw(a, b) + ρs(b, c)] = 0,

where P is the projection on HL ⊕ HR, the space of particles, and so appears more natural.

Note that this condition is also related to the condition of vanishing anomalies [6].

3 Fuzzy relations among masses and coupling constants

3.1 Masses

Let us come back to the mass relations (8-9). Their coefficients (5-7) contain only squares of

masses and we put

t := m2
t , W := m2

W , H := m2
H, ...
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Furthermore, the mass relations are homogeneous in the variables x, y1, y2, y3 and we may

set x = 1/3 without loss of generality. Then the two mass relations read

H

W
+ 1 =

C

X
+ 3

Y

X
− 2

X

1 +X
,

X =
3∑
j=0

αjyj, (12)

with the following abbreviations

C :=
t2 + b2 + c2 + s2 + u2 + d2

W 2
+

2

3

tb+ cs+ ud

W 2
−

1

3

q2

W 2
,

q := t+ b+ c+ s+ u+ d,

α0 := q/3W, α1 := e/W, α2 := µ/W, α3 := τ/W,

y0 := 3x = 1,

X :=
3∑
j=0

yj, Y :=
3∑
j=0

α2
jyj.

An immediate conclusion is that the W mass lies between the masses of the lightest and

the heaviest fermion, more precisely, if the latter is a quark with non-degenerate Cabbibo-

Kobayashi-Maskawa mixing in 3 generations, we have

e < W < (t+ b+ c+ s+ u+ d)/3.

The following lemma justifies the choice of these new variables X and Y , since they are inde-

pendent and bounded.

Lemma 1. Let α0, α1, ..., αN be N + 1 real numbers, N ≥ 3, satisfying the inequalities

0 < α1 < ... < αN < 1 < α0, and y0, y1, ..., yN be N + 1 strictly positive variables.

Consider the domain in R
N+1 subject to the constraints y0 = 1 and (12), namely

D :=

y = (1, y1, ..., yN), yj > 0,
N∑
j=0

(1− αj)yj = 0

 ,
and define the variables X :=

∑N
j=0 yj, Y :=

∑N
j=0 α

2
jyj. Then,

i. X and Y are independent on D.

ii. On D, X and Y vary in the open intervals

Xmin :=
α0 − α1

1− α1
< X <

α0 − αN
1− αN

=: Xmax,

Ymin := α2
0 + (α0 − 1)

α2
1

1− α1
< Y < α2

0 + (α0 − 1)
α2
N

1− αN
=: Ymax.
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Proof. i. follows from a non-vanishing functional determinant. In fact, it is sufficient to consider

the case N = 3. We solve the constraint
∑3
j=0(1− αj)yj = 0:

y3 = −
1− α0

1− α3
−

1− α1

1− α3
y1 −

1− α2

1− α3
y2,

we eliminate y3:

X =
α0 − α3

1− α3
+
α1 − α3

1− α3
y1 +

α2 − α3

1− α3
y2,

Y =
(
α2

0 − α
2
3

1− α0

1− α3

)
+
(
α2

1 − α
2
3

1− α1

1− α3

)
y1 +

(
α2

2 − α
2
3

1− α2

1− α3

)
y2,

and compute the functional determinant

det

( ∂X
∂y1

∂X
∂y2

∂Y
∂y1

∂Y
∂y2

)
=

(α1 − α2)(α2 − α3)(α1 − α3)

1− α3

6= 0.

To prove ii., we note that D is convex and bounded. Indeed, for j = 1, ..., N we have

(1− αj)yj <
N∑
j=1

(1− αj)yj = −(1− α0)y0 = α0 − 1,

and 0 < yj <
α0−1
1−αj

. For every n = 1, ...N , let us define the vector

Pn :=
(

1, 0, ..., 0,
α0 − 1

1− αn
, 0, ..., 0

)
∈ RN+1,

where the n dependent entry is in the nth position. Clearly, the Pn are in the closure of D and

D is the interior of the convex envelope of the n vectors Pn: every y ∈ D can be written as

y =
N∑
n=1

λnPn with λn :=
1− αn
α0 − 1

yn > 0 and
N∑
n=1

λn = 1

because of the constraint. Therefore

X =
N∑
j=0

yj =
N∑
n=1

λn

(
1 +

α0 − 1

1− αn

)
=

N∑
n=1

λn
α0 − αn
1− αn

,

and as (α0 − α)/(1− α) is an increasing function of α,

α0 − α1

1− α1

< X <
α0 − αN
1− αN

.

Similarly, we obtain the bound on Y ,

Y =
N∑
j=0

α2
jyj =

N∑
n=1

λn

(
α2

0 + (α0 − 1)
α2
n

1− αn

)

by noting that α2/(1− α) is increasing in α:

α2
0 + (α0 − 1)

α2
1

1− α1
< Y < α2

0 + (α0 − 1)
α2
N

1− αN
,

9



ending the proof of the lemma.

Note that as α0, α1, αN vary, Xmin and Xmax take all values of (1,∞) and Ymin and Ymax

take all values of (α2
0,∞).

Let us now suppose that C is positive. Since

3

2
W 2C = t2 + b2 + c2 + s2 + u2 + d2 − (t+ b)(c+ s+ u+ d) − (c + s)(u+ d),

C is indeed positive in presence of the following hierarchy of quark masses: u+ d < min{c, s},

c+ 2s < min{t, b}.

Then the function of two variables

f(X, Y ) :=
C

X
+ 3

Y

X
− 2

X

1 +X

is decreasing in X and increasing in Y and we get the following bounds on the Higgs mass:

H̃min := [f(Xmax, Ymin)− 1]W < H < [f(Xmin, Ymax)− 1]W =: Hmax, (13)

but we still must check the positivity of these bounds.

Hmax is positive. Indeed, −2X/(1 +X)− 1 > −3 for positive X and we shall verify[
α2

0 + (α0 − 1)
α2
N

1− αN

]
1− α1

α0 − α1
> 1.

As α2/(1 − α) is increasing in α ∈ [0, 1], it is sufficient to prove the same inequality with αN

replaced by α1. Since

g(α1) :=
α2

0(1− α1) + α2
1(α0 − 1)

α0 − α1

has negative derivative, g′(α1) = 1− α0 < 0, we obtain g(α1) > g(1) = 1.

Concerning the lower bound, we remark that limτ↗W H̃min/W = −3, so we have to know

when H̃min is positive.

Lemma 2. H̃min is positive if and only if

αN <
X+ − α0

X+ − 1
(14)

with X+ :=
(
A− 1 +

√
A2 + 10A+ 1

)
/6, A := C + 3 [α2

0 + (α0 − 1)α2
1/(1− α1)] .

Proof. For Xmax ∈ (1,∞), Hmin/W = A/Xmax − 2Xmax/(1 +Xmax)− 1 is positive if and only

if −3X2
max + (A − 1)Xmax + A > 0. One root of this polynomial is negative, the other is X+

and X+ > 1 because A > 3. Xmax < X+ yields the desired upper bound on αN .

Numerically, for mt = 176 GeV , the bound of (14) is α3 < 0.92, corresponding to mτ <

76.83 GeV . In particular, since X+ > α2
0 the condition α3 <

α2
0−α0

α2
0−1

= α0

1+α0
implies positive

H̃min. A fortiori, mτ <
√
Wt/(3W + t) = 63 GeV, mt = 176 GeV, implies positive H̃min.
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From now on, we put

Hmin = H̃min (15)

if the latter is positive.

Note that the bounds on the Higgs mass do not depend on the mass of the intermediate

leptons (mµ).

If ∆H := Hmax−Hmin denotes the length of the accessible interval for m2
H , one checks that

∆H

W
= (αN − α1)(α0 − 1)

[
C

(α0 − αN)(α0 − α1)
+ 3

α0 + αN − α0αN

(α0 − α1)(1− αN )

+3
α1 + αN − α1αN

(α0 − αN )(1− α1)
+

2

(α0 + 1− 2αN )(α0 + 1− 2α1)

]
.

Therefore the fuzziness disappears if and only if the sum of the squares of all six quark masses

equals 3m2
W or mτ = me. Indeed, neglecting all fermion masses but mτ and mt,

∆mH := mHmax −mHmin =

[
k

(
mτ

mt

)2

+ O

(
mτ

mt

)4
]
mt,

k :=

√
3

2

r3 + 3r2 − 7r − 33

r3 + 5r2 + 5r − 3

√
r
r2 + 2r − 1

r + 3
, (16)

r :=
(
mt

mW

)2

. (17)

For mt = 176 GeV , we have k = 1.76.

If there are only N = 2 generations of leptons and quarks (or likewise three generation

of leptons and no quarks) then the Lemma 1 no longer holds since Y is a function of X.

Nevertheless, the Higgs mass varies in an open interval, an analogue of equation (13) holds and

∆mH is governed by the mass difference mµ − me [7]. If there is only N = 1 generation of

leptons and quarks (or two generations of leptons and no quarks) then the bounds on the Higgs

mass collapse, the mass relation becomes exact, i.e. an equality [5].

3.2 Coupling constants

In absence of strong interactions, there is a relation among the gauge couplings g1 and g2 [8]

because then, only x and tr y appear. Depending on the fermion content, this relation is exact

or fuzzy. If there are only quarks in any number of generations, we have sin2 θw = 1/5, and for

only leptons in any number of generations, sin2 θw = 1/3. For leptons and quarks the relation

becomes fuzzy,

1/5 < sin2 θw =
x+ tr y

5x+ 3 tr y
< 1/3.

However, without strong interactions, the geometric version of the standard model leads to

wrong electric charges, up and down quark with opposite charges or charged neutrinos.
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The addition of strong interactions cures this problem and introduces two more parameters,

x̃ and tr ỹ. Consequently

sin2 θw =
g−2

2

g−2
1 + g−2

2

=
Nx+ tr y

2Nx+ 2
9
Nx̃+ 3

2
tr y + 3

2
tr ỹ

is only bounded from above,

sin2 θw <
2

3

1 +
1

9

(
g2

g3

)2
−1

.

Note that the addition of right-handed neutrinos to the standard model [9] improves this

constraint,

sin2 θw <
1

2

1 +
1

12

(
g2

g3

)2
−1

.

Using

αem :=
g2
em

4π
=

g2
2 sin2 θw

4π

we rewrite the inequality (1):

α3 :=
g2

3

4π
>

αem

6(1− 3/2 sin2 θw)
.

It now says that the strong fine structure constant cannot be very small, α3 > 0.002. Experi-

mentally it is around 0.11.

4 Conclusions

Non-commutative geometry explains the constraint mZ = mW/ cos θw. Although being an

equality it is stable under renormalization flow. Non-commutative geometry has three ad-

ditional constraints: (2) explains why the top is so heavy, (3) predicts the Higgs mass and

(1) constrains the weak mixing angle and the strong coupling constant. All three constraints

are fuzzy, i.e. given by inequalities and therefore locally stable under renormalization flow

[10]. Local stability should be sufficient since the theory contains no superheavy particle. Nu-

merically the Higgs mass is predicted at mH = 280 ± 33 GeV for the current top mass of

mt = 176± 18 GeV , a prediction to be tested within ten years.

It is as pleasure to acknowledge helpful advice of Alain Connes and Gilles Esposito-Farèse.

12



References

[1] A. Connes, Non-Commutative Geometry, Academic Press (1994)

[2] A. Connes & J. Lott, The metric aspect of non-commutative geometry, in the pro-
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Figure caption: Lower and upper bounds of the Higgs mass as a function of the top and

τ masses, all other masses being set to their experimental values. For the experimental value,

mτ = 1.8 GeV , the two bounds differ by around 10−2 GeV in the indicated range of mt.
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