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Calculations of the chiral condensate h �  i on the lattice using staggered fermions and the Lanczos algorithm

are presented. Three gauge �elds are considered: the quenched non-Abelian �eld, the Abelian �eld projected in
the maximal Abelian gauge, and the monopole �eld further decomposed from the Abelian �eld. The results show

that the Abelian monopoles largely reproduce the chiral condensate values of the full non-Abelian theory, both

in SU(2) and in SU(3).

1. Introduction

Since the Abelian monopole mechanism for

con�nement in QCD was conjectured [1,2], there

have been extensive studies using lattice gauge

theory in the pure gauge sector [3{9]. Only a

small amount of work has been done in the quark

sector [10{13].

In the present work, we do a systematic study

of the role of Abelian projection and Abelian

monopoles in chiral symmetry breaking in the

con�ned phase at zero temperature. We use a

di�erent approach from that used in [10], namely,

the eigenvalue method using the Lanczos algo-

rithm [14], which allows us to work at zero mass.

In addition to working in SU(2) gauge theory,

we also perform calculations in SU(3) for which

there has been very little study of the Abelian

monopole mechanism.

2. Chiral Condensate h �  i on the lattice

The spontaneous breakdown of chiral symme-

try is signaled by the non-vanishing of the order

parameter (chiral condensate) h �  i. On a lattice

of volume V, it is given by

h �  (m;V )i = �
1

V
hTr

�
1

D=+m

�
i (1)

where the angular brakets denote the gauge �eld

con�guration average. This can be expressed in
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terms of the eigenvalues of the Dirac operator D=

h���(m;V )i =
�1

V

NX
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Here ��, � are the single-component staggered

fermion �elds and h �  i = 1

4
h���i. The eigen-

values are calculated using the well-established

Lanczos algorithm [14]. To truly probe the

physics of spontaneous chiral symmetry breaking,

one should attempt to work in the limit of zero

quark mass and in�nite volume. The chiral limit

m! 0 should be taken after V !1

h���i = � lim
m!0

lim
V!1

1

V

X
�n�0

2m
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= � lim
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Z 1

0

d�
2m�(�)
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= ���(0) (3)

where �(�) = 1

V
dn=d� is called the spectral den-

sity function and is normalized to
R1
0
d��(�) =

Nc, the number of colors. Eq. (3) relates chi-

ral symmetry breaking to the small modes in the

eigenvalue spectrum. So the task is reduced to

�nding the small eigenvalues, rather than the en-

tire spectrum of the fermion matrix.

3. Abelian Projection on the Lattice

The lattice formulation of Abelian projection

was developed in [4,5]. The idea is to �x the gauge
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of a SU(N) theory so that a residual gauge free-

dom U (1)N�1 remains. The Abelian degrees of

freedom are extracted by a subsequent projection

(Abelian projection): U (x; �) = c(x; �) u(x; �)

where u(x; �) is the diagonal abelian-projected

�eld and c(x; �) the nondiagonal matter (gluon)

�eld. In general the gauge condition can be real-

ized by making some adjoint operatorR diagonal:

~R(x) = G(x)R(x)G�1(x) = diagonal: (4)

Several gauge conditions have been studied and

it has been found that the so-called Maximal

Abelian gauge [5] most readily captures the long-

distance features of the vacuum. It is realized by

maximizing the quantity, in SU(2),

R =
X
x;�

tr
h
�3 ~U(x; �)�3 ~U

y(x; �)
i

(5)

or in SU(3)

R =
X
x;�

3X
i=1

j ~Uii(x; �)j
2 (6)

where ~U (x; �) = G(x)U (x; �)G�1(x+�). In prac-

tice, R is maximized iteratively by solving for

G(x) repeatedly until some criterion is satis�ed.

It is well-known that there exist monopoles in

a compact U(1) �eld as topological uctuations.

The Abelian-projected �eld u(x; �) can be further

decomposed into monopole plus photon contribu-

tions [15].

4. Numerical results

4.1. Results for SU(2)

Gauge �xing was done with the help of overre-

laxation [16] which reduced the number of iter-

ations by a factor of 3 to 5. We used the stop-

ping criterion that � = 1 � 1=2TrG(x) = 1 � r0
converges to 10�6 which requires about 500 iter-

ations with overrelaxation. Fig. 1 shows the raw

data obtained for �(�). To extract a value at

� = 0, we �t the distributions by a straight line

�(�) = a + b� in an interval [�min; �max] which

excludes eigenvalues strongly inuenced by �nite

volume e�ects [18]. Fig. 2 shows the results of

such a �t for the interval [0.015,0.05]. The full

and Abelian values for the extracted h���i are

consistent with those obtained in Ref. [10] which

used a quite di�erent approach. The interesting

feature here is that using the monopole contri-

bution brings the values even closer to those of

the full theory, while the photon con�gurations

give almost no e�ects. We found either no or

very few small eigenvalues for the photon con�g-

urations. For purposes of comparison, we also

performed Abelian projection at � = 2:5 using

a di�erent gauge-�xing condition: the Polyakov

gauge which diagonalizes the Polyakov loop ac-

cording to Eq. (4). The result is that the Abelian

and the monopole spectral density functions are

almost an order of magnitude larger than those

of the full theory. In Ref. [10], a similar result is

found using the �eld-strength gauge.

4.2. Results for SU(3)

The gauge �eld con�gurations were generated

using the Cabibbo-Marinari [17] pseudo-heat-

bath method on a 84 lattice at � = 5:7 and a 104

lattice at � = 5:9. Con�gurations are selected af-

ter 4000 thermalization sweeps from a cold start,

and every 500 sweeps thereafter. Fig. 3 shows

the results obtained for 150 con�gurations on the

84 lattice. Fig. 4 shows the results obtained for

100 con�gurations on the 104 lattice. One can

see that a similar pattern emerges in SU(3): the

Abelian and the monopole contributions give val-

ues that are close to those of the full theory. It

was also con�rmed that the photon con�gurations

give negligible contribution.

5. Conclusion

We have calculated chiral symmetry breaking

on the lattice in the quenched approximation us-

ing the Lanczos algorithm which allows calcula-

tions to be done directly at zero quark mass. The

results show that Abelian projected �elds and

Abelian monopoles in the Maximal Abelian gauge

can largely reproduce the values of the full the-

ory, both in SU(2) and in SU(3). These results

extend the idea of Abelian dominance and pro-

vide some evidence that Abelian monopoles can
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Figure 1. Raw data for the spectral density functions in SU(2).

Figure 2. Fitted spectral density functions in the eigenvalue interval [0.015,0.05] in SU(2).
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Figure 3. Spectral density function in SU(3) on

the 84 lattice at �=5.7.

describe the long-distance physics of light quarks

in QCD.
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