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Abstract

A new zero modes enhancement (ZME) model of true vacuum of QCD is

breifly described. It makes possible to analytically investigate and calculate

numerically low-energy QCD structure from first principles. Expressions of

basic chiral QCD parameters (the pion decay constant, quark and gluon con-

densates, the dynamically generated quark mass, etc) as well as the vacuum

energy density, suitable for numerical calculations, have been derived. Solu-

tion to the Schwinger-Dyson (SD) equation for the quark propagator in the

infrared (IR) domain on the basis of the ZME effect in QCD was used for

this purpose. There are only two independent quantities (free parameters) by

means of which calculations should be done within our approach. The first

one is the constant of integration of the above mentioned quark SD equation

of motion. The second one is a scale at which nonperturbative effects begin

to play a dominant role.
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I. THE ZERO MODES ENHACEMENT MODEL OF QUARK CONFINEMENT

AND DCSB

Today there are no doubts that the dynamical mechanisms of quark confinement [1] and

dynamical chiral symmetry breaking (DCSB) [2, 3] are closely related to the complicated

topological structure of the QCD nonperturbative vacuum. For this reason any correct

nonperturbative model of quark confinement and DCSB necessary becomes a model of a

true QCD vacuum. Also, it becomes clear that nonperturbative infrared (IR) divergenses

are closely related, on the one hand, to the above mentioned nontrivial vacuum structure.

On the other hand, they play an important role in the large scale behaviour of QCD [4-6].

If it is true that QCD is an IR unstable theory (i.e., has no IR stable fixed point) then the

low-frequency modes of the Yang-Mills fields should be enhanced due to nonperturbative

IR divergences. So the full gluon propagator can diverge faster than the free one at small

momentum, in accordance with [7, 8]

Dµν(q) ∼ (q2)−2, q2 → 0 (1.1)

which describes the zero modes enhancement (ZME) effect in QCD. If the low-frequency

components of the virtual fields in the true vacuum have a larger amplitude indeed than

those of the bare (perturbative) vacuum [5] then the Green function for a single quark should

be reconstructed on the basis of this effect. It is important to understand that a possible

effect of the ZME (1.1) is our primary dynamical assumption. We will consider this effect

as a rather realistic confining ansatz for the full gluon propagator in order to use it as input

information for the quark SD equation. Such singular behaviour of the full gluon propagator

requires the introduction of a small IR regulation parameter ε in order to define the initial

SD equations and Slavnov-Taylor (ST) identities in the IR region. Because of this the quark

propagator and other Green’s functions become dependent, in general, on this IR regulation

parameter ε which is to be set to zero at the end of computation ε→ 0+.

Let us consider the exact, unrenormalized SD equation for the quark propagator in

momentum space
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S−1(p) = S−1
0 (p) + g2CF

∫
dnq

(2π)n
Γµ(p, q)S(p− q)γνDµν(q), (1.2)

where CF is the eigenvalue of the quadratic Casimir operator in the fundamental represen-

tation. Other notions are the usual ones. Let us only note that our parametrization of the

full quark propagator is as follows

−iS(p) = p̂A(−p2) +B(−p2). (1.3)

The full gluon propagator in the arbitrary covariant gauge is

Dµν(q) = −i

{[
gµν −

qµqν

q2

]
1

q2
d(−q2, a) + a

qµqν

q4

}
, (1.4)

where a is a gauge fixing parameter (a = 0 for Landau gauge).

Assuming that in the IR region

d(−q2, a) =

(
µ2

−q2

)
+ β(a) +O(q2), q2 → 0, (1.5)

where µ is the appropriate mass scale parameter, we obtain the above mentioned generally

accepted form of the IR singular asymptotics for the full gluon propagator (1.1) [4-5, 7-9]

(enhancement of the zero modes).

In order to actually define an initial SD equation (1.2) in the IR region (at small mo-

menta) let us apply the gauge-invariant dimensional regularization method of ’t Hooft and

Veltman [10] in the limit n = 4 + 2ε, ε→ 0+, where ε is the above mentioned a small IR

regulation parameter. We consider the SD equations and the corresponding quark-gluon ST

identity in Euclidean space (dnq → idnqE, q2 → −q2
E, p2 → −p2

E , but for simplicity

the Euclidean subscript will be omitted). Let us use, in the sense of the distribution theory,

the relation [11]

(q2)−2+ε =
π2

ε
δ4(q) + (q2)−2

+ +O(ε), ε→ 0+, (1.6)

where (q2)−2
+ is a functional acting on the main (test) functions according to the so-called

”plus prescription” standard formulae [11]. Substituting (1.4-1.6) into the quark SD equa-

tion (1.2) on account of the above mentioned ”plus prescription” formulae and expanding
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in powers of q and keeping the terms of order q−2 ( the Coulomb order terms), in agree-

ment with (1.5), one finally arrives at the quark propagator expansion in the IR region for

unrenormalized quantities [12] (in four-dimensional Euclidean space).

As mentioned above, all Green’s functions become dependent generally on the IR reg-

ularization parameter ε. In order to extract the finite Green’s functions in the IR region,

we introduce the renormalized (IR finite) quark-gluon vertex function at zero momentum

transfer and the quark propagator as follows Γµ(p, 0) = Z1(ε)Γ̄µ(p, 0) and S(p) = Z2(ε)S̄(p)

at ε → 0+, respectively. Here Zi(ε) (i = 1, 2) are the corresponding IR renormalization

constants. The ε-parameter dependence is indicated explicitly to distinguish them from

the usual UV renormalization constants. Γ̄µ(p, 0) and S̄(p) are the renormalized (IR finite)

Green’s functions and therefore do not depend on ε in the ε → 0+ limit, i.e. they exist as

ε → 0+. The correct treatment of such strong singularity (1.6) within distribution theory

[11] enabled us to extract the required class of test functions in the renormalized quark

SD equation. The test functions do consist of the quark propagator and the corresponding

quark-gluon vertex function. By the renormalization program we have found the regular

solutions for the quark propagator (see below). For that very reason relation (1.6) is justi-

fied, it is multiplied by the appropriate smooth test functions. Due to a quark convergence

condition, a cancellation of nonperturbative IR divergences takes place. Because of this

condition the explicitly gauge-dependent terms (the so-called next-to-leading terms) in the

above mentioned quark propagator expansion become ε - order terms. For this reason these

noninvariant terms vanish in the ε→ 0+ limit.

Absolutely in the same way should be reconstructed the ghost self-energy and the corre-

sponding ST identity for the quark-gluon vertex [12]. We develop a method for the extraction

of the IR-finite Green’s functions in QCD which means that they do not depend on the IR

regulation parameter ε as ε → 0+. For this purpose we have worked out a renormalization

program in order to cancel all the IR nonperturbative divergences which makes it possible to

obtain a close set of the SD equations and the corresponding ST identity in the quark sector.

By completing our renormalization program, we explicitly show that only multiplication by
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the quark IR renormalization constant will remove all nonperturbative IR divergences from

the theory on a general ground. We have shown [12] that for the covariant gauges the

complications due to ghost contributions can be considerable in our approach.

The closed set of equations, obtained in our paper [12], which will be used for numerical

calculation of basic chiral QCD parameters as well as the vacuum energy density, should

read

S−1(p) = S−1
0 (p) + g̃2Γ̄µ(p, 0)S(p)γµ, (1.7)

1

2
b̄(0)Γ̄µ(p, 0) = i∂µS

−1(p)−
1

2
b̄(0)S(p)Γ̄µ(p, 0)S

−1(p), (1.8)

where S−1
0 (p) is the free quark propagator and g̃2 includes the mass scale parameter µ2,

determining the validity of the above mentioned deep IR singular asymptotic behaviour

of the full gluon propagator (1.5). Let us note that the IR finite quark renormalization

constant, explicitly not shown here, which should multiply free quark propagator in Eq.(1.7)

is to be set to unity without losing generality (multiplicative renormalizability) [12]. It is

worth noting also that Eq.(1.7) and Eq.(1.8) describe the leading terms of the corresponding

expansions of the quark SD equation and ST identity in the IR region, respectively [12].

In order to solve the system (1.7-1.8), it is convenient to represent the quark-gluon vertex

function at zero momentum transfer as follows

Γ̄µ(p, 0) = F1(p
2)γµ + F2(p

2)pµ + F3(p
2)pµp̂ + F4(p

2)p̂γµ. (1.9)

Substituting this representation into the ST identity (1.8), one obtains

F1(p
2) = −A(p2),

F2(p
2) = −2B

′
(p2)− F4(p

2),

F3(p
2) = 2A

′
(p2),

F4(p
2) =

A2(p2)B−1(p2)

E(p2)
. (1.10)

Here the prime denotes differentiation with respect to the Euclidean momentum variable p2

and A(p2) = A(p2)E−1(p2), B(p2) = B(p2)E−1(p2) with E(p2) = p2A2(p2) + B2(p2). For
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the sake of convenience, the ghost self-energy at zero point b̄ ≡ b̄(0) is included into the

definition of a new coupling constant λ = g2[b(0)]−1(2π)−2.

Proceeding now to the dimensionless variables by p2 = µ2t = µ2 λ
2
z and parameters

2
λ
t0 = z0, t0 =

k2
0

µ2 , introducing then the following notations

A(p2) = µ−2A(t) = −µ−2 2

λ
g(z), B2(p2) = µ−2B2(t) = µ−2 2

λ
B2(z0, z), (1.11)

and doing some algebra, the initial system (1.7-1.8) can be rewritten as follows (normal

form)

g′(z) = −[
2

z
+ 1]g(z) +

1

z
+ m̃0B(z) (1.12)

B′(z) = −
3

2
g2(z)B−1(z)− [m̃0g(z) +B(z)], (1.13)

where m̃0 = m0(
2
λ
)1/2. It is easy to check that solutions to this system in the chiral limit

m0 = 0 are:

g(z) = z−2[exp (−z)− 1 + z] (1.14)

and

B2(z0, z) = 3 exp (−2z)

z0∫
z

exp (2z′)g2(z′) dz′. (1.15)

The exact solutions (1.14) for A(z) and (1.15) for dynamically generated quark mass

function B(z0, z) are not entire functions. Functions A(z) and B(z0, z) have removable

singularities at zero. In addition, the dynamically generated quark mass function B(z0, z)

also has algebraic branch points at z = z0 and at infinity. Apparently, these unphysical

singularities are due to ghost contributions. The quark propagator may or may not be an

entire function but in either cases the pole-type singularities should disappear. This is a

general feature of quark confinement and holds in any gauge.

In order to reproduce automatically the correct behaviour of the dynamically generated

quark mass function at infinity, it is necessary to put z0 = ∞ in (1.15) from the very
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beginning. Obviously, in this case solution (1.15) cannot be accepted at zero z = 0, so one

needs to keep the constant of integration z0 arbitrary but finite in order to obtain a regular,

finite solution at the zero point.

The region z0 > z can be considered as nonperturbative, whereas the region z0 ≤ z can

be considered as perturbative. By approximating the full gluon propagator by its deep IR

asymptotics such as (q2)−2 in the whole range [0,∞), we nevertheless obtain that our solution

for the dynamical quark mass function B(z0, z) manifests the existence of the boundary

value momentum (dimensionless) z0 which separates the IR (nonperturbative) region from

the intermediate and UV (perturbative) regions. If QCD confines then a characteristic scale,

at which confinement and other nonperturbative effects become essential, must exist. On the

other hand, because of this one can eliminate the influence of the above mentioned unphysical

singularities, coming from the solutions to the quark SD equations (due to necessary ghost

contributions), on the S-matrix elements reproducing physical quantities.

Thus, within our approach to QCD at large distances in order to obtain numerical values

of any physical quantity, e.g. the pion decay constant (see below), the integration over the

whole range [0, ∞] reduces to the integration over the nonperturbative region [0, z0] , which

determines the range of validity of the deep IR asymptotics (1.1) of the full gluon propagator

and consequently the range of validity of the corresponding solutions (1.14) and (1.15) for

the IR piece of the full quark propagator.

Let us make now the main conclusions. First, if the enhancement of the zero modes of the

vacuum fluctuations (1.1) takes place indeed then the quark Green’s function, reconstructed

on the basis of this effect, has no poles. In other words, the enhancement of the zero modes

at the expense of the virtual gluons alone removes nevertheless a single quark from the mass

shell (quark confinement theorem of Ref. 12). Second, a chiral symmetry violating part of the

quark propagator in this case is automatically generated. From the obtained system (1.12-

1.13) it explicitly follows that a chiral symmetry preserving solution (m0 = B(z) = 0, A(z) 6=

0) is forbidden. So a chiral symmetry violating solution (m0 = 0, B(z) 6= 0, A(z) 6= 0) for

the quark SD equation is required. Thus the enhancement of the zero modes automatically
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leads to quark confinement and DCSB at the fundamental quark level and they are in close

connection with each other.

II. THE VACUUM ENERGY DENSITY AND GLUON CONDENSATE

The effective potential method for composite operators [13] makes it possible to investi-

gate the vacuum of QCD since in the absence of the external sources the effective potential

is nothing but the vacuum energy density, the main characteristic of the vacuum. In this

Section we will evaluate the vacuum energy density within the ZME effect in QCD (1.1) as

described in the preceding Section. The effective potential at one-loop level is [13]

V (S,D) = V (S) + V (D) =

− i
∫

dnp

(2π)n
Tr{ln(S−1

0 S)− (S−1
0 S) + 1}

+ i
1

2

∫ dnp

(2π)n
Tr{ln(D−1

0 D) − (D−1
0 D) + 1}, (2.1)

where S(p) (1.3), S0(p) and D(p) (1.4), D0(p) are the full, free quark and gluon propagators,

respectively. The trace over space-time and color group indices is assumed but they are

suppressed for simplicity in this equation. Let us recall that the free gluon propagator can

be obtained from (1.4) by setting simply d(−q2, a) = 1.

Evidently the effective potential is normalized as follows V (S0, D0) = V (S0) = V (D0) =

0. Because of this normalization the vacuum energy density now should be defined as follows

ε = V (S0, D0) − V (S,D) = −V (S,D). In fact, this is the difference between perturbative

(normalized to zero) and nonperturbative vacuums. This means that ε = εq + εg with

εq = −V (S), εg = −V (D), where V (S) and V (D) are given by (2.1).

Going to Euclidean space (d4p → idnp, p2 → −p2 ) and dimensionless variables and

parameters (2.10), we finally obtain after some algebra (n = 4)

εq = −
3

8π2
k4

0z
−2
0

z0∫
0

dz z {ln z
[
zg2(z) +B2(z0, z)

]
− 2zg(z) + 2}, (2.2)

where we introduced the UV cutoff which should be identified with the arbitrary constant

of integration z0 as was discussed in previous Section. The explicit expressions for g(z) and
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B2(z0, z) are given by (1.14) and (1.15) respectively. Within our approach this expression

will be used for the numerical calculation of the vacuum energy density due to confining

quarks with dynamically generated masses.

The vacuum energy density due to nonperturbative gluon contributions in the same

variables is

εg =
1

π2
k4

0z
−2
0

z0∫
0

dz z {ln(1 +
6

z
)−

3

2z
+ b} (2.3)

Here one important remark is in order. In fact, vacuum energy density εg does not vanish

at z0 → ∞ as it should because of the above mentioned normalization. Thus, it needs an

additional regularization at this limit. From (2.3), it follows that the term containing the

constant b should be substracted from this expression. So regularized vacuum energy density

should be calculated through the relation (2.3) which becomes

εg = −
1

π2
k4

0z
−2
0 ×

[
18 ln(1 +

z0

6
) −

1

2
z2

0 ln(1 +
6

z0
)−

3

2
z0

]
. (2.4)

Precisely this expression will be evaluated numerically. The vacuum energy density due

to confining quarks (2.2) automatically disappears at z0 → ∞, so it does not requires any

additional regularization.

The vacuum energy density is important on its own right as the main characteristics of

the nonperturbative vacuum of QCD. On the other hand, it makes possible to estimate such

important phenomenogical parameter as the gluon condensate introduced within the QCD

sum rules approach to resonance physics [14]. Indeed, through the vacuum energy density ε

it can be expressed as follows

〈0|
αs

π
Ga
µνG

a
µν |0〉 = −

32

9
ε = −

32

9
(εq + εg). (2.5)

For the derivation of this formula see Ref. 14. The weakness of this derivation is, of course,

that it was obtained on the basis of the perturbative calculation of the β(αs)-function. In

any case, it would be instructive to estimate the gluon condensate with the help of (2.5).
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III. BASIC CHIRAL QCD PARAMETERS

Because of its especially small mass, the pion is the most striking example of the Gold-

stone realization of chiral symmetry SU(2)L×SU(2)R. Beside the quark condensate and the

dynamically generated quark mass it is one of the three important chiral QCD parameters

that determine the scale of chiral dynamics.

I. The pion decay constant Fπ is defined in the current algebra (CA) as

〈0|J i5µ(0)|π
j(q)〉 = iFπqµδ

ij. (3.1)

(The normalization Fπ = 92.42 MeV is used [15, 16]). Clearly, this matrix element can be

written in terms of the pion- quark-antiquark proper vertex and quark propagators as

iFπqµδ
ij =

∫
d4p

(2π)4
Tr{

(
λi

2

)
γ5γµS(p + q)Gj

5(p + q, p)S(p)}. (3.2)

Here and below, the trace is understood over the Dirac and colour indices. To get expression

for Fπ one has to differentiate Eq.(3.2) with respect to the external momentum qν and then

set q = 0.

Information on the BS pion wave function up to terms of order q can be obtained from

the corresponding axial-vector vertex. Indeed, in our paper [17] it has been found that this

vertex can be decomposed in a self-consistent way into pole (dynamical) and regular parts

as follows

Γi5µ(p + q, p) = −
qµ

q2
Gi

5(p + q, p) + ΓiR5µ(p+ q, p), (3.3)

where the BS bound-state amplitude is

Gi
5(p + q, p) = −

1

Fπ

(
λi

2

)
γ5G(p + q, p), (3.4)

with

G(p + q, p) = 2B(−p2) + q̂R6(−p
2) + p̂q̂R11(−p

2) (3.5)
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and arbitrary form factors are the residues of the corresponding form factors, entering the

vertex from the very beginning [17]. The regular part at zero momentum transfer q = 0 is

determined as

ΓiR5µ(p, p) = (
λi

2
)γ5{γµG1 + pµG2 + pµp̂G3 + p̂γµG4}, (3.6)

where in the Euclidean space

G1(p
2) = −A(p2)−R6(p

2)

G2(p
2) = 2B

′
(p2)

G3(p
2) = 2A

′
(p2)

G4(p
2) = −R11(p

2). (3.7)

This system is nothing else but the conditions for the cancellation of the dynamical singu-

larities at q = 0 for the corresponding form factors [17]. The regular part at q = 0 also

depends on the same form factors R6 and R11 as the BS bound-state amplitude up to terms

of order q.

Then by taking into account the BS pion wave function up to terms of order q given

by (3.4-3.5) and (1.3) with the substitution p → p + q and expanding in powers of q,

the expression (3.2) can easily be evaluated. Going over to the Euclidean space (d4p →

id4p, p2 → −p2) and using dimensional variables (1.11), one finally obtains

F 2
CA =

12π2

(2π)4
µ2
∫ ∞

0
dt t{−B(t)[AB +

1

2
t(A′B −AB′)]

−
3

4
tABR11(t) +

1

4
R6(t)(E − 3B2)}, (3.8)

Here and below the primes denote differentiation with respect to the dimensionless Euclidean

momentum variable t, A = A(t), B = B(t) and quantities with overline are shown after Eqs.

(1.10). Here and in what follows we denote the pion decay constant Fπ in the chiral limit of

the CA representation by FCA.

The main problem now is to find a good nonperturbative ansatz for both arbitrary

form factors Rj(t)(j = 6, 11) in the IR region. In nonperturbative calculations these terms
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cannot be ignored by saying formally they are of order g2, as it was done in the perturbative

treatments [3, 18-19]. In connection with this let us point out that the difference between

the vector and axial-vector currents disappears in the chiral limit. For this reason let us

assume [20] that the IR finite quark-gluon vector vertex function at zero momentum transfer

(1.9-1.10) is a good approximation to the regular piece of the axial-vector vertex at zero

momentum transfer in the chiral limit (3.6-3.7). A fortunate feature that admits to exploit

partial analogy between vector and axial-vector currents in the chiral limit for the flavor non-

singlet channel is that the contribution to the pion decay constant in the CA representation

(3.8) does not depend on the form factor G2(p2) at all. In this case the analogy between

(1.10) and (3.7) becomes complete, and one obtains

R6(p
2) = 0, R11(p

2) = −
A2(p2)B−1(p2)

E(p2)
. (3.9)

Of course, we cannot prove these relations but it will be shown later (part II) that this

dynamical assumption (nonperturbative ansatz) leads to very good numerical results for all

chiral QCD parameters thereby justifying it once more.

In terms of the new parameters and variables (1.11) and on account of (3.9) we finally

recast (3.8) as follows

F 2
CA =

3

8π2
k2

0z
−1
0

∫ z0

0
dz

zB2(z0, z)

{zg2(z) +B2(z0, z)}
. (3.10)

This expression will be used for numerical calculation of the pion decay constant in the CA

representation.

II. The second important chiral QCD parameter is the dynamically generated quark mass

md, defined as the inverse of the full quark propagator (1.3) in the chiral limit at zero point

[12, 17, 21]

md = [iSch(0)]
−1, (3.11)

where Sch(0) denotes the full quark propagator in the chiral limit m0 = 0. Obviously, this

definition assumes also regularity at the zero point. Though the dynamical quark mass md
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is not an experimentally observable quantity, by all means, it is desirable to find such kind

of solutions to the quark SD equations in which dependence on a gauge-fixing parameter

disappears. In this sense md defined by (3.11) becomes gauge-invariant. As it was briefly

discussed in Section 1, exactly such a nonperturbative quark propagator has been found

within our approach to QCD at large distances [12].

Using the standard decomposition of the quark propagator (1.3) and its inverse, dynam-

ical chiral symmetry breaking (DCSB) at the fundamental (microscopic) quark level can be

implemented by the following condition

{S−1(p), γ5}+ = iγ52B(−p2) 6= 0, (3.12)

so that the γ5 invariance of the quark propagator is broken and the measure of this breakdown

is the double of the dynamically generated quark mass function 2B(−p2). Precisely this

quantity at zero 2B(0) can be defined as a scale of DCSB at the fundamental quark level

[17]. In accordance with (3.11), let us denote it by

ΛCSBq = 2B(0) = 2md, (3.13)

The definitions md and ΛCSBq have now direct physical sense within the above mentioned

solutions to the quark SD equation.

Let us write down the final result for the dynamically generated nonperturbative quark

mass (3.11) too, expressed in terms of the new parameters and variables (1.11)

md = k0{z0B
2(z0, 0)}

−1/2
, (3.14)

where B2(z0, 0) is given by (1.15) at zero point.

III. As it is well known, the order parameter of DCSB - quark condensate can also be

expressed in terms of the quark propagator scalar function B(−p2) (1.3). Its definition is

〈qq〉 = 〈0|qq|0〉 = −
∫

d4p

(2π)4
TrS(p). (3.15)

The final result expressed in terms of new variables and parameters (1.11) is as follows
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〈qq〉0 = −
3

4π2
k3

0z
−3/2
0

∫ z0

0
dz zB(z0, z), (3.16)

and as a function of md it can be expressed on account of (3.14). Thus there are only

two independent (free) quantities by means of which all calculations should be done in our

approach. The first one is the constant of integration z0 of the above mentioned quark SD

equation of motion. The second quantity is a scale k0 at which nonperturbative effects begin

to play a dominant role.

The ZME model of a true QCD vacuum enables us to describe quark confinement

and DCSB on a general ground. We begin Part II with numerical investigation of the

low energy QCD structure at the chiral limit. At low energies QCD is under control of

SUL(Nf ) × SUR(Nf ) chiral symmetry (Nf is the number of different flavors) and its dy-

namical breakdown in the vacuum to the corresponding vectorial subgroup. So to correctly

calculate basic low energy QCD parameters in the chiral limit means to corectly understand

the dynamical structure of QCD at low energies. That is why it is important to start from

the chiral limit.
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