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Abstract

A quantum equivalence principle is formulated by means of a gravitational phase

operator which is an element of the Poincare group. This is applied to the spinning cosmic

string which suggests that it may contain gravitational torsion. A new exact solution of

the Einstein- Cartan-Sciama-Kibble equations for the gravitational field with torsion is

obtained everywhere for a cosmic string with uniform energy density, spin density and

flux. A novel effect due to the quantized gravitational field of the cosmic string on the

wave function of a particle outside the string is used to show that spacetime points are not

meaningful in quantum gravity.
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0. INTRODUCTION: RELATIVIZING AND QUANTIZING GRAVITY

After the discovery of special relativity by Lorentz, Poincare, and Einstein, there was

the problem of “relativizing gravity”, analogous to the problem of “quantizing gravity”

which exists today. It was clear that Newtonian gravity was incompatible with special

relativity and it was necessary to replace it with a relativistic theory of gravity. While

several attempts were made to do this, Einstein succeeded in constructing such a theory

because he used i) the geometrical reformulation of special relativity by Minkowski, and ii)

the operational approach of asking what may be learned by probing gravity using classical

particles.

An important ingredient in (i) was Einstein’s realization that the times in the different

inertial frames, t and t′, in the Lorentz transformation were on the same footing. I.e. the

interpretation Einstein gave to special relativity, whose basic equations were already known

to Lorentz and Poincare, was crucial to the subsequent work of Minkwoski. It enabled

Einstein to get rid of the three dimensional ether, and thereby pave the way for the

introduction of the four dimensional ‘ether’, called space-time, by Minkowski. By means

of (ii), Einstein concluded that the aspect of Newtonian gravity which should be retained

when this theory is modified is the equivalence principle. This principle is compatible with

special relativity locally. This may be seen from the physical formulation of the strong

equivalence principle according to which in the Einstein elevator that is freely falling in a

gravitational field the laws of special relativity are approximately valid. But this principle

allowed for the modification of special relativity to incorporate gravity as curvature of

space-time.

Today we find that general relativity, the beautiful theory of gravity which Einstein

discovered in this way, is incompatible with quantum theory. Can we then adopt a similar

approach? This would mean that we should use 1) a geometrical reformulation of quantum

theory, and 2) an operational approach of asking what may be learned by probing gravity

using quantum particles.
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As for (1), the possibility of using group elements as ’distances’ in quantum theory,

analogous to space-time distances in classical physics, was studied previously [1]. For a

particular quantum system, the corresponding representations of these group elements may

be used to relate points of the projective Hilbert space, i.e. the set of rays of the Hilbert

space, which is the quantum generalization of the classical phase space [2]. Recent work

on protective observation of the quantum state has shown that the points of the projective

Hilbert space are real, in the sense that they could be observed by measurements on an

individual system, instead of using an ensemble of identical systems [3].

As for (2), the question is whether the motion of a quantum system in a gravitational

field enables us to identify the aspect of general relativity which must be preserved when

this theory is replaced by a quantum theory of gravity, i.e. the quantum analog of the

equivalence principle. In section 1, I shall formulate such a principle. This will be applied

to cosmic strings, in section 2, because of their interesting topological, geometrical, and

quantum gravitational aspects. I shall present an exact solution of the Einstein-Cartan-

Sciama-Kibble gravitational field equations, valid in the interior as well as the exterior of

the cosmic string, which depends on three parameters.

It is shown in section 3 that when the gravitational field of the string is quantized so

that different geometries may be superposed, the wave function of a test particle even in

a simply connected region is affected although each of the superposed geometries is flat in

this region. But a special case of this effect is invariant under a quantum diffeomorphism

that transforms different geometries differently, as discussed in section 4. This freedom

suggests that the points of space-time have no invariant meaning. So, there seems to be a

need to get rid of the four dimensional ‘ether’, namely space-time, in order to incorporate

the quantum diffeomorphism symmetry into quantum gravity.

1. THE EQUIVALENCE PRINCIPLE IN CLASSICAL AND QUANTUM PHYSICS

First, consider the classical weak equivalence principle (WEP), due to Galileo and
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Einstein. This has two aspects to it: In a space-time manifold with a pure gravitational

field, a) the possible motions of all freely falling test particles are the same, and b) at

any point p in space-time, there exists a neighborhood U(p) of p and a coordinate system

{xµ, µ = 0, 1, 2, 3}, such that the trajectories of every freely falling test particle through p

satisfies [4]

d2xµ

dλ2
= 0, (1.1)

for a suitable parameter λ along the trajectory. This is the local form of the law of inertia

and the above coordinate system is said to be locally inertial at p. The condition (b) is a

special property of the gravitational field, not shared by any other field. For example, in an

electromagnetic field test particles with the same charge to mass ratio would satisfy (a) but

not (b). (The Lorentz 4-force is proportional to the electromagnetic field strength which,

being a tensor, cannot be coordinate transformed away unlike the connection coefficients.)

It may be shown using (b) that there exists an affine connection ω such that the

trajectories of freely falling test particles are affinely parametrized geodesics with respect

to it. Suppose ε = d
L
, where d ∼ linear dimensions of U(p) and L ∼ radius of curvature

obtained from the curvature components of this connection, all lengths being measured in

the above coordinate system, and we can neglect second orders in ε. Such a neighborhood

will be called a first order infinitesimal neighborhood of p, and denoted by Uε(p). Using

the geodesic deviation equation, it may be shown that the velocities of the freely falling

test particles in Uε(p) are constant in an appropriately chosen coordinate system. This is

a stronger form of the WEP than its usual statement given above, and will be called the

modified classical weak equivalence principle. It is valid in Newtonian gravity as well as

Einsteinian gravity.

The above formulations of WEPs require for their statements only an affine connection

and no metric. Indeed, in Uε the freely falling particle trajectories have as their symmetry

group the affine group A(4) that is generated by the general linear transformations and

translations in a 4 dimensional real vector space. In classical physics, the interactions
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between the particles restrict the symmetry group in Uε to the inhomogeneous Galilei

group (non relativistic physics), or the Poincare group P (relativistic physics), which are

both subgroups of A(4). This is a form of the classical strong equivalence principle (SEP)

valid for relativistic and non relativistic gravity. In this way, non flat space-time geometry

may also in some sense be brought into the frame-work of Felix Klein’s Erlanger program

according to which a geometry is determined as the set of properties invariant under a

symmetry group [1].

What fundamental aspects about the gravitational field may be learned if it is probed

with quantum particles, instead of with classical particles as in the above treatment?

It was shown that the evolution of a freely falling wave function is given, in the WKB

approximation, by the action on the initial wave function by the operator [5]

Φγ = Pexp[−i

∫
γ

Γµdx
µ], (1.2)

where

Γµ = θµ
aPa +

1

2
ωµ

a
b
Mb

a. (1.3)

which will be called the gravitational phase operator. Here the energy-momentum opera-

tors Pa and the angular momentum operators Mb
a, a, b = 0, 1, 2, 3 generate the covering

group of the Poincare group P̃ that is a semi-direct product of SL(2, C) and space-time

translations R(4). The fact that mass m is a good quantum number in curved space-time

and m2 is a Casimir operator of P already suggests that P is relevant in the presence of

gravity.

For every space-time point p, let Hε(p) be the Hilbert space of wave functions in

Uε(p) in which P̃ acts. Owing to the linearity of the action of (1.2), it determines also the

evolution of any freely falling wave packet which can be expanded as a linear combination

of WKB wave functions, provided the size of the wave packet is small compared to the

radius of curvature, i. e. it is contained primarily inside Uε at each point along γ which

may be chosen to be along the center of the wave packet. This will be called the quantum
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weak equivalence principle, because (1.2) is a Poincare group element independent of the

freely falling wave packet. In this respect, it is like the classical WEP according to which

the affine connection determined is independent of the test particle used.

In quantum physics, because the wave packet must necessarily have some spread, the

WEP cannot be formulated by particle trajectories as in conditions (a) and (b) above, and

it is necessary to use at least the neighborhood Uε. Indeed (1.2) was obtained [5] using

the Klein-Gordon [6] and Dirac equations [7] which are covariant under P̃ in Uε. So, in

quantum physics there is a close connection between the WEP, as formulated above, and

SEP according to which P̃ is the symmetry group of all laws of physics in Uε. It is well

known that (a) cannot be valid in quantum physics, because the motions of wave functions

depend on their masses [8]. But the modified classical WEP and the classical SEP as

stated above have the advantage that they have a smooth transition to quantum physics.

The above approximate concepts may be made mathematically precise as follows:

Each neighborhood Uε(p) may be identified with the tangent space at p regarded as an

affine space. The motions of freely falling test particles relate affine spaces associated with

two neighboring points by a linear transformation and a translation, generated by Pa. This

gives a natural connection on the affine bundle[9] over spacetime which is a principal fiber

bundle with A(4) as the structure group. This is the connection used above to express the

modified classical WEP. The quantum WEP requires the Poincare subbundle with P̃ (to

admit Fermions) as the structure group. Then (1.3) defines a connection in this principal

fiber bundle. The gravitational phase operator (1.2) parallel transports with respect to

this connection along the curve γ. The above Hilbert space bundle, that is the union of

Hε(p) for all space-time points p, is a vector bundle associated to this principal fiber bundle

with a connection that is the representation (1.3) in this Hilbert space.

The curvature of the above connection is the Poincare Lie algebra valued 2-form

F = dΓ + Γ ∧ Γ = QaPa +
1

2
RabM

b
a, (1.4)
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where, on using (1.3) and the Lie algebra of the Poincare group,

Qa = dθa + ωab ∧ θ
b, Rab = dωab + ωac ∧ ω

c
b. (1.5)

which are called respectively the torsion and the linear curvature. If the wave equation

used to obtain (1.2) did not contain torsion, then the torsion in (1.4), of course, is also

zero. However, the above modified classical WEP and the quantum WEP make it natural

to have torsion and suggest that if the torsion is zero then there should be a good physical

reason for it.

Suppose γ is a closed curve. Then (1.2) is a holonomy transformation determined

by the above affine connection. It may then be transformed to an appropriate integral

over a 2-surface Σ spanned by γ as follows. Let O be a fixed point in Σ. Foliate Σ by

a 1-parameter family of curves λ(s, t), where sε[0, 1] labels the curves and tε[0, 1] is the

parameter along each curve. All curves originate at O, which corresponds to t = 0. The

(s, t) are smooth coordinates on Σ excluding O. Suppose γ begins and ends at (0, 1). Let

Λ(s, t) = Φλ(s,t). Then

Λ−1(0, 1)ΦγΛ(0, 1) = Pstexp[−i

∫ 1

0

ds

∫ 1

0

dtΛ−1(s, t)Fµν (s, t)Λ(s, t)`µmν ], (1.6)

where `µ = ∂xµ

∂s
,mµ = ∂xµ

∂t
and Pst means surface ordering, i. e. in the expansion of (1.6)

terms with greater value of s precede terms with smaller value of s, and for equal values

of s terms with greater value of t precede terms with smaller value of t. In (1.6) all field

variables are transported to the common point O so that the integrals are meaningfully

performed in the affine space at O.

To prove (1.6), note that the LHS of (1.6) is a holonomy transformation which begins

and ends at O, and may be expressed as a product of holonomy transformations Φs over

triangles whose sides are two s = constant curves and an infinitesimal segment of γ. Each

Φs may be written as a product of Φst over infinitesimal “rectangles”, bounded by s =

const. , t = const. curves, which are transported to O, which yields (1.6). This extends a

known result for Yang-Mills field and linear curvature [10] to include torsion.
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It follows from (1.6) that in the absence of gravity in a simply connected region (1.2)

is path independent. I shall take the equivalent statement that the path dependence of

(1.2) implies gravity as the definition of the gravitational field even when the region is

not simply connected. This definition makes the converse of this statement also valid. So,

by probing gravity using quantum mechanical systems, without paying any attention to

gauge fields, gravity may be obtained naturally as a Poincare gauge field in the sense of

Yang’s integral formulation of gauge field [11].

An advantage of this point of view is that it also provides a unified description of

gravity and gauge fields. If a wave function is interacting not only with the gravitational

field but also other gauge fields, then its propagation in the WKB approximation is given

by the action of an operator of the form (1.2) with

Γµ = θµ
aPa +

1

2
ωµ

a
b
Mb

a +Aµ
jTj , (1.7)

where Aµ
j is the Yang-Mills vector potential and Tj generate the gauge group G. So, (1.2)

now is an element of the entire symmetry group, namely P̃ ×G. Thus, unlike the classical

WEP, the quantum WEP naturally extends to incorporate all gauge fields.

The above fact that the observation of all the fundamental interactions in nature is

via elements of the symmetry group suggest a symmetry ontology. By this I mean that the

elements of symmetry group are observable and therefore real. Moreover, the observables

such as energy, momentum, angular momentum and charge, which are usually observed

in quantum theory are some of the generators of the above symmetry group. Observation

always requires interaction between the observed system and the apparatus. Ultimately,

these interactions are mediated by gravity and gauge fields. I therefore postulate that

the only observables which can actually be observed are formed from the generators of

symmetry group, which according to our current understanding of physics are generators

of P̃ ×G. Symmetry is destiny.

2. COSMIC STRING - AN EXACT SOLUTION
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As an example, consider cosmic strings, which are predicted by gauge theories [12] and

are of astrophysical interest because of their possible role in galaxy formation [13] and as

gravitational lenses [14,15]. Consider a cosmic string whose axis is along the z−axis. Since

the torsion and curvature outside the string are zero, its exterior geometry is determined

entirely by the affine holonomy transformation associated with a closed curve γ going

around the string, given by (1.2). But owing to the cylindrical symmetry of this geometry,

this transformation should commute with M2
1 which generates rotations about the axis of

the string. The most general affine holonomy transformation which commutes with M2
1

is of the form

Φγ = exp[−i(bPo + cP3 + aM2
1 + dM3

0)]. (2.1)

Therefore, the most general external geometry should depend on the four parameters a, b, c

and d. This geometry has been obtained, from the point of view of affine holonomy, by

Tod [16] although the present argument which uses the gravitational phase operator (1.2)

is somewhat simpler and more physical.

I shall consider here only the most general stationary exterior solution which depends

only on three parameters (d = 0):

ds2 = (dt+ βdφ)2 − dρ2 − α2ρ2dφ2 − (dz + γdφ)2, (2.2)

where α, β and γ are constants related to a, b and c respectively. The special case of γ = 0

was considered by Deser et al [17] and Mazur [18]. It is worth noting that the usual linear

holonomy around the cosmic string can only determine the parameter α. Whereas the

translational part of the affine holonomy distinguishes metrics (2.2) with different values

for (β, γ) [16], which shows the importance of affine holonomy. It follows from (1.4) and

(1.5) that the rotational part of the affine holonomy, due to α, requires curvature inside

the string. The translational part of the affine holonomy, due to β and γ, suggests (but

does not require) the inclusion of torsion inside the string.
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With a view towards this, rewrite (2.2) as ds2 = ηabθ
aθb, where the orthonormal

co-frame field θa is

θ0 = dt+ βdφ, θ1 = dρ, θ2 = αρdφ, θ3 = dz + γdφ. (2.3)

Let ea be the frame (vierbein) dual to θa: θµ
beµa = δba. The connection coefficients in this

basis are ωµab ≡ θν
a∇µeνb = 0, for all a, b, µ except for

ω
φ̂

1

2
= −ω

φ̂
2

1
= −α, (2.4)

assuming no torsion in the exterior. This external geometry is affine flat, i.e. Qa =

0, Rab = 0 on using (1.5), and yet the affine holonomy around the string is non trivial [19].

Suppose γ is a closed curve around the string. Then from (1.2),

Φγ = exp

(
−i

∮
γ

θµ
0P0dx

µ

)
exp

(
−i

∮
γ

θµ
3P3dx

µ

)

× Pexp

[
−i

∮
γ

(
2∑

k=1

θµ
kPk + ωµ

1
2M

2
1

)
dxµ

]
. (2.5)

The three factors in (2.5) commute with one another. On comparing with (2.1) and using

(2.3), b = 2πβ and c = 2πγ. The first factor in (2.5), which is a time translation, may

be given a physical meaning as follows: Suppose an optical, neutron or superconducting

interferometer encloses the string once and is at rest with respect to the above coordinate

system. Then the above time translation gives rise to a “Sagnac” phase shift [6,20], which

in the present case is ∆φE = 2πβE, where E is the frequency of the interfering particle

(eigenvalue of P0).

The second factor in (2.5), which is a spatial translation, may be given physical

meaning by the following new effect: Suppose the beam at the beam splitter of the above

interferometer has a z− component of momentum p. I.e. p is the approximate eigenvalue

of P3. Then, this factor gives rise to the phase shift ∆φp = 2πγp.

If in (1.6), coordinates and basis can be chosen such that Λ(s, t) ' 1 for all s, t,

then Σ will be called infinitesimal. It follows from (1.6), (1.4) and (2.5) that when the
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cross- section of the string is infinitesimal in this sense, it must necessarily contain torsion

in order that the surface integral has the time translation contained in the line integral.

Then ∆φ may be regarded as a topological phase shift due to the enclosed torsion inside

the string. It is possible for the string not to contain torsion, but only by violating the

above infinitesimality assumption.

The simplest gravitational field equations in the presence of torsion are the Einstein-

Cartan- Sciama- Kibble (ECSK) equations [21], which may be written in the form [22]

1

2
ηijklθ

l ∧Rjk = −8πGti, (2.6)

ηijklθ
l ∧Qk = 8πGsij , (2.7)

where ti and sij are 3-form fields representing the energy-momentum and spin densities. I

shall now obtain an exact solution of these equations for the interior of the cosmic string

which matches the exterior solution (2.2). This will then give physical and geometrical

meaning to the parameters α and β in (2.2). This solution will be different from earlier

torsion string solutions [23] which have static interior metrics matched with exterior metrics

which are different from (2.2).

The ρ and z coordinates in the interior will be chosen to be the distances measured by

the metric in these directions. Since the exterior solution has symmetries in the t, φ, and z

directions, it is reasonable to suppose the same for the interior solution. So, all functions

in the interior will be functions of ρ only. So, I make the following ansatz in the interior:

θ0 = u(ρ)dt+v(ρ)dφ, θ1 = dρ, θ2 = f(ρ)dφ, θ3 = dz+g(ρ)dφ, ω2
1 = k(ρ)dφ = −ω1

2, (2.8)

all other components of ωab being zero, and ds2 = ηabθ
aθb ≡ gµνdxµdxν . Suppose also that

there is a fluid in the interior whose energy density ε and spin density σ polarized in the

z-direction are constant, and this spin has a constant current density τ in the z-direction.

I. e.

t0 = εθ1 ∧ θ2 ∧ θ3 = εf(ρ)dρ ∧ dφ ∧ dz,
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s12 = −s21 = σθ1 ∧ θ2 ∧ θ3 − τθ0 ∧ θ1 ∧ θ2

= σf(ρ)dρ ∧ dφ ∧ dz − τuf(ρ)dt ∧ dρ ∧ dφ, (2.9)

the other components of sij being zero. In terms of the components of the energy-

momentum and spin tensors in the present basis, this means that t00 = ε = constant

and s0
12 = σ = constant.

It is assumed that there is no surface energy-momentum or spin for the string. Then

the metric must satisfy the junction conditions [24], which in the present case are

gµν|− = gµν |+, ∂ρ̂gµν|+ = ∂ρ̂gµν |− + 2K(µν)ρ̂, (2.10)

where Kαβγ = 1
2 (−Qαβγ +Qβγα −Qγαβ) is the contorsion or the defect tensor, |+ and |−

refer to the limiting values as the boundary of the string is approached from outside and

inside the string, respectively, and the hat denotes the corresponding coordinate compo-

nent.

Substitute (2.8), (2.9) into the Cartan equations (2.7). The (i, j) = (0, 2), (0, 3), (2, 3)

eqs. are automatically satisfied. The (i, j) = (0, 1), (1, 3), (1, 2) eqs. yield

f ′(ρ) = k(ρ), u′(ρ) = 0, v′(ρ) = 8πGσf(ρ), g′(ρ) = 8πGτf(ρ), (2.11)

where the prime denotes differentiation with respect to ρ. Therefore, the continuity of the

metric (eq. (2.10)) implies that since u = 1 at the boundary, u(ρ) = 1 everywhere. Now

substitute (2.8), (2.9) into the Einstein equations (2.6). The i = 0 eq. yields

k′(ρ) = −8πGεf(ρ). (2.12)

The i = 1, 2, 3 equations yield, respectively

t1 = 0, t2 = 0, t3 =
k′

8πG
dt ∧ dρ ∧ dφ = −εθ0 ∧ θ1 ∧ θ2, (2.13)

using (2.12). Hence, t33 = ε = t00. From (2.11) and (2.12),

f ′′(ρ) +
1

ρ∗2
f(ρ) = 0, (2.14)
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where ρ∗ = (8πGε)−1/2. In order for there not to be a metrical “cone” singularity at

ρ = 0, it is necessary that θ2 ∼ ρdφ near ρ = 0. Hence, the solution of (2.14) is f(ρ) =

ρ∗sin ρ
ρ∗ . Then from (2.11), k(ρ) = cos ρ

ρ∗ , and requiring v(0) = 0 = g(0) to avoid a conical

singularity, v(ρ) = 8πGσρ ∗2
(
1− cos ρ

ρ∗

)
, and g(ρ) = 8πGτρ ∗2

(
1− cos ρ

ρ∗

)
.

This gives the metric in the interior of the string to be

ds2 =

[
dt+ 8πGσρ ∗2

(
1− cos

ρ

ρ∗

)
dφ

]2

− dρ2 − ρ ∗2 sin2

(
ρ

ρ∗

)
dφ2

−

[
dz + 8πGτρ ∗2

(
1− cos

ρ

ρ∗

)
dφ

]2

, (2.15)

and the connection is ω2
1 = cos ρ

ρ∗dφ. The only non vanishing components of torsion and

curvature are

Q0 = 8πGσρ ∗ sin

(
ρ

ρ∗

)
dρ ∧ dφ,Q3 = 8πGτρ ∗ sin

(
ρ

ρ∗

)
dρ ∧ dφ,

R1
2 =

1

ρ∗
sin

(
ρ

ρ∗

)
dρ ∧ dφ = −R2

1. (2.16)

I apply now the junction conditions (2.10), which will show that ρ is discontinuous

across the boundary. Denote the values of ρ for the boundary in the internal and external

coordinate systems by ρ− and ρ+ respectively. From (2.1) and (2.15), gt̂φ̂,gẑφ̂, and gφ̂φ̂ are

respectively continuous iff

β = 8πGσρ ∗2
(

1− cos
ρ−

ρ∗

)
, (2.17)

γ = 8πGτρ ∗2
(

1− cos
ρ−

ρ∗

)
, (2.18)

αρ+ = ρ ∗ sin
ρ−

ρ∗
. (2.19)

The remaining metric coefficients are clearly continuous. The only non zero contorsion

terms which enter into (2.10) are obtained from (2.16) to be

K(φ̂t̂)ρ̂ = −4πGσρ ∗ sin
ρ

ρ∗
,K(φ̂ẑ)ρ̂ = 4πGτρ ∗ sin

ρ

ρ∗
,

Kφ̂φ̂ρ̂ = (8πG)2
(
τ 2 − σ2

)
ρ ∗3

(
1− cos

ρ

ρ∗

)
sin

ρ

ρ∗
. (2.20)
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Using (2.19) and(2.20), it can now be verified that the remaining junction conditions (2.10)

are satisfied provided α = cosρ−
ρ∗ . The mass per unit length is

µ ≡

∫
Σ

εθ1 ∧ θ2 =
1

4G

(
1− cos

ρ−

ρ∗

)
=

1

8πG

∫
Σ

R1
2, (2.21)

where Σ is a cross-section of the string (constant t, z). Therefore, α = 1 − 4Gµ. The

angular momentum per unit length due to the spin density is

J ≡

∫
Σ

σθ1 ∧ θ2 = 2πσρ ∗2
(

1− cos
ρ−

ρ∗

)
=

1

8πG

∫
Σ

Q0. (2.22)

Hence, from (2.17), β = 4GJ . The angular momentum flux, which is along the z−axis, is

F ≡

∫
Σ

τθ1 ∧ θ2 = 2πτρ ∗2
(

1− cos
ρ−

ρ∗

)
=

1

8πG

∫
Σ

Q3. (2.23)

Hence, from (2.18), γ = 4GF .

The Sagnac phase shift and the new phase shift obtained earlier are therefore ∆φE =

ET 0, and ∆φp = pT 3, where T 0 and T 3 are the fluxes of Q0 and Q3 through Σ. These

are both topological phase shifts, analogous to the Aharonov-Bohm effect with the string

playing the role of the solenoid, in that they are invariant as the curve γ is deformed so

long as it is outside the string.

It was recently pointed out to me that the special case of the above solution corre-

sponding to γ = 0 = τ was found by Soleng [25]. If torsion is absent, which in the ECSK

theory means that spin density is zero, then β = 0 = γ, and the above solution reduces

to the exact static solution of Einstein’s theory found by Gott [15] and others [26], whose

linearized limit was previously found by Vilenkin [14].

3. INTERACTION OF A QUANTUM COSMIC STRING WITH A QUANTUM PAR-

TICLE

Suppose now that the cosmic string is treated quantum mechanically. Then its grav-

itational field also should be treated quantum mechanically. It is then possible to form
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a quantum superposition of the gravitational fields corresponding to different values of

(α, β, γ) of the solution obtained above.

It was shown [27] that the following new physical effect is obtained when the cosmic

string is in a superposition of quantum states corresponding to different values of β: A

measurement on a quantum cosmic string that puts it in this superposition of geometries

would change the intensity of the wave function of a particle in a simply connected region

near the cosmic string, even though each of the superposed flat geometries in this region

has no effect on the wave function. This is unlike the Aharonov-Bohm effect in which the

wave function needs to go all the way around the multiply connected region surrounding

the solenoid in order to be affected by the solenoid.

I shall now treat this effect using the variables θa and ωab, and generalize this effect

further. Owing to the translational symmetry along the direction of the string, its gravi-

tational field is equivalent to that of a point particle in 2 + 1 dimensional gravity. Using

the latter variables, Witten [28] has constructed a quantum theory of 2 + 1 dimensional

gravity which is finite. The effect which will be treated now therefore will also provide

physical meaning to 2 + 1 dimensional quantum gravity.

In the gravitational phase operator (1.2), θa and ωab are now operators owing to the

fact that the gravitational field they represent is quantized. Using (2.3) and (2.4), (1.2)

may be written in terms of α, β and γ, which are also operators, as the product of two

commuting exponentials:

Φγ = exp

[
−i

∫
γ

(dtP0 + βdφP0 + dzP3 + γdφP3)

]
× P exp

[
−i

∫
γ

(
dρP1 + αρdφP2 − αdφM

2
1

)]
. (3.1)

From the end of section 2 it follows that

α = 1− 4Gµ̂, β = 4GĴ, γ = 4GF̂ , (3.2)

where µ̂, Ĵ and F̂ are the quantum mechanical operators corresponding to the mass, angular
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momentum and angular momentum flux per unit length of the string. The latter operators

are assumed to commute with one another.

Suppose that the quantum state of the cosmic string is initially in the superposition

|ψ0〉 =
1
√

2
(|ψ1〉+ |ψ2〉), (3.3)

where |ψ1〉 and |ψ2〉 are normalized eigenstates of α, β and γ with the same eigenvalue for

α and the other eigenvalues being (β1, γ1) and (β2, γ2) respectively. According to (3.2),

these different values of (β, γ) correspond to different eigenstates of Ĵ and F̂ , respectively,

of the fluid that the string is made of. So, the superposition (3.3) may be obtained by

putting the quantum mechanical particles which constitute this fluid in the corresponding

superposition by, say, letting them interact with another quantum mechanical system.

Suppose also that a test particle outside the string is approximately an eigenstate of its

energy P0 and momentum in the z-direction P3, with eigenvaluesE and p respectively. This

is possible because the last two operators commute with each other due to the symmetry

of the gravitational field of the string in the z-direction.

The test particle is initially far away from the string in the normalized state |ζ0〉 and

is slowly brought towards the string without changing E or p. Suppose the interaction of

|ζ0〉 with |ψ1〉 and |ψ2〉 changes the state of the combined system to |ψ1〉|ζ1〉 and |ψ2〉|ζ2〉

respectively. Then by the linearity of quantum mechanics, the interaction of |ζ0〉 with |ψ0〉

gives rise to the entangled state for the combined system

|χ〉 =
1
√

2
(|ψ1〉|ζ1〉+ |ψ2〉|ζ2〉). (3.4)

Now a measurement is made on the string and it is found to be in the superposition

|ψ〉 = a|ψ1〉+ bψ2〉,

where |a|2 + |b|2 = 1. The corresponding state of the test particle is

|ζ〉 = 〈ψ|χ〉 =
1
√

2
(a∗|ζ1〉+ b∗|ζ2〉) (3.5)
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The wave function corresponding to this state is to a good approximation

ζ(x, t) =
1
√

2
[a∗ exp{−i(β1E + γ1p)(φ − φ0)}+ b∗ exp{−i(β2E + γ2p)(φ − φ0)}] ζ

′
0(x, t).

(3.6)

To obtain (3.6), one may solve the wave equation for the interaction of the test particle

with the cosmic string in each of the states |ψ1〉 and |ψ2〉 and superpose the two solutions,

or one may act on the state of the combined system by (3.1). Then ζ ′0(x, t) is seen to

be the result of the action on ζ0 of the part of (3.1) that does not depend on β and γ

and is therefore the same for both of the superposed states. The constant φ0 depends

on the phase difference between these states, which in turn depends on the details of the

interaction.

The intensity is

ζ∗ζ(x, t) =

(
1

2
+ |ab| cos[{(β1 − β2)E + (γ1 − γ2)p}(φ − φ0) + δ]

)
|ζ ′0(x, t)|

2. (3.7)

It follows that the intensity would oscillate as a function of φ. The number of oscillations

per unit angular distance φ is

ν =
1

2π
{(β1 − β2)E + (γ1 − γ2)p} =

2G

π
{(J1 − J2)E + (F1 − F2)p}, (3.8)

on using (3.2). This effect may be regarded geometrically as being due to the difference

between two affine connections, which is a tensor field. This explains why this effect may

occur for a wave function that is in a simply connected region outside the string. Because

unlike each affine connection which has zero curvature, and can therefore have physical

influence only through its non trivial holonomy around the string, the above tensor field

may have local influences.

4. QUANTUM GENERAL COVARIANCE AND SPACE-TIME POINTS

In general, if there is a quantum superposition of gravitational fields, by a quantum dif-

feomorphism, or simply a q- diffeomorphism, I mean performing different diffeomorphisms
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on the superposed gravitational fields. Then the physical effect described in section 3 may

be shown to be invariant under a particular q-diffeomorphism performed on the quantized

gravitational field when γ = 0 [27,29]. I postulate that all physical effects are invariant

under all q-diffeomorphisms. This suggests a generalization of the usual principle of gen-

eral covariance for the classical gravitational field to the following principle of quantum

general covariance in quantum gravity: The laws of physics should be covariant under

q-diffeomorphisms.

On the other hand, the usual principle of general covariance requires covariance of the

laws of physics under classical diffeomorphisms, or c-diffeomorphisms. A c-diffeomorphism

is a diffeomorphism that is the same for all the superposed gravitational fields, and is

thus a special case of a q-diffeomorphism. Therefore, the above principle of quantum

general covariance generalizes the usual general covariance due to Einstein. Under a c-

diffeomorphism, a given space-time point is mapped to the same space-time point for all

of the geometries corresponding to the superposed gravitational fields. This is consistent

with regarding the space-time manifold as real, i.e. a four dimensional ether.

It is instructive in this context to examine Einstein’s resolution of the hole argument

[30]: In 1913, Einstein and Grossmann [31] considered the determination of the gravita-

tional field inside a hole in some known matter distribution by solving the gravitational

field equations. If these field equations are generally covariant, then there are an infinite

number of solutions inside the hole, which are isometrically related by diffeomorphisms.

These geometries, which I shall call Einstein copies, may however be regarded as differ-

ent representations of the same objective physical geometry. This follows if a space-time

point inside the hole is defined operationally as the intersection of the world-lines of two

material particles, or geometrically by the distances along geodesics joining this point to

material points on the boundary of the hole. Under a c-diffeomorphism, such a point in

one Einstein copy is mapped to a unique point in another Einstein copy. Both points may

then be regarded as different representations of the same physical space-time point or an

18



event. So, if we restrict to just c-diffeomorphism freedom, space-time may be regarded as

objective and real.

But the space-time points associated with each of the superposed gravitational fields,

which are defined above in a c-diffeomorphism invariant manner, transform differently

under a q-diffeomorphism. This means that in quantum gravity space-time points have

no invariant meaning. However, protective observation suggests that quantum states are

real [3]. Consequently, the space-time manifold, which appears to be redundant, may be

discarded, and we may deal directly with the quantum states of the gravitational field. But

then the curve γ in the gravitational phase operator (1.2) cannot be meaningfully defined

as a curve in space-time. The resolution of this difficulty may be expected to lead us to a

quantum theory of gravity that may be operational and geometrical.

I thank H. R. Brown and R. Penrose for stimulating discussions. This research was

supported by NSF grant PHY-9307708 and ONR grant no. R&T 3124141.

[1] J. Anandan, Foundations of Physics, 10, 601 (1980).

[2] J. Anandan, Foundations of Physics, 21, 1265 (1991).

[3] Y. Aharonov, J. Anandan, and L. Vaidman, Phys. Rev. A 47, 4616 (1993); Y.

Aharonov and L. Vaidman, Phys. Lett. A 178, 38 (1993); J. Anandan, Foundations

of Physics Letters 6, 503 (1993).

[4] J. Ehlers, F. A. E. Pirani, and A. Schild, in Papers in Honour of J. L. Synge, edited

by L. O’Raifeartaigh (Clarendon Press, Oxford 1972).

[5] J. Anandan in Quantum Theory and Gravitation, edited by A. R. Marlow (Academic

Press, New York 1980), p. 157.

[6] J. Anandan, Phys. Rev. D 15, 1448 (1977).

[7] J. Anandan, Nuov. Cim. A 53, 221 (1979).

[8] D. Greenberger, Ann. Phys. 47, 116 (1986); D. Greenberger and A. W. Overhauser,

Sci. Am. 242, 66 (1980).

19



[9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (John Wiley, New

York 1963).

[10] For Yang-Mills field it is convenient to choose the “radial” gauge in which Λ(s, t) is

the identity for all s, t. See C. N. Kozameh and E. T. Newman, Phys. Rev. D 31, 801

(1985), Appendix A for this technique. Then, in (1.6), the path ordering needs to be

done only in s. But for affine holonomy this is not appropriate because θa are usually

linear independent which prevents the “radial” gauge being chosen. See also J. A. G.

Vickers Class. Quantum Grav. 4, 1 (1987), who chooses a different set of paths.

[11] C. N. Yang, Phys. Rev. Lett. 33 (1974) 445.

[12] T. W. B. Kibble, J. Phys. A 9,1387 (1976); Phys. Rep. 67, 183 (1980).

[13] Y. B. Zeldovich, Mon. Not. R. Astron. Soc. 192, 663 (1980).

[14] A. Vilenkin, Phys. Rev. D 23, 852 (1981).

[15] J. R. Gott III, Astrophys. J. 288, 422 (1985).

[16] K. P. Tod, Class. Quantum Grav. 11, 1331 (1994).

[17] S. Deser, R. Jackiw, and G. ’t Hooft Ann. Phys. 152, 220 (1984)

[18] P. O. Mazur, Phys. Rev. Lett. 57, 929 (1986).

[19] J. Anandan in Directions in General Relativity, Volume 1, Papers in honor of Charles

Misner, edited by B. L. Hu, M. P. Ryan and C. V. Vishveshwara (Cambridge Univ.

Press, 1993); J. Anandan, J. of Gen. Rel. and Grav. 26, 125 (1994).

[20] A. Ashtekar and A. Magnon, J. Math. Phys. 16, 342 (1975); J. Anandan, Phys. Rev.

D 24, 338 (1981).

[21] D. W. S. Sciama in Recent Developments in General Relativity (Oxford 1962). p.

415; T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

[22] A. Trautman in The Physicist’s Conception of Nature, edited by J. Mehra (Reidel,

Holland, 1973).

[23] A. R. Prasanna, Phys. Rev. D 11, 2083 (1975); D. Tsoubelis, Phys. Rev. Lett. 51,

2235 (1983).

20



[24] W. Arkuszewski, W. Kopczynski, and V. N. Ponomariev, Commun. Math. Phys. 45,

183 (1975).

[25] H. H. Soleng, J. Gen. Relativ. Grav. 24, 111 (1992).

[26] W. A. Hiscock, Phys. Rev. D 31, 3288 (1985); B. Linet, Gen. Rel. and Grav. 17,

1109 (1985).

[27] J. Anandan, Gen. Rel. and Grav. 26, 125 (1994).

[28] E. Witten, Nucl. Phys. B311, 46 (1988).

[29] Y. Aharonov and J. Anandan, Phys. Lett. A 160, 493 (1991); J. Anandan, Phys.

Lett. A 164, 369 (1992).

[30] See for example, R. Torretti, Relativity and Geometry (Pergamon Press, Oxford 1983),

5.6.

[31] A. Einstein and M. Grossmann, Zeitschr. Math. und Phys. 62, 225 (1913).

21


